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Abstract. For p∈R , let Mp(a,b) denote the usual power mean of order p of positive real num-
bers a and b , and let A = M1 , G = M0 and H = M−1 . We prove that the inequalities M0(a,b) �
1
3 [A(a,b)+G(a,b)+H(a,b)] � M ln2

ln6
(a,b) and M− 1

6
(a,b) � 1

2 [He(a,b)+H(a,b)] � M ln2
ln6

(a,b)
hold for all positive real numbers a and b , with strict inequality for a �= b , and that the orders
of power means involved are optimal.

1. Introduction

Let a and b be positive real numbers. For p ∈ R , the power mean of order p of
numbers a and b is defined by

Mp(a,b) =

⎧⎪⎪⎨
⎪⎪⎩

(
ap +bp

2

) 1
p

, p �= 0,

√
ab, p = 0.

In particular, for p = 1, p = 0, and p = −1 we respectively get the arithmetic, the
geometric and the harmonic mean of a and b ,

A(a,b) = M1(a,b) =
a+b

2
, G(a,b) = M0(a,b) = lim

p→0
Mp(a,b) =

√
ab

and

H(a,b) = M−1(a,b) =
2ab
a+b

.

We also consider the Heronian mean of a and b , defined as

He(a,b) =
1
3
(a+

√
ab+b) =

2
3
A(a,b)+

1
3
G(a,b).

It is obvious that Mp(a,a) = He(a,a) = a , for all p ∈ R and a ∈ R
+ , and it is

well-known that the function p �→ Mp(a,b) is strictly increasing on R for any fixed

Mathematics subject classification (2010): 26E60, 26D15.
Keywords and phrases: Arithmetic mean, geometric mean, harmonic mean, power mean, Heronian

mean, sharp inequality.

c© � � , Zagreb
Paper JMI-06-03

33



34 ALEKSANDRA ČIŽMEŠIJA

a,b ∈ R
+ , a �= b . Moreover, min{a,b} � Mp(a,b) � max{a,b} holds for all p ∈ R

and a,b ∈ R
+ , with equality only if a = b . Furthermore, in [1], Alzer and Janous

proved that
M ln2

ln3
(a,b) � He(a,b) � M 2

3
(a,b), a,b ∈ R

+, (1.1)

Neuman and Sándor [6] obtained the double inequality

He(a,b) � M 2
3
(a,b) � 3

2
√

2
He(a,b), a,b ∈ R

+, (1.2)

while the inequalities

M− 1
3
(a,b) � 2

3
G(a,b)+

1
3
H(a,b) � M0(a,b), a,b ∈ R

+, (1.3)

and

M− 2
3
(a,b) � 1

3
G(a,b)+

2
3
H(a,b) � M0(a,b), a,b ∈ R

+, (1.4)

are due to Chu and Xia [3]. All inequalities (1.1) – (1.4) are sharp, that is, with equality
only for a = b , and the orders of power means appearing on their respective left-hand
and right-hand sides are the best (greatest or least) possible.

In this paper, we obtain the optimal lower and upper bounds for the bivariate means
1
3 [A(a,b) + G(a,b) + H(a,b)] and 1

2 [He(a,b) + H(a,b)] in terms of a power mean.
More precisely, we find the greatest real values of indices q and s and the least real
values of indices p and r , such that the inequalities

Mq(a,b) � 1
3
[A(a,b)+G(a,b)+H(a,b)] � Mp(a,b) (1.5)

and

Ms(a,b) � 1
2
[He(a,b)+H(a,b)] � Mr(a,b) (1.6)

hold for all positive real numbers a and b .

2. Arithmetic mean of A(a,b) , G(a,b) , and H(a,b)

We start with the optimal lower and upper bound for the convex combination
1
3 [A(a,b)+ G(a,b)+ H(a,b)] , that is, we find the greatest value q ∈ R and the least
value p ∈ R , such that the double inequality (1.5) holds for all positive real numbers a
and b .

In order to get this result, we make use of the following technical lemma.

