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FREQUENCY VARIANT OF EULER TYPE IDENTITIES
AND THE PROBLEM OF SIGN-CONSTANCY OF THE
KERNEL IN ASSOCIATED QUADRATURE FORMULAS

1. PERIC

(Communicated by J. Pecari¢)

Abstract. In the recent years many authors used extended Euler identities to obtain generaliza-
tions of some classical quadrature formulas with the best possible error estimates. The main step
in obtaining the best possible error estimates was to control zeros of the kernel in the error term
which consists of the affine combinations of the translates of periodic Bernoulli polynomials.
This was done for some low degrees of Bernoulli polynomials. The main goal of this paper is to
consider a general case. The frequency variant of extended Euler identities is found to be more

tractable for this problem.

1. Introduction

Extended Euler identities obtained in [1] generalize the well known formula for
the expansion of a function in Bernoulli polynomials (see for example [8]). Namely,
for n € N and f:[0,1] — R such that "~ is continuous of bounded variation on

[0,1], the following identities hold for every x € [0,1]:

/1f(t)dt — ()~ Tu(x) + i‘/lB;‘l(x—t)df(n—l)(t)7
0 n:Jo

[ s =0T+ [ B0 - Bl V),
0 0

n!

where Ty(x) =0 and for L <m <n

Ton(x) = i B;;C('x) [f(k—l)(l) —f(k—l)(O)} ,
=1 *

where By(x) are Bernoulli polynomials and Bj (x) = By (x — [x]).

Mathematics subject classification (2010): 65D30; 41A50.

Keywords and phrases: Euler identities, Chebyshev systems, General Mean Value theorem, Fourier

expansion of Bernoulli functions.

The research of the author was supported by the Croatian Ministry of Science, Education and Sports, under the

Research Grant 058-1170889-1050.

© ey, Zagreb

Paper IMI-05-49
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In the recent years many authors (see for example [1], [3], [4], [5], [9] and refer-
ences therein) used (1) and (2) to obtain generalizations of some classical quadrature
formulas with the best possible error estimates.

The procedure of deducing the quadrature formulas can be summarized as follows.
Using symmetric (with respectto 1/2)nodes 0 <x; <xp <---x <1/2<xp1 <+ <
x3; < 1 and affine combinations of (1) it follows

/f 1)di = Z/lfx, T4 — /(Z)LB* )df”l() 3)

where T, =37 B [ /00(1) = rC0(0)], By =53, 2Bi(xy), 325, A =1 and ;=

Asks1-j, j=1,...,k. Notice that chosen symmetry implies Byi_1 =0, ieN, conse-
quently (3) is usually written as

! _ = 2 T 1 ! (2n)
/O a1 = s 5) = Tan -1 /0 Gons1 (1) (1), @)

1 2k
_ ) N T (2n+1)
| riear = B0~ Ton+ (5 +2 / FaadfC 00, (5)

where Ty, = 1) 52 [30(1) = FEDO)]. Gona (1) = SF 2B, (i — 1),
Fopya(t) = 21-2:1 Ai [B2n+2(xi —1)— an+2(xi)] .

To produce quadrature formulas for preassigned nodes the following conditions
are usually imposed:

E2n = §2n—2 == §2(n—k+2) =0,n>2k-1 (6)

Unperturbed (uncorrected) quadrature formulas are obtained for n =k—1, i.e. formulas
which do not involve derivatives at boundary points. Notice that (6) is equivalent to

Gy)1(0) =G5, (0) = = G5V (0) =o0. @

The main step in obtaining the best possible error estimates is to prove that

2k
G2n+l (t) = ZAiB§n+l(xi - t)

has some “nice” zeros in (0,1/2) (usually G;,+ has no zeros at all in (0,1/2)). We
formulate the following problem which seems to be interesting independently of the
present context.

PROBLEM 1. Find the distribution of nodes 0 < x1 < xp < - < xe < 1/2, such

that Go,11(t) = Z?kl)tBﬁnH(x,-—t) hasno zeros in (0,1/2), ifz =1, xp—jp1 =

L—xi, j= 1,0k, G (0)=GS) (0) = = GEY(0) =0, where n > k—1.
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Some partial results can be found in [1], [3], [4], [5], [9], where nodes and weights
are explicitly calculated or a priori given, thus allowing explicit expression of Gy, for
some small n. An exception is [5], where some elementary motivations for the present
chapter can be found.

