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OPERATOR FUNCTIONS ON CHAOTIC ORDER INVOLVING

ORDER PRESERVING OPERATOR INEQUALITIES

TAKAYUKI FURUTA
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(Communicated by M. Fujii)

Abstract. An operator T is said to be positive (denoted by T � 0) if (Tx,x) � 0 for all vectors
x in a Hilbert space, and T is said to be strictly positive (denoted by T > 0) if T is positive and
invertible. Let logA � logB and r1,r2, ...,rn � 0 and any fixed δ � 0 , and

p1 � δ , p2 � δ + r1

p1 + r1
, ..., pk � δ + r1 + r2 + ...+ rk−1

q[k−1]
, ..., pn � δ + r1 + r2 + ...+ rn−1

q[n−1]
.

Let Fn(pn,rn) be defined by

Fn(pn,rn) = A
−rn
2 CA,B[n]

δ+r1+r2+...+rn
q[n] A

−rn
2 .

Then the following inequalities (i), (ii) and (iii) hold:

(i) A
pk−1

2 Fk−1(pk−1,rk−1)A
pk−1

2 � Fk(pk,rk) for k such that 1 � k � n,

(ii) Bδ � A
−r1
2 (A

r1
2 Bp1A

r1
2 )

δ+r1
p1+r1 A

−r1
2

� A
−(r1+r2)

2
{
A

r2
2 (A

r1
2 Bp1A

r1
2 )p2A

r2
2

} δ+r1+r2
(p1+r1)p2+r2 A

−(r1+r2)
2

� A
−(r1+r2+r3 )

2 {A r3
2 [A

r2
2 (A

r1
2 Bp1A

r1
2 )p2A

r2
2 ]p3 A

r3
2 }

δ+r1+r2+r3
{(p1+r1)p2+r2}p3+r3 A

−(r1+r2+r3)
2

...

� A
−(r1+r2+...+rn)

2 CA,B[n]
δ+r1+r2+...+rn

q[n] A
−(r1+r2+...+rn)

2 ,

(iii) Fn(pn,rn) is a decreasing function of both rn � 0 and pn � δ+r1+r2+...+rn−1
q[n−1] , where

CA,B[n] and q[n] are defined as follows:

CA,B[n] = A
rn
2

{
A

rn−1
2 [...A

r3
2 {A r2

2 (A
r1
2 Bp1A

r1
2 )p2A

r2
2 }p3A

r3
2 ...]pn−1 A

rn−1
2

}pn
A

rn
2

and
q[n] = [...{(p1 + r1)p2 + r2}p3 + ...rn−1]pn + rn.

We remark that (ii) can be considered as “a satellite inequality to chaotic order”.
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1. Introduction

An operator T is said to be positive (denoted by T � 0) if (Tx,x) � 0 for all
vectors x in a Hilbert space, and T is said to be strictly positive (denoted by T > 0) if
T is positive and invertible.

THEOREM LH. (Löwner-Heinz inequality, denoted by LH briefly).

If A � B � 0 holds, then Aα � Bα for any α ∈ [0,1] . (LH)

This inequality LH was originally proved in [27] and then in [21]. Many nice
proofs of LH are known. We mention [28] and [3]. Although LH asserts that A � B � 0
ensures Aα � Bα for any α ∈ [0,1] , unfortunately Aα � Bα does not always hold for
α > 1 . The following result has been obtained from this point of view.

THEOREM A. If A � B � 0 ,
then for each r � 0 ,

(i) (B
r
2 ApB

r
2 )

1
q � (B

r
2 BpB

r
2 )

1
q

and
(ii) (A

r
2 ApA

r
2 )

1
q � (A

r
2 BpA

r
2 )

1
q

hold for p � 0 and q � 1 with

(1+ r)q � p+ r.

p

q(1, 0)

(0,−r)

(1, 1)

q = 1 p = q

(1 + r)q = p + r

Fig. 1. Domain on p, q and r for Theorem A

The original proof of Theorem A is shown in [10], an elementary one-page proof
is in [11] and alternative ones are in [4], [24]. It is shown in [29] that the conditions p ,
q and r in FIGURE 1 are best possible.

THEOREM B. (e.g., [12], [6], [24], [25], [19]) Let A � B � 0 with A > 0 , p � 1
and r � 0 .

GA,B(p,r) = A
−r
2 (A

r
2 BpA

r
2 )

1+r
p+r A

−r
2

is a decreasing function of p and r, and GA,A[p,r] � GA,B[p,r] holds, that is,

A1+r � (A
r
2 BpA

r
2 )

1+r
p+r holds for p � 1 and r � 0 . (1.1)

We write A � B if logA � logB for A,B > 0, which is called the chaotic order.

THEOREM C. For A,B > 0 , the following (i) and (ii) hold:
(i) A � B holds if and only if Ar � (A

r
2 BpA

r
2 )

r
p+r for p,r � 0.

(ii) A�B holds if and only if for any fixed δ � 0, FA,B(p,r)= A
−r
2 (A

r
2 BpA

r
2 )

δ+r
p+r A

−r
2

is a decreasing function of p � δ and r � 0.

(i) in Theorem C is shown in [12], [6] and an excellent proof in [31] and a proof
in the case p = r in [1], and (ii) in [12], [6] and etc.



OPERATOR FUNCTIONS ON CHAOTIC ORDER 17

LEMMA D. [13] Let X be a positive invertible operator and Y be an invertible
operator. For any real number λ ,

(YXY ∗)λ = YX
1
2 (X

1
2Y ∗YX

1
2 )λ−1X

1
2Y ∗.

We state the following result on the chaotic order which inspired us (see detail,
§7).

