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Abstract. The purpose of this paper is to investigate some nonlinear integral inequalities and
their discrete analogues. The inequalities given here can be used as handy tools in the qualitative
theory of certain differential equations, integral equations and difference equations.

1. Introduction

It is well known that the integral inequalities and the finite difference inequalities
play a fundamental role in the development of the theory of differential equations, inte-
gral equations and difference equations. In the past few years, many such inequalities
have been discovered, which are motivated by certain applications. For example, see
the monographes [1–5], papers [6–11] and the references therein. The main purpose
of this paper is to investigate some nonlinear integral inequalities and their discrete
analogues. Our paper gives, in some sense, an extension of the results of Pachpatte [6].

2. Main results

In what follows, R denotes the set of real numbers and R+ = [0,∞) is the given
subset of R , N0 denotes the set of nonnegative integers, C(M,S) denotes the class
of all continuous functions defined on set M with range in the set S , and we use the
usual conventions that empty sums and products are taken to be 0 and 1 respectively.
Throughout this paper, all the functions which appear in the inequalities are assumed
to be real-valued and all the sums involved exist on the respective domains of their
definitions, and we always assume that p � q > 0, p and q are real constants.

The following lemma is useful in our main results.
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LEMMA 1. ([12]) Let a ∈ R+ . Then

a
q
p �

(
q
p
K

q−p
p a+

p−q
p

K
q
p

)
for any K > 0. (2.1)

Next, we establish our main results.

THEOREM 2. Assume that u(t) , a(t) , b(t) , g(t) , hi(t)∈C(R+,R+) , i = 1,2, · · · ,n,
and there exists a series of positive real numbers q1,q2, · · · ,qn such that p � qi > 0 ,
i = 1,2, · · · ,n. If w(t,s) and its partial derivative ∂

∂ t w(t,s) are real–valued nonnegative
continuous functions for t,s ∈ R+ with s � t , then the inequality

up(t) � a(t)+b(t)
∫ t

0
w(t,τ)[g(τ)up(τ)+

n

∑
i=1

hi(τ)uqi(τ)]dτ, t ∈ R+, (2.2)

implies

u(t) �
{

a(t)+b(t)
∫ t

0
B(τ)exp

(∫ t

τ
A(s)ds

)
dτ

} 1
p

for any K > 0, t ∈ R+, (2.3)

where

A(t) = w(t, t)b(t)
(

g(t)+
n

∑
i=1

qihi(t)

pK
p−qi

p

)
+

∫ t

0

∂w(t,τ)
∂ t

b(τ)
(

g(τ)+
n

∑
i=1

qihi(τ)

pK
p−qi

p

)
dτ,

(2.4)
and

B(t) = w(t, t)
[
a(t)g(t)+

n

∑
i=1

hi(t)
(

K(p−qi)+qia(t)

pK
p−qi

p

)]

+
∫ t

0

∂w(t,τ)
∂ t

[
a(τ)g(τ)+

n

∑
i=1

hi(τ)
(

K(p−qi)+qia(τ)

pK
p−qi

p

)]
dτ, t ∈ R+.

(2.5)

Proof. Define a function z(t) by

z(t) =
∫ t

0
w(t,τ)[g(τ)up(τ)+

n

∑
i=1

hi(τ)uqi(τ)]dτ, t ∈ R+. (2.6)

Then (2.2) can be restated as

up(t) � a(t)+b(t)z(t), t ∈ R+. (2.7)

Using Lemma 1, from (2.7), for any K > 0, we easily obtain

uqi(t) � (a(t)+b(t)z(t))
qi
p

� K(p−qi)+qia(t)

pK
p−qi

p

+
qib(t)z(t)

pK
p−qi

p

, t ∈ R+, i = 1,2, · · · ,n.
(2.8)
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Combining (2.6)–(2.8), we have

z′(t) = w(t, t)
[
g(t)up(t)+

n

∑
i=1

hi(t)uqi(t)
]

+
∫ t

0
w′

t (t,τ)
[
g(τ)up(τ)