To prove some special cases of Problem 1 (but of a general nature as stated above),
we found the “frequency” variant of identities (1) and (2) more tractable. An easy
consequence of Multiplication Theorem for periodic Bernoulli functions B;; in the form

k
B (x—mt) "123*<’i—t> n>0m>1,

is the following theorem (see [4]):

THEOREM 1. Let f :[0,1] — R be such that f"~Y) is continuous of bounded
variation on [0,1] for some n > 1. Then, for x € [0,1] and m € N, we have

[ roa= 35 () - n +

-y ﬁj(ﬁ- A7) = 0D (0)] .
J=1

ln(x—mr>df<”*”(t>7 (8)

where

Setting x = 0 in (8) and using that By = —1/2, By;_1 =0, i > 2, we write (8),
with appropriate assumptions, in a more convenient form:

(0)+£(1) o
[ s = JLOSE LTS (1)

m

2 (2i)'2m21 [0 (1) - £ (0)]
i=1 :
1 1
T 2nt DT /0 Bl (mt)d £ r). ©)

Affine combinations of (9) with frequencies mg=1<m; < --- <my, mj €N, s € N,
and weights Ag,...,As, X7_oAi =1 give:

[ s = LD $ s

1 1 s )L
_m/o (.2 mTﬁlBénH(mjr)) af().  (10)

J=0"%;
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Analogously,
dr = m; A m;
0 f(r)dt 2 ZB’”J‘ mez z=zl / Mj
v Bai [ Limn (2i-1) y i
+3 G [P 3 0

Lofe A
_m/o (2 mTjJrz (B3nsa(mjt) —B2n+2)> dfP ().

J=0";
an

It is clear that identities (10) and (11) can be written in the form of identities (4) and
(5), respectively. Also, it is easy to see that there are identities of the type (4) and (5)
which cannot be of a type (10) and (11), respectively.

Again, as in (6) and (7), to produce quadrature formulae it is natural to impose the
following conditions:

S s A K A
Jo_ i J _
o 2 2(n-1) T Z 2(n—s+1) =0,n2s, (12)
J=0"%j j=0m; j=om;
or equivalently:
1 3 2s5—1
Gl (0) =G5, (0) =+ = G (0) =0, (13)
where .
Goni1(t) = X, —5i7Baua (mjt). (14)
j=0";

Now, we can state the following special case of Problem 1.

PROBLEM 2. Find the distribution of frequencies my =1 <m; <mp < -+ <

, A .

ms, m; € N, such that Gy11(t) = X5 mzﬁB;nH(mjt) has no zeros in (0,1/2),
j

(2s—1)

if ik =1, Gy 1(0) =GY) 2+l

2n+1 ma1(0)=--=G (0) =0, where n > s.

2. Some preliminary considerations

To obtain quadrature formulas based on identities (10) and (11), we determine
weights Ag,A1,...,As from the linear system

MM\ =b, (15)
where
1 1 1
1 ml%n mlg"
M=1. : : J (16)
|1 1
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A= A - AT and b= (1 0 --- 0)7. Itis easy to see that DetM # 0 (see
also [11]), so the system (15) has a unique solution. Cramer’s rule and (14) immediately
imply:

s A
J
Gour1(t) = Y, 527 Bops1 (mjt)
j=0™;j
B3, (m1) B}, (mgt)
B (1) Pt .. Bl
1 4 ... L
_ 1 m%" m%n (17)
DetM : : : 7
1 1
1 mZ(nf_H»l) .%(nf_H»l)
which gives
11 L By, (1)
3 251
(—1) Y B )
o)~ Gy |25 P 0]
memd o B, ()
Define
Ll 1B
my mz més_1 B3, (mit)
Hapoa(1) = M2 my ooy By (mat) | (19)

3 2s—1
mg mg .- mss B§n+l (mst)

In this way Problem 2 is equivalent to the following problem.

PROBLEM 3. Find the distribution of frequencies such that Hy,11(t) has no zeros
in (0,1/2) for n>s.

EXAMPLE 1. Suppose that mg =1 <m; =3 <my =4, n=s=2. Using Wol-
11 Bir)
fram’s Mathematica, for Hs(t) = |3 3% B:(3t) |, Hs(0.45) = 1.11285 and Hs(0.3) =
4 43 Bs(4¢)
—3.3996, so Hs has zeros in (0,1/2).