LEMMA 2.1. Let p = ln2
ln6 and the function g : R

+ → R be defined by

g(x) =
x5 + x4 +2x3 +2x2 +5x+1
x5 +5x4 +2x3 +2x2 + x+1

− x2p−1. (2.1)

Then there exists a unique x0 ∈ (0,1) , such that g(x0) = 0 , g(x) < 0 for x ∈ (0,x0) ,
and g(x) > 0 for x ∈ (x0,1) .
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Proof. First, notice that both expressions g1(x) = x5 + x4 + 2x3 + 2x2 + 5x + 1
and g2(x) = x5 + 5x4 + 2x3 + 2x2 + x + 1 take positive values for x ∈ R

+ , so we can
define the function h : R

+ → R , h(x) = ln(g1(x))− ln(g2(x))− (2p− 1) lnx . Then

h′(x) = k(x)
x·g1(x)·g2(x)

, where k is a polynomial with real coefficients, given by

k(x) = (1−2p)x10 +2(5−6p)x9 +9(1−2p)x8 +8(1−4p)x7

−2(22p+5)x6−36(2p+1)x5−2(22p+5)x4 +8(1−4p)x3

+9(1−2p)x2 +2(5−6p)x+1−2p.

For p = ln2
ln6 , we respectively have 1− 2p ≈ 0.23, 2(5− 6p) ≈ 5.36, 9(1− 2p) ≈

2.04, 8(1− 4p) ≈ −4.38, −2(22p+ 5) ≈ −27.02, and −36(2p+ 1) ≈ −63.85, so
the number of sign changes between consecutive coefficients of k is 2. According to
Descartes’ rule of signs, the polynomial k has two or zero positive roots. Since k(0) =
1−2p ≈ 0.23 > 0, k(1) = −288p≈ −111.41 < 0, and k(3) = 315904−596576p≈
85116.9 > 0, we conclude that k has exactly two positive roots, one less than 1 and
the other greater than 1. Moreover, if x1 ∈ (0,1) is such that k(x1) = 0, then k(x) > 0
for x ∈ (0,x1) , k(x) < 0 for x ∈ (x1,1) , and, consequently, h′(x) > 0 for x ∈ (0,x1) ,
h′(x1) = 0, and h′(x) < 0 for x∈ (x1,1) . Hence, the function h is strictly increasing on
(0,x1] , strictly decreasing on [x1,1) , and maxx∈(0,1) h(x) = h(x1) . This, together with
limx→0+ h(x) =−∞ and h(1) = 0, implies that h(x1) > 0 and that there exists a unique
x0 ∈ (0,x1) , such that h(x0) = 0, h(x) < 0 for x∈ (0,x0) , and h(x) > 0 for x ∈ (x0,1) .
The lemma follows from the monotonicity of the exponential function t �→ et . �

Now, we are ready to state and prove the main result in this section.

THEOREM 2.1. Inequality

M0(a,b) � 1
3
[A(a,b)+G(a,b)+H(a,b)] � M ln2

ln6
(a,b) (2.2)

holds for all a,b ∈ R
+ , with strict inequality for a �= b. The constants 0 and ln2

ln6 are
the best possible.

Proof. Denote x =
√ a

b . Then

1
3
[A(a,b)+G(a,b)+H(a,b)]−M0(a,b) =

1
3
[A(a,b)−2G(a,b)+H(a,b)]

= b

[
x2 +1

6
− 2x

3
+

2x2

3(x2 +1)

]
=

b(x−1)4

6(x2 +1)
� 0, (2.3)

so the first inequality in (2.2) is proved. Obviously, equality in (2.3) holds only for
x = 1, that is, for a = b . In that case A(a,a) = G(a,a) = H(a,a) = a .

Next, we prove that the parameter q = 0 is the best possible, that is, that it cannot
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be replaced with any larger parameter. For arbitrary ε > 0 and 0 < |t| < 1 we have

[
Mε((1+ t)2,1)

]ε −
[
1
3
A((1+ t)2,1)+

1
3
G((1+ t)2,1)+

1
3
H((1+ t)2,1)

]ε

=
(1+ t)2ε +1

2
−

⎛
⎜⎜⎝

1+2t +
3t2

2
+

t3

2
+

t4

12

1+ t +
t2

2

⎞
⎟⎟⎠

ε

=
hε(t)

2

(
1+ t +

t2

2

)ε ,

(2.4)

where

hε(t) =
(

1+ t +
t2

2

)ε [
1+(1+ t)2ε]−2

(
1+2t +

3t2

2
+

t3

2
+

t4

12

)ε

.