THEOREM FKN-2. [9] If A � B for A,B > 0 , then

At−r� 1+r−t
(p−t)s+r

(At�sB
p) � At� 1−t

p−t
Bp � B

holds for p � 1, s � 1, r � 0 and t � 0.

We shall discuss further extensions of Theorem B, Theorem C and Theorem FKN-2.

The purpose of this paper is to emphasize that the chaotic order A � B is some-
times more convenient and more useful than the usual order A � B � 0 for discussing
some order preserving operator inequalities.

2. Definitions of CA,B
[
n; p1, p2, .., pn−1, pn|r1,r2, ..,rn−1,rn

]
, (denoted by CA,B[n] or

C[n] briefly sometime) and q
[
n; p1, p2, .., pn−1, pn|r1,r2, ..,rn−1,rn

]
(denoted by

q[n] briefly)

Let A,B � 0, p1, p2, .., pn � 0 and r1,r2, ..,rn � 0 for a natural number n .
Let CA,B

[
n; p1, p2, .., pn−1, pn|r1,r2, ..,rn−1,rn

]
be defined by

CA,B
[
n; p1, p2, .., pn−1, pn|r1,r2, ..,rn−1,rn

]
= A

rn
2

{
A

rn−1
2 [...A

r3
2 {Ar2

2 (A
r1
2 Bp1A

r1
2 )p2A

r2
2 }p3A

r3
2 ...]pn−1A

rn−1
2

}pn
A

rn
2 . (2.1)

Denote CA,B
[
n; p1, p2, .., pn−1, pn|r1,r2, ..,rn−1,rn

]
by CA,B[n] briefly.

For examples,

CA,B[1] = A
r1
2 Bp1A

r1
2 and CA,B[2] = A

r2
2 (A

r1
2 Bp1A

r1
2 )p2A

r2
2

and
CA,B[4] = A

r4
2

[
A

r3
2 {Ar2

2 (A
r1
2 Bp1A

r1
2 )p2A

r2
2 }p3A

r3
2

]p4
A

r4
2 .

Particularly put A = B in CA,B[n] in (2.1). Then

CA,A
[
n; p1, p2, .., pn−1, pn|r1,r2, ..,rn−1,rn

]
= A

rn
2

{
A

rn−1
2 [...A

r3
2 {Ar2

2 (A
r1
2 Ap1A

r1
2 )p2A

r2
2 }p3A

r3
2 ...]pn−1A

rn−1
2

}pn
A

rn
2 (2.2)

= A[...{(p1+r1)p2+r2}p3+...rn−1]pn+rn. (2.3)
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Next let q
[
n; p1, p2, .., pn−1, pn|r1,r2, ..,rn−1,rn

]
be defined by

q
[
n; p1, p2, .., pn−1, pn|r1,r2, ..,rn−1,rn

]
= the exponential power of A in (2.3)

= [...{(p1 + r1)p2 + r2}p3 + ...rn−1]pn + rn. (2.4)

q
[
n; p1, p2, .., pn−1, pn|r1,r2, ..,rn−1,rn

]
denoted by q[p1, p2, .., pn−1, pn] or denoted by

q[r1,r2, ..,rn−1,rn] for simplicity or sometimes denoted by q[n] briefly.
For examples, q[1] = p1 + r1 and q[2] = (p1 + r1)p2 + r2 and

q[4] = [{(p1 + r1)p2 + r2}p3 + r3]p4 + r4.

For the sake of convenience, we define

CA,B[0] = B and q[0] = 1 (2.5)

and these definitions in (2.5) may be reasonable by (2.1) and (2.4).

LEMMA 2.1. For A,B � 0 and any natural number n, the following (i) and (ii)
hold.

(i) CA,B[n] = A
rn
2 CA,B[n−1]pnA

rn
2 .

(ii) q[n] = q[n−1]pn + rn.

Proof. (i) and (ii) can be easily obtained by the definitions (2.1) and (2.4). �
We state two examples using these notations of CA,B[n] and q[n] for reader’s con-

venience.

Ar � (A
r
2 BpA

r
2 )

r
p+r ⇐⇒ Ar � CA,B[1]

r
q[1] ,

A1+r � (A
r
2 BpA

r
2 )

1+r
p+r ⇐⇒ A1+r � CA,B[1]

1+r
q[1] .

REMARK 2.1. We remark that quite similar definitions to CA,B[n] and q[n] are
given in [18] and related results are discussed in [18], [22], [23], [34] and etc.

3. Basic results associated with CA,B[n] and q[n]

THEOREM 3.1. Let A � B and r1,r2, ...,rn � 0 for a natural number n. Then
the following inequality holds,

Ar1+r2...+rn = CA,A[n]
r1+r2...+rn

q[n] � CA,B[n]
r1+r2...+rn

q[n] (3.1)

for p1, p2, ..., pn satisfying

p j � r1 + r2 + ...+ r j−1

q[ j−1]
for j = 1,2, ...,n (r0 = 0 and q[0] = 1), (3.2)

that is,

p1 � 0, p2 � r1

p1 + r1
, p3 � r1 + r2

(p1 + r1)p2 + r2
, ..., pn � r1 + r2 + ...+ rn−1

q[n−1]
,
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where CA,B[n] is defined in (2.1) and q[n] is defined in (2.4).

Proof. We shall show (3.1) by Mathematical Induction. In the case n = 1,

A � B implies Ar1 � (A
r1
2 Bp1A

r1
2 )

r1
p1+r1 = CA,B[1]

r1
q[1]

holds for any p1 � 0 and r1 � 0 by (i) of Theorem C. Whence (3.1) for n = 1,
Assume (3.1). We shall show (3.1) for r1,r2, ..,rn,rn+1 � 0 and p1, p2, ..., pn, pn+1

which satisfies (3.2) for n+1: that is,

p1 � 0, p2 � r1

p1 + r1
, ..., pn � r1 + r2 + ...+ rn−1

q[n−1]
, and pn+1 � r1 + r2 + ...+ rn

q[n]
.

