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FURTHER GROWTH OF ITERATED ENTIRE FUNCTIONS–I

RATAN KUMAR DUTTA

(Communicated by A. Horwitz)

Abstract. In this paper we study the comparative growth of iterated entire functions and gener-
alise some earlier results.

1. Introduction, Definitions and Notation

Let f (z) and g(z) be two transcendental entire functions defined in the open com-

plex plane C . It is well known [1], {[13], p-67, Th-1.46} that limr→∞
T (r, fog)
T (r, f ) = ∞ and

limr→∞
T (r, fog)
T (r,g) = ∞.

In 1985 Singh [9] proved some comparative growth properties of logT (r, fog)
and T (r, f ) also he raised the question of investigating the comparative growth of
logT (r, fog) and T (r,g). Lahiri [5] proved some result on comparative growth of
logT (r, fog) and T (r,g).

Song and Yang [11] established that f and g are any two transcendental entire
functions of positive lower order and finite order then

lim
r→∞

loglogM(r, fog)
loglogM(r, f )

= ∞= lim
r→∞

loglogM(r, fog)
log logM(r,g)

.

In 1991 Singh and Baloria [10] asked whether for sufficiently large R = R(r)

lim sup
r→∞

loglogM(r, fog)
loglogM(R, f )

< ∞ and lim sup
r→∞

log logM(r, fog)
loglogM(R,g)

< ∞.

Singh and Baloria [10], Lahiri and Sharma [6] worked on this question. Also in a
resent paper [2] Dutta study some comparative growth of iterated entire functions. In
this paper, we investigate the comparative growth of iterated entire functions. we do not
explain the standard notations and definitions of the theory of entire and meromorphic
functions as those are available in [3], [12] and [13].

The following definitions are well known.
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534 R. K. DUTTA

DEFINITION 1.1. The order ρ f and lower order λ f of a meromorphic function f
is defined as

ρ f = lim sup
r→∞

logT (r, f )
logr

and

λ f = lim inf
r→∞

logT (r, f )
logr

.

If f is entire then

ρ f = lim sup
r→∞

loglogM(r, f )
logr

and

λ f = lim inf
r→∞

log logM(r, f )
logr

.

NOTATION 1.2. [8] log[0] x = x , exp[0] x = x and for positive integer m , log[m] x =
log(log[m−1] x) , exp[m] x = exp(exp[m−1] x).

DEFINITION 1.3. The p -th order ρ p
f and lower p -th order λ p

f of a meromorphic
function f is defined as

ρ p
f = lim sup

r→∞

log[p] T (r, f )
logr

and

λ p
f = lim inf

r→∞

log[p] T (r, f )
logr

.

If f is an entire function then

ρ p
f = lim sup

r→∞

log[p+1] M(r, f )
logr

and

λ p
f = lim inf

r→∞

log[p+1] M(r, f )
logr

.

Clearly ρ p
f � ρ p−1

f and λ p
f � λ p−1

f for all p and when p = 1 then p -th order and
lower p -th order coincide with classical order and lower order respectively.

DEFINITION 1.4. Let f be an entire function of finite p -th order ρ p
f then we

defined σ p
f as,

σ p
f = lim sup

r→∞

logM(r, f )

rρ
p
f
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According to Lahiri and Banerjee [4] if f (z) and g(z) be entire functions then the
iteration of f with respect to g is defined as follows:

f1(z) = f (z)
f2(z) = f (g(z)) = f (g1(z))
f3(z) = f (g( f (z))) = f (g2(z)) = f (g( f1(z)))

.... .... ....

fn(z) = f (g( f ........( f (z) or g(z))........)),
according as n is odd or even,

and so

g1(z) = g(z)
g2(z) = g( f (z)) = g( f1(z))
g3(z) = g( f2(z)) = g( f (g(z)))

.... ....

gn(z) = g( fn−1(z)) = g( f (gn−2(z))).

Clearly all fn(z) and gn(z) are entire functions.

2. Lemmas

The following lemmas will be needed in the sequel.

LEMMA 2.1. [3] Let f (z) be an entire function. For 0 � r < R < ∞ , we have

T (r, f ) � log+ M(r, f ) � R+ r
R− r

T (R, f ).

