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INEQUALITIES FOR THE SCHWAB–BORCHARDT

MEAN AND THEIR APPLICATIONS

EDWARD NEUMAN

Abstract. Inequalities for the Schwab-Borchardt mean are obtained. They contain known results
for the trigonometric and hyperbolic functions including those obtained by J. Wilker [15] and C.
Huygens [5]. The main results of this paper can also be utilized to obtain new inequalities for
some bivariate means including the logarithmic mean and two means introduced by Seiffert.
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