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LOG-CONVEXITY AND CAUCHY MEANS
RELATED TO BERWALD’S INEQUALITY

NAVEED LATIF, JOSIP PECARIC AND IVAN PERIC

(Communicated by A. C‘iimeiija)

Abstract. In this paper, we investigate the famous Berwald’s inequality. More precisely, we
study the Berwald’s difference in non-weighted and weighted case. We prove an interesting
property of log-convexity of this difference which allows us to deduce Lyapunov’s type inequal-
ity for these differences. Cauchy type means in this setting are also studied.

1. Introduction and preliminaries

Let Q be a set equipped with a normalized measure p. Then for a strictly mono-
tonic continuous function g, the quasi-arithmetic mean M, (f, ) is defined as follows:

Mo (fp) =g ( [ ) du(u)) | W

From (1) we can deduce integral power means. Indeed, for » € R, the integral power
mean is defined as follows:

M, (f,u) = (Jo /" (w)dp(u))" . :igj @

If r < s, then the well-known inequality for means

Mr(fnu) gMS(f7u)’ (3)

is valid (see [2]). The well-known Berwald’s inequality states:

THEOREM 1.1. Let f be a non-negative concave function on [a,b] C R. If s >

q >0, we have
1 1
1 b q 1 b 5
(Zfa/ fq(X)dX) > (Zfa/ fS(X)dX> : 4)
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Note that (4) can be considered as a reverse of (3). Theorem 1.1 can be obtained
from the following result, also obtained by Berwald (cf. [5, p. 214]).

THEOREM 1.2. Let f be a non-negative continuous concave function, not identi-
cally zero on |a,b], and y be a continuous strictly monotonic function on [0,yo], where
yo is sufficiently large. If 7 is the unique positive root of the equation

1 [z 1 b

> [ voay = 5= [ v ax )
then for every function ¢ : [0,yo] — R which is convex with respect to Wy, we have

1 [z 1 b

= [ oy = o— [T o) ax ©

ZJo —aJa

In [1], Matloob Anwar and J. Pecari¢ defined new Cauchy’s means as follows:

l(l—S) M;(fnu) B Msr(fnu)
r(r—s) Mll (f7”) _ME (fnu)

L (fo) = ( ) A rEslrA0 (D)

In the remaining cases, M, is defined by the limit procedure. They proved thatif r <v,
r < u, then '

M;, (fop) < My, (f 1) (8)

In this paper, we define Cauchy’s means motivated by Berwald’s inequality (4)
and we prove results related to (8). We need the following definitions and lemmas from
log-convexity theory (cf. [3]).

DEFINITION 1.3. Itis said that a positive function f is log-convex in the Jensen
sense on some interval / C R if

16050 = £2(5°)

holds for every s,r € 1.

LEMMA 1.4. A positive function f'is log-convex in the Jensen sense on an interval
I C R if and only if the relation

W2 f(s) + 2uw f (%) F w2 f(t) = 0 )

holds for each real u,w and s,t € I.

The following lemma gives a useful characterization of convex functions (cf. [5,
p-2D.



LOG-CONVEXITY AND CAUCHY MEANS RELATED TO BERWALD’S INEQUALITY 45

LEMMA 1.5. A function ¢ is convex on an interval 1 C R if and only if
¢(s1) (53 — 2) + 0(s2) (51 —83) + 9(s3) (2 —51) 2 0 (10)
holds for every s; < sy < 3, §1,82,53 € 1.

Throughout the paper we will frequently use the following family of functions,
convex with respect to W (x) =x7 (g > 0) on (0,00):

2
S(ffq) X, s#0,q,
@s(x) == { —qlogx, s=0, (1)
gx?logx, s =gq.
2. Berwald’s inequality and Berwald’s differences

THEOREM 2.1. Let f be a positive continuous concave function on [a,b], ¢ >0
and

s(fz [(q+1f Fi(x)d )5_s+1f Fd ] 50,4
e s (g e me
(qﬂ OALE )dx) log(qJrl 12 fax)d )

—ﬁf:fq(x)dx— % f:fq(x) log f(x)dx, s=gq.