+
n

∑
i=1

hi(τ)uqi(τ)
]
dτ

� w(t, t)
[
a(t)g(t)+

n

∑
i=1

hi(t)
K(p−qi)+qia(t)

pK
p−qi

p

+b(t)
(

g(t)+
n

∑
i=1

qihi(t)

pK
p−qi

p

)
z(t)

]

+
∫ t

0
w′

t (t,τ)
[
a(τ)g(τ)+

n

∑
i=1

hi(τ)
K(p−qi)+qia(τ)

pK
p−qi

p

+b(τ)
(

g(τ)+
n

∑
i=1

qihi(τ)

pK
p−qi

p

)
z(τ)

]
dτ

�
[
w(t, t)b(t)

(
g(t)+

n

∑
i=1

qihi(t)

pK
p−qi

p

)
+

∫ t

0
w′

t(t,τ)b(τ)
(

g(τ)+
n

∑
i=1

qihi(τ)

pK
p−qi

p

)
dτ

]
z(t)

+w(t, t)
[
a(t)g(t)+

n

∑
i=1

hi(t)
K(p−qi)+qia(t)

pK
p−qi

p

]

+
∫ t

0
w′

t (t,τ)
[
a(τ)g(τ)+

n

∑
i=1

hi(τ)
K(p−qi)+qia(τ)

pK
p−qi

p

]
dτ

= A(t)z(t)+B(t), t ∈ R+,

where A(t) and B(t) are defined as in (2.4) and (2.5) respectively. Then we have

d
dt

[
z(t)exp

(
−

∫ t

0
A(s)ds

)]
� B(t)exp

(
−

∫ t

0
A(s)ds

)
, t ∈ R+. (2.9)

It follows from (2.9) that

z(t)exp

(
−

∫ t

0
A(s)ds

)
�

∫ t

0
B(τ)exp

(
−

∫ τ

0
A(s)ds

)
dτ,

i.e.,

z(t) � exp

(∫ t

0
A(s)ds

)∫ t

0
B(τ)exp

(
−

∫ τ

0
A(s)ds

)
dτ

=
∫ t

0
B(τ)exp

(∫ t

τ
A(s)ds

)
dτ, t ∈ R+.

(2.10)

It is easy to see that the desired inequality (2.3) follows from (2.7) and (2.10). The
proof of Theorem 2 is complete. �

Letting w(t,s) = 1 in Theorem 2, we obtain the following corollary.

COROLLARY 3. Assume that u(t) , a(t) , b(t) , g(t) , hi(t) ∈ C(R+,R+) , i =
1,2, · · · ,n. If there exists a series of positive real numbers q1,q2, · · · ,qn such that
p � qi > 0, i = 1,2, · · · ,n, then

up(t) � a(t)+b(t)
∫ t

0

[
g(s)up(s)+

n

∑
i=1

hi(s)uqi(s)
]
ds, t ∈ R+, (2.11)
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implies

u(t) �
{

a(t)+b(t)
∫ t

0

[
a(τ)g(τ)+

n

∑
i=1

hi(τ)
(

K(p−qi)+qia(τ)

pK
p−qi

p

)]

×exp

(∫ t

τ
F(s)ds

)
dτ

} 1
p

for any K > 0, t ∈ R+,

(2.12)

where

F(t) = b(t)
(

g(t)+
n

∑
i=1

qihi(t)

pK
p−qi

p

)
.

THEOREM 4. Assume that u, a , b ∈ C(R+,R+) , and fi : R+ ×R → R+ is a
continuous function such that

0 � fi(t,x)− fi(t,y) � φi(t,y)(x− y), (2.13)

for t ∈ R+ and x � y � 0 , where φi : R+ ×R → R+ is a continuous function, i =
1,2, · · · ,n. If there exists a series of positive real numbers q1,q2, · · · ,qn such that p �
qi > 0, i = 1,2, · · · ,n, then

up(t) � a(t)+b(t)
n

∑
i=1

∫ t

0
fi(τ,uqi(τ))dτ, t ∈ R+, (2.14)

implies

u(t) �
{

a(t)+b(t)
n

∑
i=1

∫ t

0
exp

(∫ t

τ
Mi(s)ds

)
fi

(
τ,

K(p−qi)+qia(τ)

pK
p−qi

p

)
dτ

} 1
p

for any K > 0, t ∈ R+,
(2.15)

where

Mi(t) = φi

(
t,

K(p−qi)+qia(t)

pK
p−qi

p

)
qibi(t)

pK
p−qi

p

, i = 1,2, · · · ,n. (2.16)