LEMMA 2.2. [1] If f and g are any two entire functions, for all sufficiently large
values of r ,

M

(
1
8
M

( r
2
,g

)
−|g(0)|, f

)
� M(r, fog) � M(M(r,g), f )

LEMMA 2.3. [7] Let f (z) and g(z) be two entire functions. Then we have

T (r, fog) � 1
3

logM

(
1
8
M

( r
4
,g

)
+O(1), f

)

LEMMA 2.4. Let f (z) and g(z) be two entire functions of non zero finite p-th
order ρ p

f and ρ p
g respectively, then for any ε > 0 and p � 1,

log[(n−1)p+1]M(r, fn) �
{

(ρ p
f + ε) logM(r,g)+O(1) when n is even

(ρ p
g + ε) logM(r, f )+O(1) when n is odd,

for all sufficiently large values of r .
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Proof. First suppose that n is even. Then from second part of Lemma 2.2 and
definition of p -th order, it follows that for all sufficiently large values of r,

M(r, fn) � M(M(r,gn−1), f )

i.e., log[p] M(r, fn) � log[p] M(M(r,gn−1), f )

� [M(r,gn−1)]
ρ p

f +ε .

So, log[p+2] M(r, fn) � log[2] M(r,g( fn−2))+O(1).

Taking repeated logarithms (p−2) times, we get

log[2p] M(r, fn) � log[p] M(M(r, fn−2),g)+O(1)

� [M(r, fn−2)]ρ
p
g +ε +O(1)

i.e., log[2p+2] M(r, fn) � log[2] M(r, fn−2)+O(1).

Again taking repeated logarithms (p-2) times, we get

log[3p] M(r, fn) � [M(r,gn−3)]
ρ p

f +ε +O(1).

Finally, after taking repeated logarithms (n− 4)p times more, we have for all suffi-
ciently large values of r,

log[(n−1)p] M(r, fn) � [M(r,g)]ρ
p
f +ε +O(1)

i.e., log[(n−1)p+1]M(r, fn) � (ρ p
f + ε) logM(r,g)+O(1).

Similarly if n is odd then for all sufficiently large values of r

log[(n−1)p+1]M(r, fn) � (ρ p
g + ε) logM(r, f )+O(1).

This proves the lemma. �

LEMMA 2.5. Let f (z) and g(z) be two entire functions of non zero finite lower
p-th order λ p

f and λ p
g respectively, then for any 0 < ε < min{λ p

f ,λ p
g } and p � 1,

log[(n−1)p+1]M(r, fn) �

⎧⎨
⎩

(λ p
f − ε) logM

(
r

2n−1 ,g
)

+O(1) when n is even

(λ p
g − ε) logM

(
r

2n−1 , f
)

+O(1) when n is odd,

for all sufficiently large values of r .
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Proof. First suppose that n is even. Then from first part of Lemma 2.2 we have
for all sufficiently large values of r and for any 0 < ε < min{λ p

f , λ p
g } ,

M(r, fn) = M(r, f (gn−1))

� M

(
1
8
M

( r
2
,gn−1

)
−|gn−1(0)|, f

)

� M

(
1
16

M
( r

2
,gn−1

)
, f

)
.

∴ log[p] M(r, fn) �
[

1
16

M
( r

2
,gn−1

)]λ p
f −ε

, using the Definition 1.3,

i.e. log[p+1] M(r, fn) � (λ p
f − ε) log

1
16

M
( r

2
,gn−1

)
� (λ p

f − ε) logM
( r

2
,gn−1

)
+O(1)

i.e. log[p+2] M(r, fn) � log[2] M
( r

2
,g( fn−2)

)
+O(1)

� log[2] M

(
1
16

M
( r

22 , fn−2

)
,g

)
+O(1).

Taking repeated logarithms (p−2) times, we get

log[2p] M(r, fn) � log[p] M

(
1
16

M
( r

22 , fn−2

)
,g

)
+O(1)

�
[

1
16

M
( r

22 , fn−2

)]λ p
g −ε

+O(1)

i.e., log[2p+2] M(r, fn) � log[2] M
( r

22 , fn−2

)
+O(1).

Again taking repeated logarithms (p−2) times, we get

log[3p] M(r, fn) �
[

1
16

M
( r

23 ,gn−3

)]λ p
f −ε

+O(1).

Finally, after taking repeated logarithms (n− 4)p times more, we have for all suffi-
ciently large values of r,

log[(n−1)p]M(r, fn) �
[

1
16

M
( r

2n−1 ,g
)]λ p

f −ε
+O(1)

i.e., log[(n−1)p+1]M(r, fn) � (λ p
f − ε) logM

( r
2n−1 ,g

)
+O(1).

Similarly if n is odd then for all sufficiently large values of r

log[(n−1)p+1]M(r, fn) � (λ p
g − ε) logM

( r
2n−1 , f

)
+O(1).

