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OPERATOR FUNCTIONS ON CHAOTIC ORDER INVOLVING

ORDER PRESERVING OPERATOR INEQUALITIES

TAKAYUKI FURUTA

Abstract. An operator T is said to be positive (denoted by T � 0) if (Tx,x) � 0 for all vectors
x in a Hilbert space, and T is said to be strictly positive (denoted by T > 0) if T is positive and
invertible. Let logA � logB and r1,r2, ...,rn � 0 and any fixed δ � 0 , and

p1 � δ , p2 � δ + r1

p1 + r1
, ..., pk � δ + r1 + r2 + ...+ rk−1
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q[n−1]
.

Let Fn(pn,rn) be defined by
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Then the following inequalities (i), (ii) and (iii) hold:
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(iii) Fn(pn,rn) is a decreasing function of both rn � 0 and pn � δ+r1+r2+...+rn−1
q[n−1] , where

CA,B[n] and q[n] are defined as follows:

CA,B[n] = A
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and
q[n] = [...{(p1 + r1)p2 + r2}p3 + ...rn−1]pn + rn.

We remark that (ii) can be considered as “a satellite inequality to chaotic order”.
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