For a given sequence of functions ay,...,a, defined on some real interval / and given
sequence Xy, ...,X, in I, we introduce

ap(xo) ai(xo) -+ an(xo)
(x1) -+ an(x1)

D<a0 ey an> _ ao(.x1) al'

X0 " Xp—1 Xn

ao(xn) ai(xn) -+ an(xn)



570 1. PERIC

and, if ay, ..., a, are sufficiently smooth, we denote by W (ay, . ..,a,)(x) the Wronskian
of the sequence ay,...,a, at x € 1.

To transform the functions H,11 in a more suitable form, the following General
Mean Value theorem from [6] appears to be useful.

THEOREM 2. Let ay,...,a, be a sequence of real functions of a real variable
X, possessing derivatives up to the order n, and further such that the Wronskians
W(ag,...,ar), k=0,1,...,n, do not vanish on a certain interval 1. Let f(x) be a
function possessing derivatives up to the order n in I. Finally let xo,x1,...,xX, be a
system of (n+ 1) values of x in I. There exists at least one value & in I such that
p(mo 1)
X0 - Xn—1Xn ) Wlao,...,an-1,f) (&)

(20)

X0 ©r Xp—1 Xn

D<a0 e a, an) - Wiag,...,an_1,a,) (&)

To apply Theorem 2 we set:

ap(x) =x,a;(x) =x>,...,as(x) = x>,
f(x) = B3y (1) = g(xt),
xo=1,x; =my,...,x; = mg, [ =[1,my].

Assumptions of Theorem 2 are obviously satisfied, so there is an & € [1,m;] such that

Hyny1(t) =D (x SR g(Xt))

Lmy --msy ms
D(x B2l x25+1)
B Lmy - mg 1 my
W (23, x BT (€)
NS gxt g(&1)

1382 (2s—1E>2 g (&)
10318 - (25— 1)(25—2)E%3 2" (&r)

. . te 2X7 -! i .
0 e et IS A ()
Denote the last determinant in (21) by Ha,.(¢,&). Multiplying the kth row of this

determinant by £, k =2,....s, then extracting from the /th column &%~ | =
1,...,s, we have
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11 1 f(&r)

13- 2s—1 Etf'(&r)
~ s(s+1 — — 21
Hopi1(1,8) =& N (_) 3_! (2 1)_(2S 2) (&n) f (&)

6 ((2;‘_;11)1! (5,)sf(s)(gt)

ao(1) ai(1) -~ as1(1) f(u)

ay(1) ajl/(l) ced (1) uf'(u)

1

(1) ol () ") | o

aéf’kl) a&f’kl) a;_'lu) qu@(u)

where u = &t. Note that 0 < u < my/2 for 0 < u < 1/2. It remains to investigate the
sign of the function given by the last determinant in (21). Using the Laplace expansion
of determinants, this function is up to the sign equal to the function

N

2 —i)/chDud F9) (), (22)

where Ch/) (Ch stands for Chebyshev) is the determinant of the matrix obtained from
the (s+ 1) x s matrix

ao(1) ai(1) - as-i(1)
ap(1) ay(1) -+~ a;_y(1)
Ch= : :
ag’ (1) i’ (1) -, (1)
by deleting the (j+ 1)th row. The sequence of functions ag,ay,...,as can be obtained

by using the universal construction of Chebyshev systems from [7]. Take wp(x) = x,
o (x) =2x,..., s(x) = 2sx. Then

aop(x) = wo(x), ai(x) = wo(x) /Oxwl(fl)dtl,

ar(x) = wo(x) /Oxw1 (tl)/otl 0 (12)dndtr, ...
ay(x) = wo(x)/oxwl(tl)/otl wz(tz)---/OtH 0, (15 )dts - diady.