This proves the lemma. �
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LEMMA 2.6. Let f (z) and g(z) be two non constant entire functions such that
0 < ρ p

f < ∞ and 0 < ρ p
g < ∞ . Then for all sufficiently large r and ε > 0,

log[(n−1)p] T (r, fn) �
{

(ρ p
f + ε) logM(r,g)+O(1) when n is even

(ρ p
g + ε) logM(r, f )+O(1) when n is odd

where p � 1.

The lemma follows from Lemma 2.1 and Lemma 2.4.

LEMMA 2.7. Let f (z) and g(z) be two non constant entire functions such that
0 < λ p

f < ∞ and 0 < λ p
g < ∞ . Then for any ε (0 < ε <min{λ p

f ,λ p
g }) and p � 1,

log[(n−1)p]T (r, fn) �

⎧⎨
⎩

(λ p
f − ε) logM

(
r

4n−1 ,g
)

+O(1) when n is even

(λ p
g − ε) logM

(
r

4n−1 , f
)

+O(1) when n is odd

for all sufficiently large values of r.

Proof. To prove this lemma we first consider n is even. Then from Lemma 2.1
and Lemma 2.3 we get for ε (0 < ε <min{λ f ,λg}) and for all large values of r

T (r, fn) = T (r, f (gn−1))

� 1
3

logM

(
1
8
M

( r
4
,gn−1

)
+O(1), f

)
.

∴ log[p] T (r, fn) � log[p+1] M

(
1
8
M

( r
4
,gn−1

)
+O(1), f

)
+O(1)

� log

[
1
8
M

( r
4
,gn−1

)
+O(1)

]λ p
f −ε

+O(1)

� log

[
1
9
M

( r
4
,gn−1

)]λ p
f −ε

+O(1)

� (λ p
f − ε) logM

( r
4
,gn−1

)
+O(1)

� (λ p
f − ε)T

( r
4
,gn−1

)
+O(1)

� (λ p
f − ε)

1
3

logM

(
1
8
M

( r
42 , fn−2

)
+O(1),g

)
+O(1),

that is,
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log[2p] T (r, fn) � log[p+1] M

(
1
8
M

( r
42 , fn−2

)
+O(1),g

)
+O(1)

� log

[
1
8
M

( r
42 , fn−2

)
+O(1)

]λ p
g −ε

+O(1)

� log

[
1
9
M

( r
42 , fn−2

)]λ p
g −ε

+O(1).

i.e., log[2p] T (r, fn) � (λ p
g − ε) logM

( r
42 , fn−2

)
+O(1)

.... .... .... ....

.... .... .... ....

Therefore, log[(n−2)p] T (r, fn) � (λ p
g − ε) logM

( r
4n−2 , f (g)

)
+O(1). (2.1)

So, log[(n−1)p] T (r, fn) � (λ p
f − ε) logM

( r
4n−1 ,g

)
+O(1) when n is even.

Similarly

log[(n−1)p] T (r, fn) � (λ p
g − ε) logM

( r
4n−1 , f

)
+O(1) when n is odd.

This proves the lemma. �

3. Theorems

THEOREM 3.1. Let f and g be two non constant entire functions of non zero
finite p-th order and lower p-th order, also 0 < σ p

f ,σ
p
g < ∞ . Then

(i) lim inf
r→∞

log[(n−1)p+1]M(r, fn)
log[p] T (r, f (g))

�
4ρ

p
g ρ p

f

λ p
f

,

(ii) lim sup
r→∞

log[(n−1)p+1]M(r, fn)
log[p] T (r, f (g))

�
λ p

f

(2n−1)ρ
p
g ρ p

f

when n is even and

(iii) lim inf
r→∞

log[(n−1)p+1]M(r, fn)
log[p] T (r, g( f ))

� 4ρ
p
f ρ p

g

λ p
g

,

(iv) lim sup
r→∞

log[(n−1)p+1]M(r, fn)
log[p] T (r,g( f ))

� λ p
g

(2n−1)ρ
p
f ρ p

g

when n is odd.
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Proof. First we suppose that n is even, then from Lemma 2.4 we have for all large
r and ε > 0,

log[(n−1)p+1]M(r, fn) � (ρ p
f + ε) logM(r,g)+O(1)

� (ρ p
f + ε)(σ p

g + ε)rρ
p
g +O(1) by the Definition 1.4. (3.1)

From Lemma 2.3 we get

T (r, f (g)) � 1
3

logM

(
1
16

M
( r

4
,g

)
, f

)
.