Proof. Define z(t) by

z(t) =
n

∑
i=1

∫ t

0
fi(τ,uqi(τ))dτ, t ∈ R+. (2.17)

Then (2.14) can be written as (2.7). As in the proof of Theorem 2, from (2.7), we easily
obtain (2.8). Obviously, it follows from (2.17), (2.8) and (2.13) that
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z′(t) =
n

∑
i=1

fi(t,uqi(t))

�
n

∑
i=1

[
fi

(
t,

K(p−qi)+qia(t)

pK
p−qi

p

+
qib(t)z(t)

pK
p−qi

p

)
− fi

(
t,

K(p−qi)+qia(t)

pK
p−qi

p

)

+ fi

(
t,

K(p−qi)+qia(t)

pK
p−qi

p

)]

�
n

∑
i=1

[
φi

(
t,

K(p−qi)+qia(t)

pK
p−qi

p

)
qib(t)

pK
p−qi

p

z(t)+ fi

(
t,

K(p−qi)+qia(t)

pK
p−qi

p

)]

= z(t)
n

∑
i=1

Mi(t)+
n

∑
i=1

fi

(
t,

K(p−qi)+qia(t)

pK
p−qi

p

)
, t ∈ R+,

(2.18)
where Mi(t) is defined as in (2.16). So we get

z(t) �
n

∑
i=1

∫ t

0
exp

(∫ t

τ
Mi(s)ds

)
fi

(
τ,

K(p−qi)+qia(τ)

pK
p−qi

p

)
dτ, t ∈ R+. (2.19)

It is easy to see that the desired inequality (2.15) follows from (2.7) and (2.19).
The proof of Theorem 4 is complete. �

THEOREM 5. Assume that u(t) , a(t) , b(t) , g(t) and hi(t), are nonnegative func-
tions defined for t ∈ N0 , i = 1,2, · · · ,n, w(t,s) and ΔΔΔΔ1w(t,s) are real–valued nonneg-
ative functions for t,s ∈ N0 with s � t . If there exists a series of positive real numbers
q1,q2, · · · ,qn such that p � qi > 0, i = 1,2, · · · ,n, then the inequality

up(t) � a(t)+b(t)
t−1

∑
τ=0

w(t,τ)[g(τ)up(τ)+
n

∑
i=1

hi(τ)uqi(τ)], t ∈ N0, (2.20)

implies

u(t) �
{

a(t)+b(t)
t−1

∑
τ=0

B̃(τ)
t−1

∏
s=τ+1

(1+ Ã(s))
} 1

p

for any K > 0, t ∈ N0, (2.21)

where ΔΔΔΔ1w(t,s) = w(t +1,s)−w(t,s) for t,s ∈ N0 with s � t ,

Ã(t) = w(t +1, t)b(t)
(

g(t)+
n

∑
i=1

qihi(t)

pK
p−qi

p

)
+

t−1

∑
τ=0

ΔΔΔΔ1w(t,τ)b(τ)
(

g(τ)+
n

∑
i=1

qihi(τ)

pK
p−qi

p

)
,

(2.22)
and

B̃(t) = w(t +1, t)
[
a(t)g(t)+

n

∑
i=1

hi(t)
(

K(p−qi)+qia(t)

pK
p−qi

p

)]

+
t−1

∑
τ=0

ΔΔΔΔ1w(t,τ)
[
a(τ)g(τ)+

n

∑
i=1

hi(t)
(

K(p−qi)+qia(t)

pK
p−qi

p

)]
, t ∈ N0.

