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INEQUALITIES FOR THE SCHWAB–BORCHARDT

MEAN AND THEIR APPLICATIONS

EDWARD NEUMAN

(Communicated by G. Toader)

Abstract. Inequalities for the Schwab-Borchardt mean are obtained. They contain known results
for the trigonometric and hyperbolic functions including those obtained by J. Wilker [15] and C.
Huygens [5]. The main results of this paper can also be utilized to obtain new inequalities for
some bivariate means including the logarithmic mean and two means introduced by Seiffert.

1. Introduction

The following trigonometric inequalities

2 <

(
sinx
x

)2

+
tanx

x
(1.1)

and

3 < 2
sinx
x

+
tanx

x
(1.2)

(0 < |x| < π
2 ) have been discovered respectively by J.B. Wilker [15] and C. Huygens

[5]. They attracted attention of many researchers. Several proofs of (1.1) and (1.2) can
be found in mathematical literature (see [4, 7, 12, 16, 17, 18]).

The hyperbolic counterparts of (1.1) and (1.2) have been obtained. They read as
follows

2 <

(
sinhx

x

)2

+
tanhx

x
(1.3)

and

3 < 2
sinhx

x
+

tanhx
x

(1.4)

(x �= 0). For the proofs of these results the interested reader is referred to [19] and [12],
respectively. Several generalizations and extensions of these results have been obtained
recently. For instance, refinements of (1.1) and (1.2) read as follows

2 <
( x

sinx

)2
+

x
tanx

<

(
sinx
x

)2

+
tanx

x
(1.5)
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and

3 < 2
x

sinx
+

x
tanx

< 2
sinx
x

+
tanx

x
. (1.6)

Proofs of (1.5) and (1.6) can be found in [17, 12, 16]. The hyperbolic counterparts
of (1.5) and (1.6) are obtained in [12].

The goal of this paper is to demonstrate that the inequalities (1.1)–(1.4) are special
cases of some inequalities for the Schwab-Borchardt mean. This little known mean is
discussed in [1], [3], [10] and [11]. This paper, which can be regarded as a continu-
ation of the research presented in [12] and [9], is organized as follows. Notation and
definitions, used in the subsequent parts of this work, are introduced in Section 2. The
next section contains some lemmas employed in Section 4. Therein the main results
of this paper are obtained. Applications to some bivariate means are also mentioned.
Refinements of the inequalities of D.D. Adamović, D.S. Mitrinović, and I. Lazarević
are obtained in Section 5. Refinements of inequalities (1.1)–(1.4) are also obtained in
this section.

2. Notation and Definitions

The geometic, arithmetic, and the root-mean square means of x > 0 and y > 0
will be denoted by G , A , and Q , respectively, and they are defined as follows

G ≡ G(x,y) =
√

xy, A ≡ A(x,y) =
x+ y

2
, Q ≡ Q(x,y) =

√
x2 + y2

2
.

Other bivariate means used in the subsequent sections include the logarithmic mean

L =
z

tanh−1 z
A, (2.1)

the first and second Seiffert means P and T , where

P =
z

sin−1 z
A (2.2)

and
T =

z
tan−1 z

A (2.3)

(see [13], [14], [10], [8]). Here

z =
x− y
x+ y

(2.4)

(x �= y). Another mean which is also of interest has been introduced in [10, (2.6)] and
is defined as

M =
z

sinh−1 z
A . (2.5)

It is known that
G < L < P < A < M < T < Q
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(see [10, (2.10)]). The means L , P , T and M are special cases of the Schwab-
Borchardt mean. For x � 0 and y > 0 the mean under discussion will be denoted
by SB(x,y) or simply by SB. This mean is the iterative mean, i.e.,

SB = lim
n→∞

xn = lim
n→∞

yn ,

where
x0 = x, y0 = y, xn+1 =

xn + yn

2
, yn+1 =

√
xn+1yn (2.6)

(n = 0,1, . . .) . It is known that

SB(x,y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
y2− x2

cos−1(x/y)
if x < y,

√
x2− y2

cosh−1(x/y)
if y < x

(2.7)