Since λ p
f is the lower p -th order of f , so for given ε (0 < ε < λ p

f ) and for all large
values of r ,

log[p] T (r, f (g)) � log[p+1] M

(
1
16

M
( r

4
,g

)
, f

)
+O(1).

∴ log[p] T (r, f (g)) � (λ p
f − ε) logM

( r
4
,g

)
+O(1). (3.2)

Again for a sequence of values of r tending to infinity,

logM
( r

4
,g

)
> (σ p

g − ε)
( r

4

)ρ p
g
. (3.3)

Therefore from (3.2) and (3.3) we get for a sequence of values of r tending to infinity,

log[p] T (r, f (g)) � (λ p
f − ε)(σ p

g − ε)
( r

4

)ρ p
g
+O(1) (3.4)

where 0 < ε < min{λ p
f ,σ p

g }.
Now from (3.1) and (3.4) we have for a sequence of values of r tending to infinity,

log[(n−1)p+1]M(r, fn)
log[p] T (r, f (g))

�
(ρ p

f + ε)(σ p
g + ε)rρ

p
g +O(1)

(λ p
f − ε)(σ p

g − ε)
(

r
4

)ρ p
g +O(1)

=
(ρ p

f + ε)(σ p
g + ε)4ρ

p
g +o(1)

(λ p
f − ε)(σ p

g − ε)+o(1)
.

Since ε > 0 is arbitrary,

∴ lim inf
r→∞

log[(n−1)p+1]M(r, fn)
log[p] T (r, f (g))

�
4ρ

p
g ρ p

f

λ p
f

.

Also when n is even then from Lemma 2.5 we get for all sufficiently large values of r

log[(n−1)p+1]M(r, fn) � (λ p
f − ε) logM

( r
2n−1 ,g

)
+O(1).
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Now for a sequence of values of r tending to infinity we have

logM
( r

2n−1 ,g
)

> (σ p
g − ε)

( r
2n−1

)ρ p
g
.

Therefore for a sequence of values of r tending to infinity, we get

log[(n−1)p+1]M(r, fn) � (λ p
f − ε)(σ p

g − ε)
( r

2n−1

)ρ p
g
+O(1) (3.5)

where 0 < ε < min{λ p
f ,σ p

g }.
Again by Lemma 2.1 we have for all large values of r ,

log[p−1] T (r, f (g)) � log[p] M(r, f (g))

� log[p] M(M(r,g), f )

� [M(r,g)]ρ
p
f +ε .

∴ log[p] T (r, f (g)) � (ρ p
f + ε) logM(r,g)

� (ρ p
f + ε)(σ p

g + ε)rρ
p
g . (3.6)

Therefore from (3.5) and (3.6) we have for a sequence of values of r tending to infinity,

log[(n−1)p+1]M(r, fn)
log[p] T (r, f (g))

�
(λ p

f − ε)(σ p
g − ε)

(
r

2n−1

)ρ p
g

+O(1)

(ρ p
f + ε)(σ p

g + ε)rρ
p
g

=
(λ p

f − ε)(σ p
g − ε) +o(1)

(2n−1)ρ
p
g (ρ p

f + ε)(σ p
g + ε)

.

Since ε > 0 is arbitrary,

∴ lim sup
r→∞

log[(n−1)p+1]M(r, fn)
log[p] T (r, f (g))

�
λ p

f

(2n−1)ρ
p
g ρ p

f

.

Similarly for odd n we get the second part of this theorem.
This proves the theorem. �

REMARK 3.2. If f is of regular growth i.e. ρ p
f = λ p

f and n is even then

(i) lim inf
r→∞

log[(n−1)p+1]M(r, fn)
log[p] T (r, f (g))

� 4ρ
p
g ,

(ii) lim sup
r→∞

log[(n−1)p+1]M(r, fn)
log[p] T (r, f (g))

� 1

(2n−1)ρ
p
g
.
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Also if g is of regular growth i.e. ρ p
g = λ p

g and n is odd then

(iii) lim inf
r→∞

log[(n−1)p+1]M(r, fn)
log[p] T (r, g( f ))

� 4ρ
p
f ,

(iv) lim sup
r→∞

log[(n−1)p+1]M(r, fn)
log[p] T (r,g( f ))

� 1

(2n−1)ρ
p
f
.

REMARK 3.3. The conditions non zero lower p -th order and finite p -th order are
necessary for Theorem 3.1, which are shown by the following examples.

EXAMPLE 3.4. Let f (z) = exp[p] z and g(z) = exp[p−1] z. Then ρ p
f = λ p

f = 1 and
ρ p

g = λ p
g = 0.