(3.2′)

Put A1 = Ar1+r2...+rn and B1 = CA,B[n]
r1+r2...+rn

q[n] in (3.1). Then A1 � B1 � 0 by
the assumption (3.1). Theorem B ensures

A1+t
1 � (A

t
2
1 Bs

1A
t
2
1 )

1+t
s+t for any s � 1 and t � 0 ,

that is,

A(r1+r2...+rn)(1+t) �
{

A
(r1+r2...+rn)t

2 CA,B[n](
r1+r2...+rn

q[n] )s
A

(r1+r2...+rn)t
2

} 1+t
s+t

(3.3)

holds for any s � 1 and t � 0. Put s =
(

q[n]
r1 + r2...+ rn

)
pn+1 � 1 since q[n]pn+1 �

r1 + r2... + rn by the last inequality in (3.2’) and also put (r1 + r2... + rn)t = rn+1 in
(3.3).

Then the exponential power
1+ t
s+ t

of the right hand side of (3.3) can be written as

follows;

1+ t
s+ t

=
(1+ t)(r1 + r2...+ rn)

q[n]pn+1 +(r1 + r2...+ rn)t

=
r1 + r2...+ rn + rn+1

q[n]pn+1 + rn+1

=
r1 + r2...+ rn + rn+1

q[n+1]
by (ii) of Lemma 2.1 (3.4)

and we have the following desired (3.5) by (3.3) and (3.4)

Ar1+r2...+rn+rn+1 �
(
A

rn+1
2 CA,B[n]pn+1A

rn+1
2

) r1+r2...+rn+rn+1
q[n+1]

= CA,B[n+1]
r1+r2...+rn+rn+1

q[n+1] by (i) of Lemma 2.1, (3.5)

so that (3.5) shows that (3.1) holds for p1, p2, .., pn, pn+1 which satisfies (3.2’) and
r1,r2, ..,rn,rn+1 � 0 for a natural number n . �
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COROLLARY 3.2. Let A � B and r1,r2,r3 � 0 . Then

(i) Ar1+r2+r3 � {Ar3
2 [A

r2
2 (A

r1
2 Bp1A

r1
2 )p2A

r2
2 ]p3A

r3
2 }

r1+r2+r3
[(p1+r1)p2+r2]p3+r3 .

holds for p2 � r1
p1+r1

and p3 � r1+r2
(p1+r1)p2+r2

.

(ii) Ar1+r2 � {Ar2
2 (A

r1
2 Bp1A

r1
2 )p2A

r2
2 }

r1+r2
(p1+r1)p2+r2

holds for p1 � 0 and p2 � r1
p1+r1

.

Proof. Put n = 3 in Theorem 3.1 for (i) and put n = 2 in Theorem 3.1 for (ii). �

REMARK 3.1.
(i) implies (ii) by putting r3 = 0, and (ii) implies Ar1 � (A

r1
2 Bp1A

r1
2 )

r1
p1+r1 by

putting r2 = 0 in (ii), which is (i) itself of Theorem C.
More precise estimation than Corollary 3.2 will be shown in Corollary 5.3.
We state the following Theorem 3.3 and Corollary 3.4 without proofs. In fact, by

the almost same way as Theorem 3.1 we have Theorem 3.3. (see Remark 3.2.)

THEOREM 3.3. Let A � B � 0 and r1,r2, ...,rn � 0 for a natural number n. Then
the following inequality holds,

A1+r1+r2...+rn = CA,A[n]
1+r1+r2 ...+rn

q[n] � CA,B[n]
1+r1+r2 ...+rn

q[n] (3.6)

for p1, p2, ..., pn satisfying

p j � 1+ r1 + r2 + ...+ r j−1

q[ j−1]
for j = 1,2, ...,n (r0 = 0 and q[0] = 1),

(3.7)
that is,

p1 � 1, p2 � 1+ r1

p1 + r1
, p3 � 1+ r1 + r2

(p1 + r1)p2 + r2
, ..., pn � 1+ r1 + r2 + ...+ rn−1

q[n−1]
.

COROLLARY 3.4. Let A � B � 0 and r1,r2,r3 � 0 . Then

(i) A1+r1+r2+r3 � {Ar3
2 [A

r2
2 (A

r1
2 Bp1A

r1
2 )p2A

r2
2 ]p3A

r3
2 }

1+r1+r2+r3
[(p1+r1)p2+r2]p3+r3 .

holds for p1 � 1 , p2 � 1+r1
p1+r1

and p3 � 1+r1+r2
(p1+r1)p2+r2

.

(ii) A1+r1+r2 � {Ar2
2 (A

r1
2 Bp1A

r1
2 )p2A

r2
2 }

1+r1+r2
(p1+r1)p2+r2

holds for p1 � 1 and p2 � 1+r1
p1+r1

.

REMARK 3.2. We remark that Theorem 3.3 is a parallel result to Theorem 3.1
and also Corollary 3.4 is a parallel one to Corollary 3.2, and Theorem 3.1 is usually
obtained from Theorem 3.3 by applying Uchiyama’s nice technique [31] after proving
Theorem 3.3.

Although many results on the chaotic order (A � B ) have been derived from
the corresponding results on the usual order (A � B � 0) by applying Uchiyama’s
nice method, we shall show Corollary 5.4 on the usual order (A � B � 0), which is a
further extension of Theorem 3.3, by using the corresponding result Corollary 5.2 on
the chaotic order (A � B) at the end of §5 .
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4. Monotonicity property on operator functions

Fk(pk,rk) = A
−rk
2 CA,B[k]

δ+r1+r2+...+rk
q[k] A

−rk
2

THEOREM 4.1. Let A � B and r1,r2, ...,rn � 0 for a natural number n. For any
fixed δ � 0, let p1, p2, ..., pn be satisfied by

p j � δ + r1 + r2 + ...+ r j−1

q[ j−1]
for j = 1,2, ...,n, (4.1)

that is,

p1 � δ , p2 � δ+r1

p1+r1
, ..., pk � δ + r1+r2+...+rk−1

q[k−1]
, ..., pn � δ+r1+r2+...+rn−1

q[n−1]
.