Using this and properties of determinants (manipulating with columns of Chi)), straight-
forward calculation reveals that
(25— j)!
Jl(2s =21

(25— J)!

h) — ch®) . =)
C C Jli(2s =21

=25"1.4572 (25— 4). (25 —2)-

(for the case j = see [7]).
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LEMMA 1. Let (Fy);_, be the sequence of functions defined by:

s—1 : . .
Fu(u) = Y (= 1)7ChI /= U0 (1) 4 (1) ChO e f6H (), we R, (23)
j=k
where | (2 ) k)'
o _ _J- ST TR ()
Ch,”) = — 2 ChY), j=k,...,s. (24)
ET Gl @) /
Then

1. Fy(u) = F(u) where F(u) is given by (22)
2. Fy(u) = (=1)°Ch® £ (w),
3. Fl(u) =uFyy1(u), k=0,...5—

Proof. The first two properties are obvious. Let us prove the third property. Simple
rearranging gives:

Fk/(u) = (_l)k [Ch( ) Ch(k+1)] f(2k+l)(u)

s—1 . . . .
+ X (=07 [eng = (j+ 1= rehf kU D ()
=kt 1

+(—1)*Ch) g5~k pltkeD) gy (25)

It is obvious that Ch{" = Ch{**!) = (25— 2k — 1)!!. It remains to show that Ch{) —

(j+1—k)Cht = Ch,ﬁjl Using (24) and that Ch{+1) = 220 —-Ch(/) we have:

chY) — (j+1—k)ch ™Y
_J @s—i=R e GEDN@s—j—k=D)!
=k (@2s—))! G-k (2s—j—1)!
_Cwﬂ U @s—j—k G+DI@s—j—k-D!  25-2j }
G-K! @s—j)!  (-k! @s—j-1! (j+1)(2s—))
it @s—j—k=1)! ()
T

— ChV)

We can write

Fk/(u) —u l 2 (_I)jCh](éQlujfkflf(jJrkJrl)(u) + (_l)sCh(s)u.\'klf(s+k+1)(u)‘|

J=k+1
= qu+1 (u) . U

THEOREM 3. Supposethat my=1<m; <my <---<mg, mj €N and Ej ohj=

1, Aj € R. Then the function Gon11(t) = X %B;nﬂ(mj t) such that Gén)H(O) =
J

Géi)H(O) - Géiir_ll)(o) =0, s <n, has no zeros in <0» ﬁ} .
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Proof. Suppose that 0 <t < T . Then 0 <u=~¢&r< 2 (see the discussion and
notation below Theorem 2). The claim follows from previous reductions and because
Lemma 25 implies

u 11 Ts—1 ) §) s
F(u):Fo(u):/O tl/o tz---ts,I/O ts(—l)“Ch(')anﬂ_zs(ts)dts---dtzdtl. (26)
O

REMARK 1. Notice that Fy(u) = (—l)kCh,({k)f(Zk) (u)+u-[--]. Consequently
Fi(0) = 0 for functions for which f2¥)(0) =0, k=0, ...,s. From Lemma 25 follows:

u f fo
F(u) = Fou) = /0 n /0 Yy /0 (= 1)°Ch®) FO) (1) dty - didry. (27)

3. Case m; =nt'

In the previous section we proved that the function Gy, 1(¢), defined in (14) such
that conditions (13) hold and ¥'_,, Aj # 0, has no zeros on (0, %ﬂr} .

In the present section we give the complete answer for the case m; = m', i =
0,...s, m 22, m €N, in the sense that we prove that the function Hj,;; defined in
(19), using frequencies 1,m,m?,...,m*, has no zeros on (0,1/2).

THEOREM 4. Let s € N and m € N, m > 2. Then the function

U SRS TR
m o md o mPBl o f(me)
Koo f) = |2 (m2)" o (m) 27" f () (28)

me ) )

has no zeros on (0,1/2), for any odd function f : R — R which is periodic with period
T =1, such that f*=2) is continuous on R and strictly concave (convex) on (0,1/2).

Proof. The proof is by induction. Suppose that f is continuous on R and strictly
concave on (0,1/2). We shall prove that K (¢; f) = f(mt) — mf(t ) is strictly negative
for t € (0,1/2). Using strict concavity f(mt) <mf(t) for 0 <t < 5. Now, we split
the proof into two cases.

Case m=2k+1: Suppose that § — 5= <t < 3. Set g(x) = f( —x). Obviously g
is strictly concave on (0,1/2) and g(O) 0. This implies g(mx) < mg(x) for x= % —t,
which gives f(—k+mt) = f(mt) <mf(z). In this way we conclude that f(mzt) <mf(r)
fort € (O,2m}U[%—ﬁ,%).