Here f (g) = exp[2p−1] z and

3T (2r, f (g)) � logM(r, f (g)) = exp[2p−2] r

i.e. T (r, f (g)) � 1
3

exp[2p−2] r
2
.

∴ log[p] T (r, f (g)) � exp[p−2] r
2

+O(1) .

Now

fn =

{
exp[np− n

2 ] z when n is even

exp[np− n−1
2 ] z when n is odd.

So when n is even,

M(r, fn) = exp[np− n
2 ] r

i.e. log[(n−1)p+1]M(r, fn) = log[(n−1)p+1]exp[np− n
2 ] r

= exp[p− n
2−1] r.

Therefore

log[(n−1)p+1]M(r, fn)
log[p] T (r, f (g))

� exp[p− n
2−1] r

exp[p−2] r
+o(1)

=
1

exp[ n
2−1] r

+o(1)→ 0 ≯ 1 as r → ∞.

Similarly for odd n,

log[(n−1)p+1]M(r, fn)
log[p] T (r,g( f ))

� exp[p− n−1
2 −1] r

exp[p−2] r
+o(1)→ 0 ≯

1
2n−1 as r → ∞.

EXAMPLE 3.5. Let f (z) = exp[p] z and g(z) = exp[p+1] z. Then ρ p
f = λ p

f = 1 and
ρ p

g = λ p
g = ∞.
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Here g( f ) = exp[2p+1] z and

T (r,g( f )) � logM(r,g( f )) = exp[2p] r

∴ log[p] T (r,g( f )) � exp[p] r

Now

fn =

{
exp[np+ n

2 ] z when n is even

exp[np+ n−1
2 ] z when n is odd.

So when n is odd,

M(r, fn) = exp[np+ n−1
2 ] r

i.e. log[(n−1)p+1]M(r, fn) = log[(n−1)p+1]exp[np+ n−1
2 ] r

= exp[p+ n−1
2 −1] r.

Therefore

log[(n−1)p+1]M(r, fn)

log[p] T (r,g( f ))
� exp[p+ n−1

2 −1] r

exp[p] r

= exp[ n−1
2 −1] r → ∞ ≮ 4 as r → ∞ .

THEOREM 3.6. Let f and g be two non constant entire functions of non zero
finite p-th order and lower p-th order, also 0 < σ p

f ,σ
p
g < ∞ . Then

(i) lim inf
r→∞

log[p+1] M(r, f (g))
log[(n−1)p] T (r, fn)

�
(
4n−1

)ρ p
g ρ p

f

λ p
f

,

(ii) lim sup
r→∞

log[p+1] M(r, f (g))
log[(n−1)p] T (r, fn)

�
λ p

f

2ρ
p
g ρ p

f

when n is even and

(iii) lim inf
r→∞

log[p+1] M(r,g( f ))
log[(n−1)p] T (r, fn)

�
(
4n−1

)ρ p
f ρ p

g

λ p
g

,

(iv) lim sup
r→∞

log[p+1] M(r,g( f ))
log[(n−1)p]T (r, fn)

� λ p
g

2ρ
p
f ρ p

g

when n is odd.

Proof. When n is even then from Lemma 2.7 we get for all large values of r and
any ε (0 < ε < λ p

f ) ,

log[(n−1)p]T (r, fn) � (λ f − ε) logM
( r

4n−1 ,g
)

+O(1). (3.7)
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Again for a sequence of values of r tending to infinity

logM
( r

4n−1 ,g
)

> (σ p
g − ε)

( r
4n−1

)ρ p
g
. (3.8)

Therefore from (3.7) and (3.8) for a sequence of values of r tending to infinity,

log[(n−1)p]T (r, fn) � (λ p
f − ε)(σ p

g − ε)
( r

4n−1

)ρ p
g
+O(1) (3.9)

where 0 < ε < min{λ p
f ,σ p

g }.
Now from second part of Lemma 2.2 we get for large values of r

log[p+1] M(r, f (g)) � log[p+1] M(M(r,g), f )
� (ρ p

f + ε) logM(r,g)

� (ρ p
f + ε)(σ p

g + ε)rρ
p
g . (3.10)

Now from (3.9) and (3.10) for a sequence of values of r tenging to infinity

log[p+1] M(r, f (g))

log[(n−1)p]T (r, fn)
�

(ρ p
f + ε)(σ p

g + ε)rρ
p
g

(λ p
f − ε)(σ p

g − ε)
(

r
4n−1

)ρ p
g
+O(1)

=
(ρ p

f + ε)(σ p
g + ε)

(
4n−1

)ρ p
g

(λ p
f − ε)(σ p

g − ε)+o(1)
.