The operator function Fk(pk,rk) for any natural number k such that 1 � k � n is
defined by

Fk(pk,rk) = A
−rk
2 CA,B[k]

δ+r1+r2+...+rk
q[k] A

−rk
2 . (4.2)

Then the following inequality holds:

A
rk−1

2 Fk−1(pk−1,rk−1)A
rk−1

2 � Fk(pk,rk) (F0(p0,r0) = Bδ ) (4.3)

for every natural number k such that 1 � k � n.

Proof. Since CA,B[0] = B , q[0] = 1 in (2.5) and p0 = r0 = 0 in (3.2), we may
define F0(p0,r0) = Bδ in (4.3). Let A � B. Then for any fixed δ � 0,

Bδ � A
−r1
2 (A

r1
2 Bp1A

r1
2 )

δ+r1
p1+r1 A

−r1
2 for p1 � δ and r1 � 0 (4.4)

since FA,B(δ ,r1) � FA,B(p1,r1) holds by (ii) of Theorem C. And (4.4) can be expressed
as

Bδ = A
r0
2 F0(p0,r0)A

r0
2 � A

−r1
2 CA,B[1]

δ+r1
q[1] A

−r1
2 = F1(p1,r1) by (4.2). (4.5)

Since the condition (4.1) with δ � 0 suffices (3.2) in Theorem 3.1, in fact, (3.2) is itself
(4.1) without δ � 0, we can apply Theorem 3.1 and we have the following (4.6) for
natural number k such that 1 � k � n

Ar1+r2+...+rk � CA,B[k]
r1+r2+...+rk

q[k] . (4.6)

Since X � Y > 0 implies X � Y and then Xt � Yt holds for any t � 0, (4.6) ensures

Aδ+r1+r2+...+rk � CA,B[k]
δ+r1+r2+...+rk

q[k] .

Put A1 = Aδ+r1+r2+...+rk and B1 = CA,B[k]
δ+r1+r2+...+rk

q[k] and applying (4.4) for δ = 1
and A1 � B1, we have

B1 � A
−r
2

1 (A
r
2
1 Bp

1A
r
2
1 )

1+r
p+r A

−r
2

1 holds for p � 1 and r � 0. (4.7)
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Put rk+1 = r(δ + r1 + r2 + ...+ rk) in (4.7). Then (4.7) can be rewritten by

B1 � A
−rk+1

2 (A
rk+1

2 CA,B[k]
δ+r1+...+rk

q[k] p
A

rk+1
2 )

1+r
p+r A

−rk+1
2 . (4.8)

Put p = q[k]
δ+r1+...+rk

pk+1 � 1, that is, pk+1 � δ+r1+...+rk
q[k] in (4.8), then we have

A
rk
2 Fk(pk,rk)A

rk
2 = CA,B[k]

δ+r1+r2+...+rk
q[k] = B1 by (4.2)

� A
−rk+1

2 (A
rk+1

2 CA,B[k]pk+1A
rk+1

2 )
δ+r1+r2+...+rk+rk+1

q[k]pk+1+rk+1 A
−rk+1

2

= A
−rk+1

2 (CA,B[k+1])
δ+r1+r2+...+rk+rk+1

q[k+1] A
−rk+1

2

by (i) and (ii) of Lemma 2.1

= Fk+1(pk+1,rk+1) by (4.2) for k+1 (4.9)

and we have (4.3) for k such that 1 � k � n by (4.9) and (4.5) since (4.5) means (4.3)
for k = 1. �

REMARK 4.1. We shall give an alternative proof of Theorem 4.1 in Remark 6.1
via Theorem 6.1 at the end of §6.

5. Order preserving operator inequalities via operator functions in §4

We shall give order preserving operator inequalities as an application of Theorem
4.1.

THEOREM 5.1.. Let A � B and r1,r2, ...,rn � 0 for a natural number n. Then
the following inequalities hold for any fixed δ � 0 :

Bδ � A
−r1
2 (A

r1
2 Bp1A

r1
2 )

δ+r1
p1+r1 A

−r1
2

� A
−(r1+r2)

2
{
A

r2
2 (A

r1
2 Bp1A

r1
2 )p2A

r2
2
} δ+r1+r2

(p1+r1)p2+r2 A
−(r1+r2)

2

� A
−(r1+r2+r3)

2 {Ar3
2 [A

r2
2 (A

r1
2 Bp1A

r1
2 )p2A

r2
2 ]p3A

r3
2 }

δ+r1+r2+r3
{(p1+r1)p2+r2}p3+r3 A

−(r1+r2+r3)
2

...

� A
−(r1+r2+...+rn)

2 CA,B[n]
δ+r1+r2+...+rn

q[n] A
−(r1+r2+...+rn)

2 (5.1)

for p1, p2, ..., pn satisfying

p j � δ + r1 + r2 + ...+ r j−1

q[ j−1]
for j = 1,2, ...,n, (4.1)

that is,

p1 � δ , p2 � δ + r1

p1 + r1
, ..., pk � δ + r1 + r2 + ...+ rk−1

q[k−1]
, ..., pn � δ + r1 + r2 + ...+ rn−1

q[n−1]
,
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where CA,B[n] is defined in (2.1) and q[n] is defined in (2.4).