If t → 0, by writing the binomial series we obtain

hε(t) =
[
1+ εt +

ε2

2
t2 +o(t2)

]
· [2+2εt + ε(2ε −1)t2 +o(t2)

]

−2

[
1+2εt +

ε(16ε −5)
2

t2 +o(t2)
]

= ε(4−11ε)t2 +o(t2). (2.5)

Therefore, (2.4) and (2.5) yield that for any ε ∈ (
0, 4

11

)
there exists δ (ε) ∈ (0,1) such

that

Mε((1+ t)2,1) >
1
3

[
A((1+ t)2,1)+G((1+ t)2,1)+H((1+ t)2,1)

]
for t ∈ (0,δ (ε)) . Thus, the parameter q = 0 cannot be enlarged so that the first in-
equality in (1.5) still holds.

Now, we prove the second inequality in (2.2). For any p ∈ R , p �= 0, we have

1
3
[A(a,b)+G(a,b)+H(a,b)]−Mp(a,b)

= b

[
x2 +1

6
+

x
3

+
2x2

3(x2 +1)

]
−b

(
x2p +1

2

) 1
p

= b

⎡
⎣x4 +2x3 +6x2 +2x+1

6(x2 +1)
−

(
x2p +1

2

) 1
p

⎤
⎦ . (2.6)

Let p = ln2
ln6 . To get the desired result, we need to prove that the function from the last

line of (2.6) takes only negative values on R
+ . Since all bivariate power means are

symmetric, without loss of generality we can assume that a � b , that is, that x ∈ (0,1] .
For x ∈ [0,∞) , define

f (x) = ln(x4 +2x3 +6x2 +2x+1)− ln(x2 +1)− 1
p

ln(x2p +1)+
1
p

ln2− ln6.
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Then f ′(x) = g(x) · l(x) , where the function g is given by (2.1) and

l(x) =
2(x5 +5x4 +2x3 +2x2 + x+1)

(x4 +2x3 +6x2 +2x+1)(x2 +1)(x2p +1)
> 0, x ∈ R

+.

Lemma 2.1 implies that there exists a unique x0 ∈ (0,1) , such that f ′(x0) = 0, f ′(x) <
0 for x ∈ (0,x0) , and f ′(x) > 0 for x ∈ (x0,1) . Hence, the function f is strictly
decreasing on (0,x0] and strictly increasing on [x0,1) , so from f (0) = f (1) = 0 we
obtain that f (x) < 0 for x∈ (0,1) . Finally, the monotonicity of the exponential function
t �→ et gives that (2.6) is less than or equal to 0 for all a,b∈ R

+ , with equality only for
x = 1, that is, for a = b . In that case, both-hand sides of the second inequality in (2.2)
are equal to a .

Finally, notice that p = ln2
ln6 ≈ 0.39 > 0 and

lim
t→0+

{
1
3
[A(t2,1)+G(t2,1)+H(t2,1)]−Mp(t2,1)

}
= 0,

while for any ε ∈ (0, p) we have

lim
t→0+

{
1
3
[A(t2,1)+G(t2,1)+H(t2,1)]−Mp−ε(t2,1)

}

= lim
t→0+

[
t4 +2t3 +6t2 +2t +1

6(t2 +1)
−2

1
ε−p

(
t2(p−ε) +1

) 1
p−ε

]

=
1
6
−2

1
ε−p > 0.

Therefore, the parameter ln2
ln6 cannot be diminished, that is, it is optimal for the second

inequality in (1.5). �

3. Arithmetic mean of He(a,b) and H(a,b)

Now, we derive the best possible lower and upper bound for the arithmetic mean
of the Heronian mean and the harmonic mean of two positive real numbers in terms of
a power mean, that is, we obtain the greatest value s ∈ R and the least value r ∈ R ,
such that the double inequality (1.6) holds for all positive real numbers a and b .

Similarly to the previous section, the following lemma provides an important ar-
gument for the proof of our result.