Since ε > 0 is arbitrary,

∴ lim inf
r→∞

log[p+1] M(r, f (g))
log[(n−1)p] T (r, fn)

�
(
4n−1

)ρ p
g ρ p

f

λ p
f

.

Again for all sufficiently large value of r we get from first part of Lemma 2.2

log[p+1] M(r, f (g)) � log[p+1] M

(
1
16

M
( r

2
,g

)
, f

)

� log

[
1
16

M
( r

2
,g

)]λ p
f −ε

� (λ p
f − ε) logM

( r
2
,g

)
+O(1). (3.11)

Also for a sequence of values of r tending to infinity

logM
( r

2
,g

)
> (σ p

g − ε)
( r

2

)ρ p
g
. (3.12)

Therefore from (3.11) and (3.12) for a sequence of values of r tending to infinity,

log[p+1] M(r, f (g)) � (λ p
f − ε)(σ p

g − ε)
( r

2

)ρ p
g
+O(1) (3.13)



FURTHER GROWTH OF ITERATED ENTIRE FUNCTIONS-I 545

where 0 < ε < min{λ p
f ,σ p

g }.
Also when n is even then from Lemma 2.6 we get for r tending to infinity

log[(n−1)p]T (r, fn) � (ρ p
f + ε) logM(r,g)+O(1)

� (ρ p
f + ε)(σ p

g + ε)rρ
p
g +O(1). (3.14)

Now from (3.13) and (3.14) for a sequence of values of r tending to infinity,

log[p+1] M(r, f (g))
log[(n−1)p]T (r, fn)

�
(λ p

f − ε)(σ p
g − ε)

(
r
2

)ρ p
g +O(1)

(ρ p
f + ε)(σ p

g + ε)rρ
p
g +O(1)

=
(λ p

f − ε)(σ p
g − ε)+o(1)

2ρg(ρ p
f + ε)(σ p

g + ε)+o(1)
.

Since ε > 0 is arbitrary,

∴ lim sup
r→∞

log[p+1] M(r, f (g))
log[(n−1)p] T (r, fn)

�
λ p

f

2ρ
p
g ρ p

f

.

Similarly when n is odd we get second part of the theorem.
This proves the theorem. �

REMARK 3.7. If f is of regular growth i.e. ρ p
f = λ p

f and n is even then

(i) lim inf
r→∞

log[p] M(r, f (g))
log[(n−1)p] T (r, fn)

�
(
4n−1)ρ p

g ,

(ii) lim sup
r→∞

log[p] M(r, f (g))
log[(n−1)p] T (r, fn)

� 1

2ρ
p
g
.

Also if g is of regular growth i.e. ρ p
g = λ p

g and n is odd then

(iii) lim inf
r→∞

log[p] M(r,g( f ))
log[(n−1)p]T (r, fn)

�
(
4n−1)ρ p

f ,

(iv) lim sup
r→∞

log[p] M(r,g( f ))

log[(n−1)p]T (r, fn)
� 1

2ρ
p
f
.

The next theorem is the generalization of the above theorems.

THEOREM 3.8. Let f and g be two non constant entire functions of non zero
finite p-th order and lower p-th order, also 0 < σ p

f ,σ
p
g < ∞ . Then

(i) lim inf
r→∞

log[(n−1)p+1]M(r, fn)
log[(n−1)p] T (r, fn)

�
(
4n−1

)ρ p
g ρ p

f

λ p
f

,

(ii) lim sup
r→∞

log[(n−1)p+1]M(r, fn)
log[(n−1)p] T (r, fn)

�
λ p

f

(2n−1)ρg ρ p
f
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when n is even and

(iii) lim inf
r→∞

log[(n−1)p+1]M(r, fn)
log[(n−1)p] T (r, fn)

�
(
4n−1

)ρ p
f ρ p

g

λ p
g

,

(iv) lim sup
r→∞

log[(n−1)p+1]M(r, fn)

log[(n−1)p]T (r, fn)
� λ p

g

(2n−1)ρ
p
f ρ p

g

when n is odd.