Proof. Applying (4.3) of Theorem 4.1 for k such that 1 � k � n, we have

Bδ = A
r0
2 F0(p0,r0)A

r0
2

� F1(p1,r1) by p1 � δ in (4.3) for k = 1

� A
−r1
2 F2(p2,r2)A

−r1
2 by p2 � δ + r1

p1 + r1
in (4.3) for k = 2

� A
−r1
2 A

−r2
2 F3(p3,r3)A

−r2
2 A

−r1
2 by p3 � δ + r1 + r2

(p1 + r1)p2 + r2
in (4.3) for k = 3

...

� A
−(r1+r2+...+rn−1)

2 Fn(pn,rn)A
−(r1+r2+...+rn−1)

2 for pn � δ + r1 + r2 + ...+ rn−1

q[n−1]
in (4.3)

= A
−(r1+r2+...+rn−1)

2 (A
−rn
2 C

δ+r1+r2+...+rn
q[n]

[n] A
−rn
2 )A

−(r1+r2+...+rn−1)
2 by (4.2)

= A
−(r1+r2+...+rn)

2 C

δ+r1+r2+...+rn
q[n]

[n] A
−(r1+r2+...+rn)

2

and these inequalities yield the concrete inequalities in (5.1). �

COROLLARY 5.2.. Let A� B and r1,r2, ...,rn � 0 for a natural number n. Then
the following (i) and (ii) hold.

(i)

B � A
−r1
2 (A

r1
2 Bp1A

r1
2 )

1+r1
p1+r1 A

−r1
2

� A
−(r1+r2)

2
{
A

r2
2 (A

r1
2 Bp1A

r1
2 )p2A

r2
2
} 1+r1+r2

(p1+r1)p2+r2 A
−(r1+r2)

2

� A
−(r1+r2+r3)

2 {Ar3
2 [A

r2
2 (A

r1
2 Bp1A

r1
2 )p2A

r2
2 ]p3A

r3
2 }

1+r1+r2+r3
{(p1+r1)p2+r2}p3+r3 A

−(r1+r2+r3)
2

...

� A
−(r1+r2+...+rn)

2 CA,B[n]
1+r1+r2+...+rn

q[n] A
−(r1+r2+...+rn)

2 (5.2)

holds for p1, p2, ..., pn satisfying (3.7), that is,

p1 � 1, p2 � 1+r1

p1+r1
, p3 � 1+r1+r2

(p1+r1)p2+r2
, ..., pn � 1+r1+r2+...+rn−1

q[n−1]
,

(ii) (5.2) holds for p1, p2, ..., pn � 1, where CA,B[n] is defined in (2.1) and q[n] is
defined in (2.4).

Proof. (i) We have only to put δ = 1 in Theorem 5.1.

(ii) If p1, p2, ..., pn � 1, then wj = 1+r1+r2+...r j−1
q[ j−1] ∈ [0,1] in (i) holds for j such

that 2 � j � n . Assume p j � wj = 1+r1+r2+...r j−1
q[ j−1] ∈ [0,1] for j . In fact w2 = 1+r1

p1+r1
∈
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[0,1] by p1 � 1. Then we have

wj+1 =
1+ r1 + r2 + ...r j−1 + r j

q[ j]

=
1+ r1 + r2 + ...r j−1 + r j

q[ j−1]p j + r j
� 1

because the equality follows by (ii) of Lemma 2.1 and the inequality follows by the

assumption. Whence if p1, p2, ..., pn � 1, then wj = 1+r1+r2+...r j−1
q[ j−1] ∈ [0,1] in (i) holds

for j = 2...,n and (5.2) holds by (i). �

COROLLARY 5.3. Let A � B and r1,r2, ...,rn � 0 for a natural number n. Then

I � A
−r1
2 (A

r1
2 Bp1A

r1
2 )

r1
p1+r1 A

−r1
2

� A
−(r1+r2)

2
{
A

r2
2 (A

r1
2 Bp1A

r1
2 )p2A

r2
2
} r1+r2

(p1+r1)p2+r2 A
−(r1+r2)

2

� A
−(r1+r2+r3)

2 {Ar3
2 [A

r2
2 (A

r1
2 Bp1A

r1
2 )p2A

r2
2 ]p3A

r3
2 }

r1+r2+r3
{(p1+r1)p2+r2}p3+r3 A

−(r1+r2+r3)
2

...

� A
−(r1+r2+...+rn)

2 CA,B[n]
r1+r2+...+rn

q[n] A
−(r1+r2+...+rn)

2 (5.3)

holds for p1, p2, ..., pn satisfying (3.2), that is,

p1 � 0, p2 � r1

p1 + r1
, p3 � r1 + r2

(p1 + r1)p2 + r2
, ..., pn � r1 + r2 + ...+ rn−1

q[n−1]
.

Proof. We have only to put δ = 0 in Theorem 5.1. �

COROLLARY 5.4. Let A � B � 0 and r1,r2, ...,rn � 0 for a natural number n.
Then

A � B � A
−r1
2 (A

r1
2 Bp1A

r1
2 )

1+r1
p1+r1 A

−r1
2

� A
−(r1+r2)

2
{
A

r2
2 (A

r1
2 Bp1A

r1
2 )p2A

r2
2
} 1+r1+r2

(p1+r1)p2+r2 A
−(r1+r2)

2

� A
−(r1+r2+r3)

2 {Ar3
2 [A

r2
2 (A

r1
2 Bp1A

r1
2 )p2A

r2
2 ]p3A

r3
2 }

1+r1+r2+r3
{(p1+r1)p2+r2}p3+r3 A

−(r1+r2+r3)
2

...