Set M = max,c[o,1/2)f(¢). Thereis #; € (0, 5-) such that f(mt;) = M, and there

is 1 € (4 — 5, 3) such that f(mt;) =M. Suppose that 7 € (5,1 — L

Then there is A € (0,1) such that t = A7y + (1 — A)z,. Finally:
flmt) KM =Af(mtr)+(1=A)f(miz) < f(m(At; + (1= A)r2)) = f(mt).

) is arbitrary.
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Case m = 2k: Notice that f(mt) <0 for 4 — 5= <t < 1. Arguing as in the final
step of the proof for the case m = 2k+ 1, it is enough to prove that f (m (t — 2-)) <
mf(t) for % — ﬁ << % Set again g(x) = f(% —x). Obviously g is strictly concave
on (0,1/2) and g(0) =0, so g(mx) < mg(x) for 0 < x < 5. This implies for x= 1 —1
that g(% —mt) <mg(3 —1),s0 f(mt+3—k) = f(mt — ) <mf(t).

The proof when f is convex is analogous.

To prove the inductive step we use the Sylvester identity for determinants with the
first and the last row and with the two last columns. It follows (where we denote by

Viey,..., o] the Vandermonde determinant):
m m3 m2.\'73
m2 (m2)3 . (m2)2s—3
Ks(t;f) :
=1 (ms71)3 . (ms71)2s—3
1 1 1 1 1 -1 f()
m m2s—1 m m3 .53 f(mt)
=1 (msfl)%—l 1 (ms71)3_ ( \71)2S 3 1)
B m m25—1 m m3 m25—3 mt
m2 (m2)2s71 m2 (m2)3 (m2)2573 f(mzt)
s )\ 25— s $\3 s\25—3 s
m (m*)>~! m* (m*)" - (m*)7 f(m'n)
mem? WL m2, L mP )] K1 (85 1)

@) 2 2<s71>} LK)

K(rif) = m 2 R N
s\l =m vV [1,1’)127. 7m2(.\'72)j| m2s—1 val(mt;f)
1 - 1 f(mt) —m>~Lf (1)
m md .. 3 F(m*) —m>= L f(mr)
= C .

1 (m-"*l)3 (m.y71)25—3 f(m'Vt)—mz“'*lf(m“‘*lt)
= CK;-1(1;8), 29)
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where g(t) = f(mt) —m*~1f(t). To use the inductive assumption we only have to
prove that g(2=%) is strictly concave or strictly convex on (0,1/2). We have

g(2.\~74) (1) = m>* f(2“'*4) (mt) —m® f(2-"*4) (,)} .

Set h(t) = f&~H(mt) —m? fE~9)(1). Since h'(1) = m? [ S (mt) —mf=D ()|,

using assumption (f(*=2) is strictly concave or strictly convex on (0,1/2)) and the
basis of induction, we conclude that 7 has no zeros on (0,1/2). Since >~ is
continuous, A’ has constant sign on (0,1/2). It follows that &, and consequently
g% is strictly concave or strictly convex on (0,1/2). Using inductive assumption,
K;_1(t;g) has no zeros on (0,1/2), so by (29), K;(¢; f) has no zeros on (0,1/2). The
proof is complete. [

Obvious examples of the functions which satisfy conditions in the previous theo-
rem are f(t) = B5, | (t) and f(r) = sin27z.

EXAMPLE 2. The Boole and Simpson formula can be easily deduced using above
procedure.

4. Using the Fourier expansion of the periodic Bernoulli functions

In this section we present yet another method to study zeros of the functions de-
fined as the function H»,1. This method is motivated by the Fourier expansion of the
periodic Bernoulli functions given by

. (1)1 20+ 1)1 & sin (k1)
BZn+l(t> = (277:)2"+1 2 2+l nz lax € R; n= 07 X 7& k. (30)
k=1

Recall that we reduced the problem of zeros of the function G, to the one of the
function H,,1. Using (30) we can write

11 -+ 1 sin (2k7t)
. mymj - m%“"l sin (2km 7t)
3 251
Hus1(6) = G 3, gy | M2 M2 0 sin Qhkmamit) | (31)
k=1 Do : :
mg m? - m>~! sin (2kmymt)

We consider the case with no gaps in frequencies i.e. case with (s — 1)-nontrivial
frequencies m; =2 <my =3 < --- <m,_| =s. In that case we have

1 1. 1 sin(2kmt)
- 223 ... 2573 sin(4kmt)
3 25—3
Hyii(1) = Co Y, g 3373777 sin(Bkmr) |, (32)
] . : .

