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Abstract. The Specht ratio S(h) is the optimal constant in the reverse of the arithmetic-geometric
mean inequality, i.e., if 0 < m � a,b � M and h = M

m , then (1− μ)a+ μb � S(h)a1−μbμ for
all μ ∈ [0,1] . Recently S. Furuichi proved that (1− μ)a+ μb � S(hr)a1−μbμ for a,b > 0 ,
μ ∈ [0,1] , where h = b

a and r = min{μ ,1− μ} . In this paper, we improve it by virtue of
the Kantorovich constant, utilizing the refined scalar Young inequality we establish a weighted
arithmetic-geometric-harmonic mean inequality for two positive operators. In the remainder of
this work we focus on extending the refined weighted arithmetic-harmonic mean inequality to
an operator version for another type of improvement.

1. Introduction

Throughout this paper, A,B are positive operators on a Hilbert space, we use the
following notations: A∇μB = (1− μ)A+ μB , A�μB = A1/2(A−1/2BA−1/2)μA1/2, and
A!μB = ((1−μ)A−1+μB−1)−1 , see F. Kubo and T. Ando [6]. When μ = 1/2 we write
A∇B , A�B and A!B for brevity, respectively. The Kontorovich constant is defined as

K(t,2) = (t+1)2
4t for t > 0, while the Specht ratio [9] is denoted by

S(t) =
t

1
t−1

e log t
1

t−1

for t > 0,t �= 1; and S(1) = lim
t→1

S(t) = 1.

We start from the famous Young inequality:

a∇μb � a1−μbμ (1)

for positive numbers a,b and μ ∈ [0,1] . The inequality (1) is also called a weighted
arithmetic-geometric mean inequality and its reverse inequality was given in [10] with
the Specht ratio as follows:

a∇μb � S(h)a1−μbμ (2)

for all μ ∈ [0,1] , where 0 < m � a,b � M and h = M
m .

Recently, an improvement of the inequality (1) was given in [2] as follows:
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THEOREM F. For a,b > 0 , if μ ∈ [0,1] , r = min{μ ,1− μ} and h = b
a , then

a∇μb � S(hr)a1−μbμ . (3)

Based on this, the refined weighted arithmetic-geometric operator mean inequality
is given by

A∇μB � S(hr)A�μB. (4)

See [3, 4] for recent developments of the improved Young inequality. See also [5] for
another type of improvement for the classical Young inequality.

In this short paper, we improve the inequality (3) via the Kantorovich constant as
follows:

a∇μb � K(h,2)ra1−μbμ

for all μ ∈ [0,1] , where r = min{μ ,1−μ} and h = b
a . It admits an operator extension

A∇μB � K(h,2)rA�μB

for positive operators A , B on a Hilbert space. While we provide a new viewpoint and
method which is different from that of the refinement given in [2].

2. Refinement of Young Inequalities

First of all, we cite a refinement of the weighted arithmetic-geometric mean in-
equality for n positive numbers, which was shown by Pečarić et.al., see [7; Theorem 1,
P.717] and also [1, 8].

LEMMA 1. Let x1, · · · ,xn belong to a fixed closed interval I = [a,b] with a < b,

p1, · · · , pn � 0 with
n
∑
i=1

pi = 1 and λ = min{p1, · · · , pn} . If f is a convex function on

I , then

n

∑
i=1

pi f (xi)− f (
n

∑
i=1

pixi) � nλ
[ n

∑
i=1

1
n

f (xi)− f (
1
n

n

∑
i=1

xi)
]
. (5)

We will use lemma 1 as the following form by applying f (x) = − logx :

COROLLARY 2. If xi ∈ [a,b], 0 < a < b, p1, · · · , pn � 0 with ∑n
i=1 pi = 1 and

λ = min{p1, · · · , pn} , then

∑n
i=1 pixi

∏n
i=1 xpi

i
�

( 1
n ∑

n
i=1 xi

∏n
i=1 x

1
n
i

)nλ
. (6)

The case n = 2 in (6) is simplified to the following one, which is a loose extension
of [2].
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COROLLARY 3. If a,b > 0 , μ ∈ [0,1] , then

a∇μb � K(h,2)ra1−μbμ , (7)

where r = min{μ ,1− μ} and h = b
a .

Replacing a , b by a−1 , b−1 , respectively, we have the counterpart of (7) itself.

COROLLARY 4. If a,b > 0 and μ ∈ [0,1] , then

a1−μbμ � K(h,2)ra!μb. (8)

Furthermore Corollary 3 implies Theorem F because of the following fact.

LEMMA 5. If t > 0 and 0 � r � 1
2 , then

K(t,2)r � S(tr). (9)

To prove Lemma 5, we need the following lemma.

LEMMA 6. ([2] Lemma 2.3) If t > 0 and t �= 1 , then

t
t

t−1

e
� t2 +1

t +1
. (10)

Proof. We give it a proof for convenience. By taking logarithms in (10), it is
enough to prove that f (t) = log(t2 +1)− log(t +1)− t

t−1 log t +1 � 0 for t > 0 and
t �= 1.