Then Ys(f) is log-convex for s = 0 and the following inequality holds for 0 < r < s <
t <oo:

Y <O (13)
Proof. Let us consider the function defined by

0(x) = 1 @s(x) + 2uw r(x) +w? @ (x),

where r = 3L, @, is defined by (11) and u,w € R.
Now, we shall show that ¢ (x) is convex with respect to y(x) =x? (g >0).
Set

1 1 1 1
F(x) = 0(x9) = u? @s(x7) + 2uw @ (x7) + w? @ (x7).
We have
" ) Ly S L_1)\2
F'(x) =u"x1 "+ 2uwxi " 4 whxi 2 = (uxzfi + wx% ) >0, x>0.

Therefore, ¢(x) is convex with respect to y(x) = x4 (¢ > 0) for x > 0. Applying

Theorem 1.2, we get
1 /Z 1 b
= [Comay = = [To (st ax
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where,

_ +1

Z= (q / f(x)dx
‘We have

/0Z [“2 Ps(y) + 2uw O (y) + W’ (Pt()’)] dy

Ny =

b
7 | [P0 (1) + 2000, (1) + w2 1 (/)] dx > 0,

2 [% /oz%(y)_dy_ bia /b‘Ps (f(x))dx}
+2uw E/Ozwr(y y——/ o (f ]
2L [oma- [ <pt<f<x>>dx} >0

z b
=3 [oawar-— [auw)ar

W Y(f) 4 2uw Y (f) + w? X, (f) > 0.

By Lemma 1.4, we have that Y(f) is log-convex in the Jensen sense for s > 0.
Note that Y(f) is continuous for s > 0 since

or equivalently

Since

we have

limY,(f) = Yo(f) and imY,(f) = Y, (f),

s—0 s—q

and therefore it is log-convex. Since Ys(f) is log-convex,i.e., s+— log Y's(f) is convex,
by Lemma 1.5 for 0 <r <s <t < oo, we get

logYi™"(f) < logY;*(f) +log Y7 ™" (f),

which is equivalent to (13). O

THEOREM 2.2. Let f and Y(f) be defined as in Theorem 2.1 and t,s,u,v >0
such that s < u,t <v,s #t,u#v. Then

C R
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Proof. For a convex function ¢, it holds (cf. [5, p. 2])

ex) — o) _ @02) — @(On)
X2 — X1 h y2=2

15)

where x1 < y1, X2 < y2,X] # X2, ¥1 # ¥2. Since by Theorem 2.1, Y(f) is log-convex,
we can set in (15): @(x) = logY,(f),x1 =s, Xy =1, y1 =u, y» = v to obtain

log;(f) —logYs(f) _ log1"(f) —logYu(f)
t—s = V—u

b

where from (14) trivially follows. [

REMARK 2.3. If we substitute ¢ = 1 in (12), we get

i (s r@ax) = 2L 2 piax], s 20,1,
1+ ;= fablogf(x)dx - log(ﬁ fff(x)dx> ,s=0,
(7 J2 £ o)) tog (25 2 f(x) d)

— 5 [P f()dx — 52 [P f(x) log f(x)dx, s=1,

which is the same as Ay(f) defined in [3] for Favard’s inequality.

3. Weighted Berwald’s Inequality

The weighted version of Berwald’s inequality was obtained by L. Maligranda, J.
E. Pecarié, L. E. Persson (cf. [4]).

THEOREM 3.1. Let ¢ be a convex function with respect to the strictly increasing
function y on [0,%), i.e., let 9oy~ be convex.