(see [1, Theorem 8.4], [3, (2.3)]). The mean SB is nonsymmetric, homogeneous of
degree 1 and strictly increasing it its variables. It has been established in [10] that

L = SB(A,G), P = SB(G,A), T = SB(A,Q), M = SB(Q,A). (2.8)

Using (2.7) one can easily verify that

SB(cosx,1) =
sinx
x

, SB
(√

1− x2,1
)

=
x

sin−1 x
, (2.9)

SB(coshx,1) =
sinhx

x
, SB

(√
1+ x2,1

)
=

x

sinh−1 x
, (2.10)

SB(1,secx) =
tanx

x
, SB

(
1,

√
1+ x2

)
=

x
tan−1 x

, (2.11)

SB(1,sech x) =
tanhx

x
, SB

(
1,

√
1− x2

)
=

x

tanh−1 x
, (2.12)

3. Lemmas

In what follows we will assume that u and v are positive and unqual numbers.
The following lemmas will be utilized in the subsequent sections of this paper.

LEMMA 3.1. ([12]) If uv > 1 , then

1
u

+
1
v

< u+ v.

LEMMA 3.2. ([9]) Let α > 0 , β > 0 with α +β = 1 . If

1 < α
1
u

+β
1
v

< αu+βv, (3.1)
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then

1 < α
1
up +β

1
vp < αup +βvp. (3.2)

The first inequality in (3.2) is valid for p � 1 while the second one holds true provided
p > 0 .

4. Main Results

The goal of this section is to establish inequalities for the Schwab-Borchardtmean.
These results can be used to obtain refinements and generalizations of the Wilker-type
and Huygens-type inequalities for the trigonometric and hyperbolic functions. Appli-
cations of the obtained results to inequalities involving means L , P , T and M are also
included.

In what follows the symbols {xn}∞0 and {yn}∞0 will stand for sequences defined in
(2.6). Also, SB will denote the Schwab-Borchardt mean of x > 0 and y > 0.

Our first result reads as follows.

THEOREM 4.1. Let n = 0,1, . . . . Then

2 <
( yn

SB

)2p
+

( xn

SB

)p
<

(
SB
yn

)2p

+
(

SB
xn

)p

. (4.1)

The first inequality in (4.1) holds true for p � 1 while the second one is valid if p > 0 .

Proof. The following two-sided inequality

(xny
2
n)

1/3 < SB <
xn +2yn

3
(4.2)

(n = 0,1, . . .) has been obtained in [10]. It follows from the second inequality in (4.2)
that

xn > 3SB−2yn . (4.3)

For the proof of the first inequality in (4.1) we use the inequality for the bivariate power
mean of u > 0 and v > 0 : up +vp > 21−p(u+v)p ( p � 1) together with (4.3) to obtain

( yn

SB

)2p
+

( xn

SB

)p
> 21−p

[( yn

SB

)2
+

xn

SB

]p

> 21−p
[( yn

SB

)2
+

3SB−2yn

SB

]p

= 21−p
[
2+

( yn

SB
−1

)2
]p

> 2.

We shall establish now the second inequality in (4.1). To this aim we write the left
inequality in (4.2) as

1 <

(
SB
yn

)2 SB
xn

.
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Application of Lemma 3.1 with u =
(

SB
yn

)2
and v = SB

xn
together with the use of the

first inequality in (4.1) yields

2 <
( yn

SB

)2
+

xn

SB
<

(
SB
yn

)2

+
SB
xn

.

Dividing both sides by 2 and next using Lemma 3.2 with α = β = 1/2 and u and
v as defined above gives the asserted result. �

Special cases of (4.1) appear in mathematical literature (see [16], [12], [7]). One
can obtain these results by letting in (4.1) n = 0, y0 = 1 and x0 = cosx or x0 = coshx .
Using first formulas in (2.9) and (2.10) one has SB = sinx/x and SB = sinhx/x .

We are in a position to state and prove the following.