Proof. When n is even then from (3.1) and (3.9) we get for a sequence of values
of r tending to infinity and for 0 < ε < min{λ p

f ,σ p
g },

log[(n−1)p+1]M(r, fn)

log[(n−1)p] T (r, fn)
�

(ρ p
f + ε)(σ p

g + ε)rρg +O(1)

(λ p
f − ε)(σ p

g − ε)
(

r
4n−1

)ρ p
g
+O(1)

=
(ρ p

f + ε)(σ p
g + ε)

(
4n−1

)ρ p
g +o(1)

(λ p
f − ε)(σ p

g − ε)+o(1)
.

Since ε > 0 is arbitrary,

∴ lim inf
r→∞

log[(n−1)p+1]M(r, fn)
log[(n−1)p]T (r, fn)

�
(
4n−1

)ρ p
g ρ p

f

λ p
f

.

Also from (3.5) and (3.14) we have for a sequence of values of r tending to infinity and
for 0 < ε < min{λ p

f ,σ p
g },

log[(n−1)p+1]M(r, fn)
log[(n−1)p] T (r, fn)

�
(λ p

f − ε)(σ p
g − ε)

(
r

2n−1

)ρ p
g
+O(1)

(ρ p
f + ε)(σ p

g + ε)rρ
p
g +O(1)

=
(λ p

f − ε)(σ p
g − ε)+o(1)

(ρ p
f + ε)(σ p

g + ε)(2n−1)ρ
p
g +o(1)

.

Since ε > 0 is arbitrary,

∴ lim sup
r→∞

log[(n−1)p+1]M(r, fn)
log[(n−1)p] T (r, fn)

�
λ p

f

(2n−1)ρ
p
g ρ p

f

.

Similarly for odd n we get second part of the theorem.
This proves the theorem. �
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REMARK 3.9. If f is regular growth i.e. ρ p
f = λ p

f and n is even then

(i) lim inf
r→∞

log[(n−1)p+1]M(r, fn)
log[(n−1)p] T (r, fn)

�
(
4n−1)ρ p

g
,

(ii) lim sup
r→∞

log[(n−1)p+1]M(r, fn)
log[(n−1)p] T (r, fn)

� 1

(2n−1)ρ
p
g
.

Also if g is regular growth i.e. ρ p
g = λ p

g and n is odd then

(iii) lim inf
r→∞

log[(n−1)p+1]M(r, fn)
log[(n−1)p] T (r, fn)

�
(
4n−1)ρ p

f ,

(iv) lim sup
r→∞

log[(n−1)p+1]M(r, fn)
log[(n−1)p]T (r, fn)

� 1

(2n−1)ρ
p
f
.

THEOREM 3.10. Let f (z) and g(z) be two entire functions such that 0 < λ p
fog

�
ρ p

fog
< ∞ and 0 < λ p

g � ρ p
g < ∞. Then for any positive number A,

λ p
fog

Aρ p
g

� lim inf
r→∞

log[(n−1)p] T (r, fn)
log[p] T (rA,g)

�
λ p

fog

Aλ p
g

� lim sup
r→∞

log[(n−1)p] T (r, fn)
log[p] T (rA,g)

�
ρ p

fog

Aλ p
g

when n is even.

Proof. When n is even then from (2.1) we have for all large values of r and
arbitrary ε(0 < ε < min{λ p

f ,λ p
g }),

log[(n−1)p]T (r, fn) � (λ p
fog

− ε) log
( r

4n−2

)
+O(1) (3.15)

and Definition 1.3,
log[p] T (rA,g) � A(ρ p

g + ε) logr. (3.16)

So for all large values of r,

log[(n−1)p]T (r, fn)

log[p] T (rA,g)
�

(
λ p

fog
− ε

)(
logr− log4n−2

)
+O(1)

A(ρ p
g + ε) logr

.

Since ε > 0 is arbitrary,

∴ lim inf
r→∞

log[(n−1)p]T (r, fn)
log[p] T (rA,g)

�
λ p

fog

Aρ p
g

. (3.17)

Again from Lemma 2.6 we have for all large values of r and ε > 0,

log[(n−2)p] T (r, fn) � (ρ p
g + ε) logM(r, f (g))+O(1).
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Now for a sequence of values of r tending to infinity,

log[p+1] M(r, f (g)) � (λ p
fog

+ ε) logr

Therefore for a sequence of values of r tending to infinity we get,

log[(n−1)p]T (r, fn) � (λ p
fog

+ ε) logr +O(1)

and for all large values of r,

log[p] T (rA,g) � A(λ p
g − ε) logr (3.18)

where 0 < ε < λ p
g .

So for a sequence of values of r tending to infinity,

log[(n−1)p] T (r, fn)
log[p] T (rA,g)

�
λ p

fog
+ ε

A(λ p
g − ε)

+o(1).