� A
−(r1+r2+...+rn)

2 CA,B[n]
1+r1+r2+...+rn

q[n] A
−(r1+r2+...+rn)

2 (5.4)

holds for p1, p2, ..., pn satisfying (3.7), that is,

p1 � 1, p2 � 1+ r1

p1 + r1
, p3 � 1+ r1 + r2

(p1 + r1)p2 + r2
, ..., pn � 1+ r1 + r2 + ...+ rn−1

q[n−1]
,
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where CA,B[n] is defined in (2.1) and q[n] is defined in (2.4).

Proof. The hypothesis A � B � 0 implies A � B and the proof follows by (i) in
Corollary 5.2 and the hypothesis A � B � 0. �

REMARK 5.1. Corollary 5.2 is a further extension of [24], [17], [19], [33] and
Theorem FKN-2 in [9]. Corollary 5.3 is more precise estimation than Corollary 3.2.

We would like to emphasize that Corollary 5.4 is a further extension of Theorem
3.3 since (5.4) easily implies (3.6) in Theorem 3.3 and moreover the essential part of
(5.4) in Corollary 5.4 on the usual order (A � B � 0) is derived from Corollary 5.2 on
the chaotic order (A � B).

6. Further extensions of Theorem B and Theorem C

Further extensions of Theorem B and Theorem C are given by using the operator
function

Fn(pn,rn) = A
−rn
2 CA,B[n]

δ+r1+r2...+rn
q[n] A

−rn
2 in §4 .

THEOREM 6.1. Let A � B and r1,r2, ...,rn � 0 for a natural number n. For any
fixed δ � 0, let p1, p2, ..., pn be satisfied by

p j � δ + r1 + r2 + ...+ r j−1

q[ j−1]
for j = 1,2, ...,n, (4.1)

that is,

p1 � δ , p2 � δ+r1

p1+r1
, ..., pk � δ+r1+r2+...+rk−1

q[k−1]
, ..., pn � δ+r1+r2+...+rn−1

q[n−1]
.

Then

Fn(pn,rn) = A
−rn
2 CA,B[n]

δ+r1+r2+...+rn
q[n] A

−rn
2 (6.1)

is a decreasing function of both rn � 0 and pn which satisfies

pn � δ + r1 + r2 + ...+ rn−1

q[n−1]
. (6.2)

Proof. Since the condition (4.1) with δ � 0 suffices (3.2) in Theorem 3.1, in fact,
(3.2) is itself (4.1) without δ � 0, we have the following (3.1) by Theorem 3.1:

Ar1+r2...+rn = CA,A[n]
r1+r2...+rn

q[n] � CA,B[n]
r1+r2...+rn

q[n] . (3.1)

We state the following important inequality (6.3) for the forthcoming discussion
thanks to (6.2) which is the inequality in (4.1) for j = n :

q[n] = q[n−1]pn + rn � δ + r1 + r2 + ...+ rn−1 + rn (6.3)
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because the equality in (6.3) follows by (ii) of Lemma 2.1 and the inequality follows by
q[n−1]pn � δ + r1 + r2 + ...+ rn−1 obtained by (6.2).

For simplicity, let CA,B[n] be denoted by C[n] in the proof.
(a) Proof of the result that FA,B(pn,rn) is a decreasing function of pn.

Raise each side of (3.1) to the power
rn

r1 + r2...+ rn
∈ [0,1] by LH, then

Arn � C

rn
q[n]
[n] = (A

rn
2 C

pn
[n−1]A

rn
2 )

rn
q[n] by (i) of Lemma 2.1 (6.4)

= A
rn
2 C

pn
2

[n−1]

(
C

pn
2

[n−1]A
rnC

pn
2

[n−1]

) rn−q[n]
q[n]

C

pn
2

[n−1]A
rn
2 by Lemma D (6.5)

and (6.5) implies (
C

pn
2

[n−1]A
rnC

pn
2

[n−1]

) q[n]−rn
q[n] � C

pn
[n−1]. (6.6)

Put
α =

w
pn

∈ [0,1] for pn � w � 0. (6.7)

Let q[n|p1, p2, ..., pn +w|r1,r2, ...,rn] be denoted by q[p1, p2, ..., pn +w] for simplicity.
Then we have

q[p1, p2, ..., pn +w]− q[n]
= q[n|p1, p2, ..., pn +w|r1,r2, ...,rn]q[n|p1, p2, ..., pn|r1,r2, ...,rn]
= (q[n]− rn)α by (2.4) and (6.7). (6.8)

Raise each side of (6.6) to the power α =
w
pn

∈ [0,1] in (6.7), then

(
C

pn
2

[n−1]A
rnC

pn
2

[n−1]

) (q[n]−rn)α
q[n] � C

w
[n−1]. (6.9)

Whence we have

f (pn) = C

δ+r1+r2...+rn
q[n]

[n]

= (A
rn
2 C

pn
[n−1]A

rn
2 )

δ+r1+r2 ...+rn
q[p1,p2,...pn] by (i) of Lemma 2.1 (6.10)

=
{
(A

rn
2 C

pn
[n−1]A

rn
2 )

q[p1,p2,...,pn+w]
q[n]

} δ+r1+r2...+rn
q[p1,p2,...,pn+w]

=
{
A

rn
2 C

pn
2

[n−1]

(
C

pn
2

[n−1]A
rnC

pn
2

[n−1]

) q[p1,p2,...,pn+w]−q[n]
q[n] C

pn
2

[n−1]A
rn
2
} δ+r1+r2 ...+rn

q[p1,p2,...,pn+w]

by Lemma D

= {Arn
2 C

pn
2

[n−1]

(
C

pn
2

[n−1]A
rnC

pn
2

[n−1]

) (q(n)−rn)α
q[n] C

pn
2

[n−1]A
rn
2 }

δ+r1+r2...+rn
q[p1,p2,...,pn+w] by (6.8)

� {Arn
2 C

pn
2

[n−1]C
w
[n−1]C

pn
2

[n−1]A
rn
2 }

δ+r1+r2...+rn
q[p1,p2,...,pn+w]

=
(
A

rn
2 C

pn+w
[n−1] A

rn
2
) δ+r1+r2 ...+rn

q[p1,p2,...,pn+w]

= f (pn +w) by (6.10) (6.11)
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and the last inequality holds by LH because (6.9) and δ+r1+r2...+rn
q[p1,p2,...,pn+w] ∈ [0,1] , which is

ensured by (6.3) and q[p1, p2, ..., pn+w] � q[p1, p2, ..., pn] by (2.4), so that Fn(pn,rn)=
A

−rn
2 f (pn)A

−rn
2 is a decreasing function of pn by (6.11).