LEMMA 3.1. Let r = ln2
ln6 and the function g : R

+ → R be defined by

g(x) =
2x5 + x4 +4x3 +2x2 +14x+1
x5 +14x4 +2x3 +4x2 + x+2

− x2r−1. (3.1)

Then there exists a unique x∗ ∈ (0,1) , such that g(x∗) = 0 , g(x) < 0 for x ∈ (0,x∗) ,
and g(x) > 0 for x ∈ (x∗,1) .
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Proof. Observe that g1(x) = 2x5 + x4 + 4x3 + 2x2 + 14x + 1 > 0 and g2(x) =
x5 + 14x4 + 2x3 + 4x2 + x + 2 > 0 for x ∈ R

+ , so the function h : R
+ → R , h(x) =

ln(g1(x))− ln(g2(x))− (2r− 1) lnx is well-defined. Calculating its derivative, we get

h′(x) = 2k(x)
x·g1(x)·g2(x)

, where k is a polynomial with real coefficients, given by

k(x) = (1−2r)x10 +(28−29r)x9 +11(1−2r)x8 +4(4−17r)x7

−4(14r+5)x6−6(37r+28)x5−4(14r+5)x4 +4(4−17r)x3

+11(1−2r)x2 +(28−29r)x+1−2r.

For r = ln2
ln6 , we respectively have 1−2r≈ 0.23, 28−29r≈ 16.78, 11(1−2r)≈ 2.49,

4(4−17r)≈−10.31, −4(14r+5)≈−41.66, and −6(37r+28)≈−253.88, so there
are two sign changes between consecutive coefficients of k . Therefore, Descartes’ rule
of signs gives that the polynomial k has two or zero positive roots. Since k(0) = 1−
2r ≈ 0.23 > 0, k(1) =−576r−96≈−318.83< 0, and k(3) = 660928−1083392r≈
241814.8 > 0, we see that the number of positive roots of k is exactly 2 and that one
them is less than 1 while the other one is greater than 1. Moreover, if x̃∈ (0,1) is a pos-
itive root of k , then k(x) > 0 for x ∈ (0, x̃) , k(x) < 0 for x ∈ (x̃,1) , and, consequently,
h′(x) > 0 for x ∈ (0, x̃) , h′(x̃) = 0, and h′(x) < 0 for x ∈ (x̃,1) . Thus, the function h
is strictly increasing on (0, x̃] , strictly decreasing on [x̃,1) , and maxx∈(0,1) h(x) = h(x̃) .
Considering that limx→0+ h(x) =−∞ and h(1) = 0, we conclude that h(x̃) > 0 and that
there is a unique x∗ ∈ (0, x̃) , such that h(x∗) = 0, h(x) < 0 for x∈ (0,x∗) , and h(x) > 0
for x ∈ (x∗,1) . The proof is completed by taking into account the monotonicity of the
exponential function t �→ et . �

The result announced above is given in the following theorem.

THEOREM 3.1. Inequality

M− 1
6
(a,b) � 1

2
[He(a,b)+H(a,b)] � M ln2

ln6
(a,b) (3.2)

holds for all a,b ∈ R
+ , with strict inequality for a �= b. The constants 0 and ln2

ln6 are
the best possible.

Proof. First, observe that 1
2 [He(a,b)+H(a,b)]= 1

3A(a,b)+ 1
6G(a,b)+ 1

2H(a,b) ,
for all a,b ∈ R

+ . If y = 6
√ a

b , we have

1
2
[He(a,b)+H(a,b)]−M− 1

6
(a,b)

=
b
6

[
(y6 +1)+ y3 +

6y6

y6 +1
− 384y6

(y+1)6

]
=

b(y−1)4

6(y6 +1)(y+1)6

(
y14 +10y13

+ 49y12 +161y11 +410y10 +881y9 +1304y8 +1472y7 +1304y6 +881y5

+ 410y4 +161y3 +49y2 +10y+1
)
� 0
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for all y ∈ R
+ , with equality if and only if y = 1, that is, a = b , so the first inequality

in (3.2) is proved. In the case a = b , both-hand sides of the first inequality in (3.2) are
equal to a .