(2.23)
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Proof. Define a function z(t) by

z(t) =
t−1

∑
s=0

w(t,τ)
[
g(τ)up(τ)+

n

∑
i=1

hi(τ)uqi(τ)
]
, t ∈ N0. (2.24)

As in the proof of Theorem 2, we easily obtain (2.7) and (2.8). Combining (2.24), (2.7)
and (2.8), we have

z(t +1)− z(t) = w(t +1,t)
[
g(t)up(t)+

n

∑
i=1

hi(t)uqi(t)
]

+
t−1

∑
τ=0

ΔΔΔΔ1w(t,τ)
[
g(τ)up(τ)

+
n

∑
i=1

hi(τ)uqi(τ)
]

�
[
w(t +1,t)b(t)

(
g(t)+

n

∑
i=1

qihi(t)

pK
p−qi

p

)

+
t−1

∑
τ=0

ΔΔΔΔ1w(t,τ)b(τ)
(

g(τ)+
n

∑
i=1

qihi(τ)

pK
p−qi

p

)]
z(t)

+w(t +1,t)
[
a(t)g(t)+

n

∑
i=1

hi(t)
(

K(p−qi)+qia(t)

pK
p−qi

p

)]

+
t−1

∑
τ=0

ΔΔΔΔ1w(t,τ)
[
a(τ)g(τ)+

n

∑
i=1

hi(t)
(

K(p−qi)+qia(t)

pK
p−qi

p

)]
= Ã(t)z(t)+ B̃(t), t ∈ N0.

Therefore, we have

z(t +1)− (1+ Ã(t))z(t) � B̃(t), t ∈ N0. (2.25)

Multiplying both sides of (2.25) by ∏t
s=0[1+ Ã(s)]−1 , taking t = τ , and summing up

both sides of the resulting inequality from 0 to t−1, we get

z(t)
t−1

∏
s=0

[1+ Ã(s)]−1 �
t−1

∑
τ=0

{
B̃(τ)

τ

∏
s=0

[1+ Ã(s)]−1
}

, t ∈ N0,

which implies

z(t) �
t−1

∑
τ=0

{
B̃(τ)

t−1

∏
s=τ+1

[1+ Ã(s)]
}

, t ∈ N0. (2.26)

Using (2.26) in (2.7) we get the required inequality (2.21). This completes the proof of
Theorem 5. �

Letting w(t,s) = 1 in Theorem 5, we can easily obtain the following corollary.

COROLLARY 6. Assume that u(t) , a(t) , b(t) , g(t) and hi(t) are nonnegative
functions defined for t ∈ N0 , i = 1,2, · · · ,n. If there exists a series of positive real
numbers q1,q2, · · · ,qn such that p � qi > 0, i = 1,2, · · · ,n, Then the inequality

up(t) � a(t)+b(t)
t−1

∑
s=0

[
g(s)up(s)+

n

∑
i=1

hi(s)uqi(s)
]
, t ∈ N0, (2.27)
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implies

u(t) �
{

a(t)+b(t)
t−1

∑
τ=0

[
a(τ)g(τ)+

n

∑
i=1

hi(τ)
(

K(p−qi)+qia(τ)

pK
p−qi

p

)]

×
t−1

∏
s=τ+1

(1+F(s))
} 1

p

for any K > 0, t ∈ N0,

(2.28)

where F(t) is defined as in Corollary 3.

THEOREM 7. Assume that u(t) , a(t) , b(t) are nonnegative functions defined for
t ∈ N0 , and fi is a real–valued nonnegative function for t,s ∈ N0 such that

0 � fi(t,x)− fi(t,y) � φi(t,y)(x− y), (2.29)

for x � y, where φi is a nonnegative function, i = 1,2, · · · ,n. If there exists a series of
positive real numbers q1,q2, · · · ,qn such that p � qi > 0, i = 1,2, · · · ,n, then

up(t) � a(t)+b(t)
n

∑
i=1

t−1

∑
τ=0

fi(τ,uqi(τ)), t ∈ N0, (2.30)

implies

u(t) �
{

a(t)+b(t)
n

∑
i=1

[ t−1

∑
τ=0

( t−1

∏
s=τ+1

(1+Mi(t))
)

fi

(
τ,

K(p−qi)+qia(τ)

pK
p−qi

p

)]} 1
p

for any K > 0, t ∈ N0,
(2.31)

where Mi(t) is defined as in Theorem 4.