(b) Proof of the result that Fn(pn,rn) is a decreasing function of rn.

Raise each side of (6.4) to the power
u
rn

∈ [0,1] for rn � u � 0 by LH, then

Au � (A
rn
2 C

pn
[n−1]A

rn
2 )

u
q[n] . (6.12)

By (2.4) of the definition q[n] we have

q[n]+u = q[n|p1, p2, ..., pn|r1,r2, ...,rn]+u

= q[n|p1, p2, ..., pn|r1,r2, ...,rn +u] (denoted by q[r1,r2, ...,rn +u]).
(6.13)

We state the following (6.14) by (ii) of Lemma 2.1,

δ + r1 + r2 + ...+ rn−1 + rn− q[n] = δ + r1 + r2 + ...+ rn−1 + rn− (q[n−1]pn + rn)
= δ + r1 + r2 + ...+ rn−1− q[n−1]pn. (6.14)

Recall that the right hand side of (6.14) is the numerator of the exponential power
in the forthcoming (6.16) which does not contain the term “rn ”.

Then we have

(6.1)Fn(pn,rn) = A
−rn
2 C

δ+r1+r2...rn−1+rn
q[n]

[n] A
−rn
2

= A
−rn
2 (A

rn
2 C

pn
[n−1]A

rn
2 )

δ+r1+r2...rn−1+rn
q[n] A

−rn
2 by (i) of Lemma 2.1

= C

pn
2

[n−1](C
pn
2

[n−1]A
rnC

pn
2

[n−1])
δ+r1+r2...rn−1+rn−q[n]

q[n] C

pn
2

[n−1] by Lemma D

= C

pn
2

[n−1](C
pn
2

[n−1]A
rnC

pn
2

[n−1])
δ+r1+r2...+rn−1−q[n−1]pn

q[[r1 ,r2,...rn] C

pn
2

[n−1] by (6.14) (6.15)

= C

pn
2

[n−1]{(C
pn
2

[n−1]A
rnC

pn
2

[n−1])
q[n]+u
q[n] }

δ+r1+r2...+rn−1−q[n−1]pn
q[n]+u C

pn
2

[n−1]

= C

pn
2

[n−1]{(C
pn
2

[n−1]A
rnC

pn
2

[n−1])
q[n]+u
q[n] }

δ+r1+r2...+rn−1−q[n−1]pn
q[r1 ,r2,...,rn+u] C

pn
2

[n−1] by (6.13)

= C

pn
2

[n−1]

{
C

pn
2

[n−1]A
rn
2
(
A

rn
2 C

pn
[n−1]A

rn
2
) u

q[n] A
rn
2 C

pn
2

[n−1]

} δ+r1+r2...+rn−1−q[n−1]pn
q[r1 ,r2,...,rn+u] C

pn
2

[n−1]

by Lemma D

� C

pn
2

[n−1](C
pn
2

[n−1]A
rn
2 AuA

rn
2 C

pn
2

[n−1])
δ+r1+r2 ...+rn−1−q[n−1]pn

q[r1,r2 ,...,rn+u] C

pn
2

[n−1]

= C

pn
2

[n−1]

(
C

pn
2

[n−1]A
rn+u

C

pn
2

[n−1]

) δ+r1+r2...+rn−1−q[n−1]pn
q[r1,r2,...,rn+u] C

pn
2

[n−1] (6.16)

= Fn(pn,rn +u) by (6.15) (6.17)
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and the last inequality holds by LH because (6.12) and

δ + r1 + r2...+ rn−1− q[n−1]pn

q[r1,r2, ...,rn +u]
=

−{
q[n]− (δ + r1 + r2...+ rn)

}
q[n]+u

∈ [−1,0],

which is shown by (6.14), (6.13) and q[n] � δ + r1 + r2... + rn in (6.3), and taking
inverses of both sides, so that Fn(pn,rn) is a decreasing function of rn by (6.17). �

COROLLARY 6.2. Let A � B and r1,r2, ...,rn � 0 and also p1, p2, ..., pn � 1 for
a natural number n. Then

Fn(pn,rn) = A
−rn
2 CA,B[n]

1+r1+r2+...+rn
q[n] A

−rn
2 (6.1′)

is a decreasing function of both rn � 0 and pn � 1.