To prove that the parameter s = − 1
6 is optimal, take arbitrary ε ∈ (

0, 1
6

)
and

0 < |t| < 1. Then

[
M− 1

6 +ε((1+ t)2,1)
] 1

6−ε −
[
1
2
He((1+ t)2,1)+

1
2
H((1+ t)2,1)

] 1
6−ε

=
2(1+ t)

1
3−2ε

1+(1+ t)
1
3−2ε

−

⎛
⎜⎜⎝

1+2t +
17t2

12
+

t3

2
+

t4

12

1+ t +
t2

2

⎞
⎟⎟⎠

1
6−ε

=
hε(t)(

1+ t +
t2

2

) 1
6−ε [

1+(1+ t)
1
3−2ε

] , (3.3)

where

hε(t) = 2(1+ t)
1
3−2ε

(
1+ t +

t2

2

) 1
6−ε

−
[
1+(1+ t)

1
3−2ε

](
1+2t +

17t2

12
+

t3

2
+

t4

12

) 1
6−ε

.

By writing the binomial series, for t → 0, we get

hε(t) = 2

[
1+

1−6ε
3

t +
(6ε −1)(3ε +1)

9
t2 +o(t2)

]

×
[
1+

1−6ε
6

t +
(1−6ε)2

72
t2 +o(t2)

]

−2

[
1+

1−6ε
6

t +
(6ε −1)(3ε +1)

18
t2 +o(t2)

]

×
[
1+

1−6ε
3

t +
(6ε −1)(8ε +1)

24
t2 +o(t2)

]
=

(1−6ε)ε
6

t2 +o(t2),

(3.4)

so (3.3) and (3.4) imply that for any ε ∈ (
0, 1

6

)
there exists δ (ε) ∈ (0,1) such that

M− 1
6+ε((1+ t)2,1) >

1
2

[
He((1+ t)2,1)+H((1+ t)2,1)

]

for t ∈ (0,δ (ε)) . This means that the parameter s = − 1
6 cannot be enlarged so that the

first inequality in (1.6) still holds.

It is left to prove the second inequality in (3.2). Let x =
√ a

b . Then for any r ∈ R ,
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r �= 0, we have

1
2
[He(a,b)+H(a,b)]−Mr(a,b)

= b

[
x2 +1

6
+

x
6

+
x2

x2 +1

]
−b

(
x2r +1

2

) 1
r

= b

⎡
⎣x4 + x3 +8x2 + x+1

6(x2 +1)
−

(
x2r +1

2

) 1
r

⎤
⎦ . (3.5)

We need to prove that the last line of (3.5) is negative on R
+ for r = ln2

ln6 . Without loss
of generality, assume that a � b , that is, x ∈ (0,1] , and define

f (x) = ln(x4 + x3 +8x2 + x+1)− ln(x2 +1)− 1
r

ln(x2r +1)+
1
r

ln2− ln6.

Then f ′(x) = g(x) · l(x) , where the function g is given by (3.1) and

l(x) =
x5 +14x4 +2x3 +4x2 + x+2

(x4 + x3 +8x2 + x+1)(x2 +1)(x2r +1)
> 0, x ∈ R

+.

According to Lemma 3.1, there exists a unique x∗ ∈ (0,1) , such that f ′(x∗) = 0,
f ′(x) < 0 for x ∈ (0,x∗) , and f ′(x) > 0 for x ∈ (x∗,1) . Therefore, the function f
is strictly decreasing on (0,x∗] and strictly increasing on [x∗,1) , so f (0) = f (1) = 0
provides that f (x) < 0 for x ∈ (0,1) . The monotonicity of the exponential function
t �→ et implies that (3.5) is less than or equal to 0 for all a,b ∈ R

+ , with equality only
for x = 1, that is, for a = b . In that case, both-hand sides of the second inequality in
(3.2) are equal to a .

Finally, since for r = ln2
ln6 and any ε ∈ (0, p) we have

lim
t→0+

{
1
2
[He(t2,1)+H(t2,1)]−Mr(t2,1)

}
= 0

and

lim
t→0+

{
1
2
[He(t2,1)+H(t2,1)]−Mr−ε(t2,1)

}

= lim
t→0+

[
t4 + t3 +8t2 + t +1

6(t2 +1)
−2

1
ε−r

(
t2(r−ε) +1

) 1
r−ε

]

=
1
6
−2

1
ε−r > 0,

the parameter ln2
ln6 is the best possible for the second inequality in (1.6). �
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[5] D. S. MITRINOVIĆ, J. E. PEČARIĆ, AND A. M. FINK, Classical and new inequalities in analysis,

Kluwer Academic Publishers Group, Dordrecht, 1993.
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