Since ε > 0 is arbitrary, it follows that

lim inf
r→∞

log[(n−1)p] T (r, fn)
log[p] T (rA,g)

�
λ p

fog

Aλ p
g

. (3.19)

Also for a sequence of values of r tending to infinity,

log[p] T (rA,g) � A(λ p
g + ε) logr. (3.20)

Now from (3.15) and (3.20) we get for a sequence of values of r tending to infinity,

log[(n−1)p]T (r, fn)
log[p] T (rA,g)

�

(
λ p

fog
− ε

)(
logr− log4n−2

)
+O(1)

A(λ p
g + ε) logr

.

Since ε > 0 is arbitrary, we obtain

lim sup
r→∞

log[(n−1)p] T (r, fn)
log[p] T (rA,g)

�
λ p

fog

Aλ p
g

. (3.21)

Again from Lemma 2.6 we have for all large values of r and ε > 0,

log[(n−1)p] T (r, fn) � log[p+1]M(r, f (g))+O(1)
� (ρ p

fog
+ ε) logr+O(1). (3.22)

So from (3.18) and (3.22) we obtain for all large values of r,

log[(n−1)p] T (r, fn)
log[p] T (rA,g)

�
ρ p

fog
+ ε

A(λ p
g − ε)

+o(1).

Since ε > 0 is arbitrary, it follows that

lim sup
r→∞

log[(n−1)p] T (r, fn)
log[p] T (rA,g)

�
ρ p

fog

Aλ p
g

. (3.23)

Therefore the theorem follows from (3.17), (3.19), (3.21) and (3.23).
This proves the theorem. �
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THEOREM 3.11. Let f (z) and g(z) be two entire functions such that 0 < λ p
go f �

ρ p
go f < ∞ and 0 < λ p

f � ρ p
f < ∞. Then for any positive number A,

λ p
go f

Aρ p
f

� lim inf
r→∞

log[(n−1)p] T (r, fn)
log[p] T (rA, f )

�
λ p

go f

Aλ p
f

� lim sup
r→∞

log[(n−1)p]T (r, fn)
log[p] T (rA, f )

�
ρ p

go f

Aλ p
f

when n is odd.

THEOREM 3.12. Let f (z) and g(z) be two entire functions such that 0 < λ p
fog

�
ρ p

fog
< ∞ and 0 < ρ p

g < ∞. Then for any positive number A,

lim inf
r→∞

log[(n−1)p]T (r, fn)
log[p] T (rA,g)

�
ρ p

fog

Aρ p
g

� lim sup
r→∞

log[(n−1)p] T (r, fn)
log[p] T (rA,g)

when n is even.

Proof. From the definition of p -th order, we have for a sequence of values of r
tending to infinity and arbitrary ε > 0,

log[p] T (rA,g) � A(ρ p
g − ε) logr. (3.24)

So from (3.22) and (3.24) it follows for a sequence of values of r tending to infinity,

log[(n−1)p] T (r, fn)
log[p] T (rA,g)

�
ρ p

fog
+ ε

A(ρ p
g − ε)

+o(1).

Since ε > 0 is arbitrary,

∴ lim inf
r→∞

log[(n−1)p] T (r, fn)
log[p] T (rA,g)

�
ρ p

fog

Aρ p
g

. (3.25)

Again for (2.1) we get for a sequence of values of r tending to infinity,

log[(n−1)p] T (r, fn) � (ρ p
fog

− ε) log
( r

4n−2

)
+O(1). (3.26)

Now from (3.16) and (3.26) it follows for a sequence of values of r tending to infinity,

log[(n−1)p]T (r, fn)
log[p] T (rA,g)

�

(
ρ p

fog
− ε

)(
logr− log4n−2

)
+O(1)

A(ρ p
g + ε) logr

.

Since ε > 0 is arbitrary, it follows that

lim sup
r→∞

log[(n−1)p] T (r, fn)
log[p] T (rA,g)

�
ρ p

fog

Aρ p
g

. (3.27)

So the theorem follows from (3.25) and (3.27).
This proves the theorem. �
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THEOREM 3.13. Let f (z) and g(z) be two entire functions such that 0 < λ p
go f �

ρ p
go f < ∞ and 0 < ρ p

f < ∞. Then for any positive number A,

lim inf
r→∞

log[(n−1)p]T (r, fn)
log[p] T (rA, f )

�
ρ p

go f

Aρ p
f

� lim sup
r→∞

log[(n−1)p]T (r, fn)
log[p] T (rA, f )

when n is odd.
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