Proof. Put δ = 1 in Theorem 6.1. It is shown in the proof of (ii) in Corollary 5.2
that if p1, p2, ..., pn � 1, then each of the right hand in (4.1),

1+r1+r2+...+r j−1
q[ j−1] ∈ [0,1]

for j = 1,2, ...,n, and we have the conclusion by Theorem 6.1. �

REMARK 6.1. An alternative proof of Theorem 4.1 via Theorem 6.1.
Assume all the conditions in Theorem 4.1. Then

Fk(pk,rk) = A
−rk
2 C

δ+r1+r2+...+rk
q[k]

[k] A
−rk
2 (4.2)

= A
−rk
2 (A

rk
2 C

pk
[k−1]A

rk
2 )

δ+r1+r2+...+rk−1+rk
q[k−1]pk+rk A

−rk
2

by (i) and (ii) of Lemma 2.1 (6.18)

and by putting rk = 0 in (4.2) and (6.18) stated above, for every natural number k such
that 1 � k � n, we have

Fk(pk,0) = (Cpk
[k−1])

δ+r1+r2+...+rk−1
q[k−1]pk = C

δ+r1+r2+...+rk−1
q[k−1]

[k−1] (6.19)

and

Fk−1(pk−1,rk−1) = A
−rk−1

2 C

δ+r1+r2+...+rk−1
q[k−1]

[k−1] A
−rk−1

2 by (4.2) for k−1

= A
−rk−1

2 Fk(pk,0)A
−rk−1

2 by (6.19)

� A
−rk−1

2 Fk(pk,rk)A
−rk−1

2 (6.20)

and the last inequality follows by Fk(pk,0) � Fk(pk,rk) for pk � δ+r1+r2+...+rk−1
q[k−1] by

applying Theorem 6.1 for every k such that 1 � k � n and we have (4.3) in Theorem
4.1 by (6.20). �

REMARK 6.2. Theorem 6.1 is a further extensions of (ii) in Theorem C. In fact,
(ii) of Theorem C is just Theorem 6.1 in the case n = 1. Moreover Theorem 6.1 is a
further extension of Theorem B since the hypothesis A � B in Theorem 6.1 is weaker
than the hypothesis A � B � 0 in Theorem B.
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7. Concluding remarks

Let us state the background of this paper. At first we state the following operator
inequality (G).

If A � B � 0 with A > 0 , then for t ∈ [0,1] and p � 1

A1+r−t � {A r
2 (A

−t
2 BpA

−t
2 )sA

r
2 } 1+r−t

(p−t)s+r (G)

holds for s � 1 and r � t.
This operator inequality (G) is shown in [13], [5] and [14], and the best possibility

of the exponential power 1+r−t
(p−t)s+r is shown in [30], [32], [7] and see related papers

(e,g., [16], [19], [20], [25]).
This inequality (G) interpolates Theorem A and an inequality equivalent to the

main result of log majorization by Ando-Hiai [2].

If we replace the hypothesis A � B � 0 with A > 0 in (G) by weaker condition
A � B, what can we obtain the corresponding result to (G)? (♦ )

Motivated by (♦ ) and LH, we posed the following question in [15].

F-QUESTION. For A,B > 0 , A � B if and only if

Ar−t � {A r
2 (A

−t
2 BpA

−t
2 )sA

r
2 } r−t

(p−t)s+r (Q)

holds for all p � 1,s � 1 , t ∈ [0,1] and r � t?

By a nicely applying Kantorovich type operator inequality, Fujii et al. [8] obtained
the following interesting result as an answer to F-Question.

THEOREM FKN-1. [8] For A,B > 0 , A � B if and only if

Ar−t � {A r
2 (A

−t
2 BpA

−t
2 )sA

r
2 } r−t

(p−t)s+r

holds for all p � 1,s � 1 , t ∈ [0,1] and r � t.

Fujii et al. [9] have been considering to discuss on the operator inequality (Q)
under the chaotic order. Among others, they obtained the following result by using a
mean theoretic idea in [26].

THEOREM FKN-2. [9] If A � B for A,B > 0 , then

At−r� 1+r−t
(p−t)s+r

(At�sB
p) � At� 1−t

p−t
Bp � B

holds for p � 1 , s � 1 , r � 0 and t < 0.

Inspired by Theorem FKN-2, we obtain the following results.
Let A � B and r1,r2, ...,rn � 0 and any fixed δ � 0 , let

p1 � δ , p2 � δ+r1

p1+r1
, ..., pk � δ+r1+r2+...+rk−1

q[k−1]
, ..., pn � δ+r1+r2+...+rn−1

q[n−1]
.
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Let Fn(pn,rn) be defined by

Fn(pn,rn) = A
−rn
2 CA,B[n]

δ+r1+r2+...+rn
q[n] A

−rn
2 .

Then the following inequalities (i), (ii) and (iii) hold:

(i) A
pk−1

2 Fk−1(pk−1,rk−1)A
pk−1

2 � Fk(pk,rk) for k such that 1 � k � n,
(ii)

Bδ � A
−r1
2 (A

r1
2 Bp1A

r1
2 )

δ+r1
p1+r1 A

−r1
2

� A
−(r1+r2)

2
{
A

r2
2 (A

r1
2 Bp1A

r1
2 )p2A

r2
2
} δ+r1+r2

(p1+r1)p2+r2 A
−(r1+r2)

2

� A
−(r1+r2+r3)

2 {Ar3
2 [A

r2
2 (A

r1
2 Bp1A

r1
2 )p2A

r2
2 ]p3A

r3
2 }

δ+r1+r2+r3
{(p1+r1)p2+r2}p3+r3 A

−(r1+r2+r3)
2

...

� A
−(r1+r2+...+rn)

2 CA,B[n]
δ+r1+r2+...+rn

q[n] A
−(r1+r2+...+rn)

2 ,

(iii) Fn(pn,rn) is a decreasing function of both rn � 0 and pn � δ+r1+r2+...+rn−1
q[n−1] ,

where CA,B[n]] and q[n] are defined as follows:

CA,B[n] = A
rn
2

{
A

rn−1
2 [...A

r3
2 {Ar2

2 (A
r1
2 Ap1A

r1
2 )p2A

r2
2 }p3A

r3
2 ...]pn−1A

rn−1
2

}pn
A

rn
2

and
q[n] = [...{(p1 + r1)p2 + r2}p3 + ...rn−1]pn + rn.

In fact, (ii) can be considered as satellite inequalities to the chaotic order and a
further extension of Theorem FKN-2.
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