s 53 oo §273 sin(2skmt)
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To simplify terms in the above expansion set:

11 1 sinax rtr--- 1 1
223 ... 2573 sin2a 223 ... 0573 sinZa
3...1225-3 . 3 ... 12s—3 sin3a
S(at) =33 377 sin30| — ging |33 3 sinat | -
3253 3 ... (2s—3 sinsa
N N sSiInso s S Ky Sn

Recall that the Chebyshev polynomials of the second kind are defined by

_sin(n+ 1)

- , o =arccosx, n=0,1,....
sin o

Un(x)
We will need the following properties of the Chebyshev polynomials U, :
1. U,(1)=n+1
k ntk+1)! k k k—1
2. U (1) = el = U () = <UL, () + (kU D ()
3. |Un(x)| <n+1

Set:

s 83 23U (x)
Obviously S(1) =0, g(kl)(l) = (s—1)!V[1,22,...,(s — 1)?]. We want to prove that
E(k)(l) =0 fork=1,...,5s—2. We have:

rtr--- 1 0

223 ...2%73 U](x)
Sy =333 U

55 UL ()

We have U/(1) = % Multiplying the first column with —1 and adding to the

second column, we have in the (I 4 1) th row:

(142)!
i—nr

(I+1>—(1+1)=(I+1)(1+2) =

which obviously implies that 3/(1) = 0. To make a general argument we compare
Ul(f)l(l), k <1—1, with the /th row in the (k+ 1)th column after reducing the first
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k+1 columns on the lower trapezoid form. Using properties of the polynomials U, we
have:

(k) (I +k)!

U~ (1) = .

1) k+D)N(I—k—1)!

After reducing the first K+ 1 columns on the lower trapezoid form in the /th row and the

(k+ 1) th column, using inductive property of the Vandermonde determinant applied on
determinant

203 ... p2k+1
kk3k2k+l
l l3 l2k+l

we obtain

12— i3> = (k=12 (P=2H)(P-1)
=1(1-k)(I+K)(I+k—1)(I—k+1)---(+2)I-2)(I+1)(I-1)
(I+k)!
(I—k—1)

This finishes the proof that E(k)(l) =0fork=0,1,...,s—2.

Since S is the polynomial of degree s — 1, we conclude
S(x)=V[1,2%,... (s— 1) (x—1)*"1.
It follows

(o) = sinaV[1,2%,..., (s — 1)} (x—1)*"!
= (—1)5—1\/[1,22,,..,(3_ 1)2] sino(1 —COSOC)S_l,

Finally, we can write
< 1 . s—1
Hopi1(t) =Dy Y, T sin (2k7t)(1 — cos (2kmt))* .
k=1

To illustrate how this expression helps in proving that Hp,;; has no zeros in (0,1/2),
we will prove that

‘ | .
sin (27)(1 — cos (271))* ' > = Y il sin (2knz) (1 — cos (2kmt))* ™!, s < n.
k=2

Rearranging this is obviously equivalent to inequality

o 1 sin(2kmt) (sin (km))zs_2 <1

-2 K21 sin (27r)

= sin 7t
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Since ’% < k, it is enough to prove that
S | & 1
S = Y it <L
2n+1 2(n—s)+2
i k" ik (n=s)+

Recall that s < n, so it is enough to prove that
i 1
&k

and this is obvious since the LHS is equal to 712/6 — 1.
The method of this section can give more information in negative direction. Let us
consider Example 1 from Section 2 i.e.

11 Bi@r) = | |11 sin(2knr)
Hs(t)={333Bi(31) | =Gy Y, 5 3 33 sin (6kmt) |,
4 43 B%(41) k=1"" 14 43 sin (8kmnt)
and consider the first term
1 1 sin(2m) 11 1
3 33 sin (6mt) | = sin (27¢) | 3 3% Uy (x) | = sin (271)S(x).
4 43 sin (87t) 4 4% Us(x)

It can be shown easily that
S(x) = (x— 1)3(144 4 192x),
which implies

1 1 sin(2mt)
3 33 sin (67¢) | = sin (2711)(1 — cos (271))? (144 4 192 cos (271)).
4 43 sin (87t)

It can be shown that terms with higher frequencies (and small amplitudes) cannot re-
move the zeros in the basic term.
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