Since f ′(t) = 2t
t2+1

− 1
t+1 − 1

t−1 ++ log t
(t−1)2 = 4t

t4−1
+ logt

(t−1)2 , it follows that f ′(t) � 0

for 0 < t < 1 and f ′(t) � 0 for t > 1. Thus we have f (t) � lim
t→1

f (t) = 0 for all t > 0

with t �= 1. �

Proof of Lemma 5. If t = 1, then it is easy to get S(1) = 1 = K(1,2) .
If t > 0 and t �= 1, then, logarithmic-arithmetic mean inequality implies

tr −1
logtr

� tr +1
2

for 0 � r � 1
2
.

Combining with (10) we have

S(tr) =
tr

1
tr−1

e
tr −1
logtr

=
1
tr

tr
tr

tr−1

e
tr −1
logtr

� 1
tr

t2r +1
tr +1

tr +1
2

=
t2r +1

2tr
.

Since f (x) = x2r(x � 0) is concave for 0 � r � 1
2 , it follows that

t2r +1
2

�
(

t +1
2

)2r

=
[
(t +1)2

4

]r

.

Hence we have

S(tr) � t2r +1
2

1
tr

�
[
(t +1)2

4t

]r

= K(t,2)r. �
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3. Applications to Operator Young Inequality

THEOREM 7. Suppose that two operators A, B and positive real numbers m, m′ ,
M , M′ satisfy either of the following conditions:

(i) 0 < m′I � A � mI < MI � B � M′I
(ii) 0 < m′I � B � mI < MI � A � M′I.
Then

A∇μB � K(h,2)rA�μB (11)

for all μ ∈ [0,1] , where r = min{μ ,1− μ} , h ≡ M
m and h′ ≡ M′

m′ .

Proof. From Corollary 3, we have

(1− μ)+ μx � K(x,2)rxμ

for any x > 0. And hence

(1− μ)I + μX � min
h�x�h′

K(x,2)rXμ

for the positive operator X such that 0 < hI � X � h′I.
Substituting A−1/2BA−1/2 for X in the above inequality we have:
In the case of (i) , 1 < h = M

m � A−1/2BA−1/2 � M′
m′ = h′ , we have

(1− μ)I + μA−1/2BA−1/2 � min
h�x�h′

K(x,2)r(A−1/2BA−1/2)μ .

It is easy to check that K(x,2) is an increasing function for x > 1, then

(1− μ)I + μA−1/2BA−1/2 � K(h,2)r(A−1/2BA−1/2)μ . (12)

In the case of (ii) , we have 0 < 1/h′ � A−1/2BA−1/2 � 1/h < 1, then

(1− μ)I + μA−1/2BA−1/2 � min
1/h′�x�1/h

K(x,2)r(A−1/2BA−1/2)μ .

Since K(x,2) is a decreasing function for 0 < x < 1, we have

(1− μ)I + μA−1/2BA−1/2 � K(1/h,2)r(A−1/2BA−1/2)μ . (13)

Multiplying both sides by A1/2 to inequality (12) and (13) and using K(1/h,2) =
K(h,2) for h > 0, we obtain the refined arithmetic-geometric operator mean inequal-
ity. �

By replacing A , B by A−1 , B−1 , respectively, then the noncommutativegeometric-
harmonic mean inequality can be obtained as follows:

THEOREM 8. Assume the conditions as in Theorem 7. Then

A�μB � K(h,2)rA!μB. (14)

From Lemma 5, it’s easy to get the following
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COROLLARY 9. [2] Assume the conditions as in Theorem 7. Then

A∇μB � S(hr)A�μB. (15)

In the remainder, we focus on extending the refined weighted arithmetic-harmonic
mean inequality to an operator version for another type of improvement.

LEMMA 10. If x1, · · · ,xn > 0 and p1, · · · , pn � 0 with
n
∑
i=1

pi = 1, then

n

∑
i=1

pix
−1
i −

( n

∑
i=1

pixi

)−1

� nλ
[ n

∑
i=1

1
n
x−1
i −

( n

∑
i=1

1
n
xi

)−1]
, (16)

where λ = min{p1, p2, · · · pn}.
Proof. Let f (x) = x−1 in lemma 1, then the desired inequality is obtained. �

THEOREM 11. If μ ∈ [0,1] , A and B are positive operators, then

A∇μB � A!μB+2r(A∇B−A!B), (17)

where r = min{μ ,1− μ}.
Proof. From the case n = 2 in Lemma 10, we have, for x > 0 and μ ∈ [0,1] ,

(1− μ)+ μx−1− ((1− μ)+ μx)−1 � 2r

[
1+ x−1

2
−

(
1+ x

2

)−1]
.

Thus it follows that

(1− μ)I + μT−1 � ((1− μ)I + μT)−1 +2r

[
I +T−1

2
−

(
I +T

2

)−1]
(18)

for a strictly positive operator T and μ ∈ [0,1] .
We may assume that A , B are invertible. Put T = A

1
2 B−1A

1
2 in (18), then

(1− μ)I + μ(A
1
2 B−1A

1
2 )−1 � ((1− μ)I + μA

1
2 B−1A

1
2 )−1

+2r

[
I +(A

1
2 B−1A

1
2 )−1

2
−

(
I +A

1
2 B−1A

1
2

2

)−1]
.

Multiplying both sides by A
1
2 we have

(1− μ)A+ μB � ((1− μ)A−1 + μB−1)−1 +2r

[
A+B

2
−

(
A−1 +B−1

2

)−1]
,

so that
A∇μB � A!μB+2r(A∇B−A!B). �
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