Proof. Define z(t) by

z(t) =
n

∑
i=1

t−1

∑
τ=0

fi(τ,uqi(τ)), t ∈ N0. (2.32)

As in the proof of Theorem 2, we easily obtain (2.7) and (2.8). It follows from (2.32),
(2.8) and (2.29) that

z(t +1)− z(t) =
n

∑
i=1

fi(t,uqi(t))

�
n

∑
i=1

[
fi

(
t,

K(p−qi)+qia(t)

pK
p−qi

p

+
qib(t)z(t)

pK
p−qi

p

)
− fi

(
t,

K(p−qi)+qia(t)

pK
p−qi

p

)

+ fi

(
t,

K(p−qi)+qia(t)

pK
p−qi

p

)]

�
n

∑
i=1

[
φi

(
t,

K(p−qi)+qia(t)

pK
p−qi

p

)
qib(t)

pK
p−qi

p

z(t)+ fi

(
t,

K(p−qi)+qia(t)

pK
p−qi

p

)]

= z(t)
n

∑
i=1

Mi(t)+
n

∑
i=1

fi

(
t,

K(p−qi)+qia(t)

pK
p−qi

p

)
, t ∈ N0.
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Therefore,

z(t +1)−
(

1+
n

∑
i=1

Mi(t)
)

z(t) �
n

∑
i=1

fi

(
t,

K(p−qi)+qia(t)

pK
p−qi

p

)
, t ∈ N0. (2.33)

From (2.33), we easily obtain

z(t) �
n

∑
i=1

[ t−1

∑
τ=0

( t−1

∏
s=τ+1

(1+Mi(t))
)

fi

(
τ,

K(p−qi)+qia(τ)

pK
p−qi

p

)]
, t ∈ N0. (2.34)

Therefore, the desired inequality (2.31) follows from (2.7) and (2.34). The proof of
Theorem 7 is complete. �

REMARK 8. Letting p > 1,n = 1,K = q1 = 1 in Corollary 3, Theorems 2 and 4,
Corollary 6, Theorems 5 and 7, we easily obtain Theorem 1(a1 ), (a3 ), Theorem 2(b1 ),
Theorem 3(c1 ), (c3 ) and Theorem 4(d1 ) established by Pachpatte[6], respectively.

3. An application

In this section, we present an application of Corollary 3 to obtain the explicit bound
on the solution of a certain differential equation.

Consider the following differential equation

up−1(t)u′(t)+H(t,up(t),uq1(t),uq2(t)) = r(t), u(0) = u0, (3.1)

where p,qi,u0 are real constants and p � qi > 0, i = 1,2, u(t),r(t) ∈C(R+,R) , H ∈
C(R+×R×R×R,R) .

Assume that |H(t,up,uq1 ,uq2)| � g(t)|up|+ h1(t)|uq1 |+ h2(t)|uq2 | , where g(t) ,
hi(t) ∈C(R+,R+) , i = 1,2. It is easy to see that the problem (3.1) is equivalent to the
integral equation

up(t)−up
0

p
+

∫ t

0
H(s,up(s),uq1(s),uq2(s))ds =

∫ t

0
r(s)ds. (3.2)

Then we have

|u(t)|p � a(t)+ p
∫ t

0

(
g(s)|up(s)|+h1(s)|uq1(s)|+h2(t)|uq2(s)|

)
ds, (3.3)

where a(t) = |u0|p + p
∫ t
0 |r(s)|ds . Now a suitable application of Corollary 3 with

b(t) = 1 yields

|u(t)| �
{

a(t)+
∫ t

0

[
a(τ)g(τ)+

2

∑
i=1

hi(s)
(

K(p−qi)+qia(τ)

pK
p−qi

p

)

×exp

(∫ t

τ

(
g(s)+

2

∑
i=1

qihi(s)

pK
p−qi

p

)
ds

)])
dτ

} 1
p

for any K > 0,

(3.4)

which gives the bound on the solution of (3.1) in the terms of the known quantities.
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