THEOREM 4.2. Let n be a nonnegative integer. Then

3 < 2
( yn

SB

)p
+

( xn

SB

)p
< 2

(
SB
yn

)p

+
(

SB
xn

)p

, (4.4)

where the first inequality holds true provided p � 1 while the second one is valid for
all p > 0 .

Proof. We shall establish first the two-sided inequality (4.4) when p = 1. In this
case the first inequality follows immediately from the right inequality in (4.2). For
the proof of the second inequality in (4.4) we introduce quantities a = SB/yn and c =
xn/yn . Then the inequality in question can be written as

2
1
a

+
c
a

< 2a+
a
c

or what is the same that

a2 >
c(2+ c)
2c+1

. (4.5)

In order to prove (4.5) we use the invariance property of the Schwab-Borchardt mean

SB = SB(xn+1,yn+1)

(n = 0,1, . . .). Applicaiton of the first inequality in (4.2) gives

SB > (xn+1y
2
n+1)

1/3 = (A2yn)1/3,

where A := xn+1 =
xn + yn

2
and yn+1 =

√
Ayn (see (2.6)). Hence

(
SB
yn

)3

>

(
A
yn

)2

.
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Since A
yn

= 1+c
2 , the last inequality can be written as

a2 >

(
1+ c

2

)4/3

. (4.6)

It has been shown in the proof of Theorem 2.6 in [12] that

(
1+ c

2

)4/3

>
c(2+ c)
2c+1

holds for all c > 0. This in conjunction with (4.6) gives the desired result (4.5). This
completes the proof of (4.4) when p = 1. Application of Lemma 3.2, with α = 2/3,
β = 1/3, u = SB/yn and v = SB/xn , gives the desired result when p > 1. The proof
is complete. �

We close this section with some inequalities for bivariate means defined in Section
2. Let x and y be positive and unequal numbers and let A and G be the arithmetic and
geometric means of x and y . It follows from (2.8) that SB(A,G) = L(x,y) . Letting in
(4.1) and (4.4), n = 0, x0 = A , and y0 = G we obtain the inequalities

2 <

(
G
L

)2p

+
(

A
L

)p

<

(
L
G

)2p

+
(

L
A

)p

(4.7)

and

3 < 2

(
G
L

)p

+
(

A
L

)p

< 2

(
L
G

)p

+
(

L
A

)p

(4.8)

which are valid for values of p as stated in Theorem 4.1 and Theorem 4.2. Taking into
account that P = SB(G,A) (see (2.8)) one can derive two inequalities for Seiffert’s first
mean P :

2 <

(
A
P

)2p

+
(

G
P

)p

<

(
P
A

)2p

+
(

P
G

)p

and

3 < 2

(
A
P

)p

+
(

G
P

)p

< 2

(
P
A

)p

+
(

P
G

)p

by interchanging in (4.7)–(4.8) A with G and by replacing L by P . In a similar fashion
one can obtain two pairs of inequalities involving means T and M . We omit further
details.

5. Refinements of Certain Inequalities

The purpose of this section is to obtain refinements of the Adamović and Mitri-
nović inequality [6]

(cosx)1/3 <
sinx
x

(5.1)
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(0 < |x| < π
2 ) and the Lazarević inequality [2]

(coshx)1/3 <
sinhx

x
(5.2)

(x �= 0). These results will be employed to obtain refinements of the Wilker and Huy-
gens inequalities (1.1)–(1.2) and also to obtain refinements of (1.3) and (1.4). Other
refinements of inequalities (5.1) and (5.2) are obtained in [16].

In what follows, L will stand for the logarithmic mean L(1+sinx,1−sinx) . Sim-
ilarly the letter T will be used to denote the second Seiffert mean T (1 + sinhx,1−
sinhx) , x ∈ D , where D =

[
ln(

√
2−1), ln(

√
2+1)

]
.

Our first result reads as follows.

THEOREM 5.1. Let 0 < |x| < π
2 . Then

(cosx)1/3 < L1/2 <
sinx
x

. (5.3)

Proof. Let u = 1 + sinx and v = 1− sinx . Then A ≡ A(u,v) = 1 and G ≡
G(u,v)= cosx . Making use of the first inequality in (4.2) with x0 = A , y0 =G followed
by application of (2.8) we obtain (AG2)1/3 < L or what is the same as

(cosx)2/3 < L (5.4)

which is equivalent with the first inequality in (5.3). For the proof of the second in-
equality in (5.3) we use the following one

ySB(y,x) < SB2(x,y) (5.5)

(see [11, (3.1)]) with x := cosx and y = 1 to obtain

SB(1,cosx) < SB2(cosx,1). (5.6)

The first Schwab-Borchardt mean in (5.6) can be expressed in terms of L . We have

SB(1,cosx) = SB(1,
√

1− sin2 x) =
sinx

tanh−1(sinx)
= L,

where in the last two steps we have used a second formula in (2.12) and (2.1). Since
SB(cosx,1) = sinx

x (see (2.9)), the assertion follows from (5.5). The proof is com-
plete. �

COROLLARY 5.2. The following inequalities

2 <

(
sinx
x

)2

+
1
L

<

(
sinx
x

)2

+
tanx

x
(5.7)

and

3 < 2
sinx
x

+
1
L

< 2
sinx
x

+
tanx

x
(5.8)

are valid provided 0 < |x| < π
2 .
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Proof. The first inequalities in (5.7) and (5.8) can be obtained with the aid of

1 <

(
sinx
x

)2 1
L

, (5.9)

which is an obvious consequence of the second inequality in (5.3). Application of the
inequality of the arithmetic and geometric means first with equal weights followed by
use of this inequality with weights 2/3 and 1/3 gives the asserted results. For the proof
of the second inequalities in (5.7) and (5.8) it suffices to show that

x
tanx

< L.

To obtain the last inequality we write (5.1) as x
sinx < (cosx)−1/3 . Multiplying both

sides by cosx and next using (5.4) we obtain the desired result. �
The hyperbolic counterpart of Theorem 5.1 is contained in the following.

THEOREM 5.3. Let x ∈ D. Then

(coshx)1/3 < T 1/2 <
sinhx

x
. (5.10)

Proof. The assumption x ∈ D implies that |sinhx| � 1. Let u = 1 + sinhx and
v = 1− sinhx . Then A ≡ A(u,v) = 1 and Q ≡ Q(u,v) = coshx . The first inequality in
(5.10) follows from (AQ2)1/3 < T which is a special case of the left inequality in (4.2)
when n = 0, x0 = A and y0 = Q and the formula SB(A,Q) = T (see (2.8)). For the
proof of the second inequality in (5.10) we let in (5.5) x := coshx and y = 1 to obtain

SB(1,coshx) < SB2(coshx,1). (5.11)

The left side of (5.11) is equal to T and this follows from

SB(1,coshx) = SB(1,
√

1+ sinh2 x) =
sinhx

tan−1(sinhx)
= T

where in the last two steps we have used the second part of (2.11) and (2.3). Taking
into account that SB(coshx,1) = sinhx

x (see this first formula in (2.10)) we obtain the
assertion. This completes the proof. �

COROLLARY 5.4. Refinements of inequalities (1.3) and (1.4)

2 <

(
sinhx

x

)2

+
1
T

<

(
sinhx

x

)2

+
tanhx

x
(5.12)

and

3 < 2
sinhx

x
+

1
T

< 2
sinhx

x
+

tanhx
x

(5.13)

are valid provided x ∈ D.
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Since the proof of the last two inequalities is very similar to the proof of (5.7) and
(5.8), it is not included here.

We close this section with a remark that the functions tanx
x and tanhx

x are bounded
from above by M2(1+sinx,1−sinx) and P2(1+ tanhx,1− tanhx) , respectively, where
the means M and P are defined in (2.5) and (2.2), respectively. These bounds are
obtained using (5.5) with x := secx , y = 1 and x := sech x , y = 1, respectively. The
appropriate formulas from Section 2 should be applied to obtain the desired results. We
omit further details.
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