1. If f is a positive increasing concave function on [a,b] and if Z; is a positive root
of the equation

L Z’w<y>w<a+b;“y>dy= L [vg@) e, an

Zi Jo b—a

then
1

b—a

b 1
/Clw(f(t))w(t)dts/o ¢ (s7;) wla(1 —s) + bs] ds. (18)

If f is an increasing convex function on |a,b] with f(a) =0, then the reverse
inequality in (18) holds.
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2. If f is a positive decreasing concave function on |a,b] and if 74 is a positive root
of the equation

1 [ b 1
R G g RGO

then

b_a/ub(p(f(t))w(t)dt g/ol(p(szd)w[as—i-b(l—s)]ds. (20)

If f is a decreasing convex function on [a,b] with f(b) =0, then the reverse
inequality in (20) holds.

THEOREM 3.2.

1. Let f be a positive increasing concave function on |a,b|, Z; is a positive root of
the equation (17) for y(x) = x4 (g > 0) and

/(P\ 1Zi) l—r)+br]dr— /(pS ) wt)dr. (21)

Then Ty(f) is log-convex for s > 0 and the following inequality holds for 0 <
r<s<t<oo:

b—a

() <O

2. Let f be an increasing convex function on [a,b], f(a) =0, Ty(f) :
where Ts(f) is defined as in (21). Then Ty(f) is log-convex for s
following inequality holds for 0 <r <s <t <oo:

L) <TOT ()

—Ts(/),

> 0 and the

Proof. Analogous to the proof of Theorem 2.1, only we use Theorem 3.1(1) in-
stead of Theorem 1.2. [J

THEOREM 3.3.

1. Let f and T4(f) be defined as in Theorem 3.2(1) and t,s,u,v > 0 be such that
s<u, t<v,s#t, u#v. Then

1 1
(L0Y™ ¢ (B0 )
Is(f) Lu(f)
2. Let f and Ts(f) be defined as in Theorem 3.2(2) and t,s,u,v > 0 be such that
s<u, t<v,s#t, u#v. Then

()" <(263)™ @
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Proof. Analogous to the proof of Theorem 2.2. [

THEOREM 3.4.

1. Let f be a positive decreasing concave function on [a,b], Z4 is a positive root of
the equation (19) for y(x) = x4 (g > 0) and

1
b—a

@) = [ otz wlar st —njar— 1 [g (@) wiar. 24

Then @4(f) is log-convex for s > 0 and the following inequality holds for 0 <
r<s<t<oo:

D(f) < D) @)

2. Let f be a decreasing convex function on [a,b], f(b) =0, @(f) = —Dy(f),
where ®(f) is defined as in (24). Then ®y(f) is log-convex for s > 0 and the
following inequality holds for 0 <r <s <t < eoo:

@ (f) <D () D (f)

Proof. Analogous to the proof of Theorem 2.1, only we use Theorem 3.1(2) in-
stead of Theorem 1.2. [J

THEOREM 3.5.

1. Let f and ®4(f) be defined as in Theorem 3.4(1) and t,s,u,v > 0 be such that
s<u, t<v,s#t, u#v. Then

BR)GH e

2. Let f and ®4(f) be defined as in Theorem 3.4(2) and t,s,u,v > 0 be such that
s<u, t<v,s#t, u#v. Then

G0 @5 &

Proof. Analogous to the proof of Theorem 2.2. [

REMARK 3.6. Let 0 < g <s. If w=1 and f is a positive concave function on
[a,b], then the decreasing rearrangement f* is also concave function on [a,b]. By
applying Theorem 3.4 to f*, it follows that @;(f*) is log-convex. Equimeasurability
of f with f* gives @,(f) = Ds(f*) and we see that Theorem 3.4 recaptures Theorem
2.1.
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REMARK 3.7. Let us note that (21) can be given in the following form

2 b w 3 ) S
o) [(f/z?({qit))qw(zg)d;[) [Pe—aywi)yde — [P @) wt)dt], s#0,q,
_1og<%)f w(t)dr — g [ log(t — a)w(r)dr

+q [P log f(t)w(r)dr, 5=0,

FS(f) =

b
(/2’({qaqw dt) g(/i :"’aqw ) f(l—a)qw(t)dt

T4 ( fatfqaqw a)llog(t —a)w(t)dt

~4 [} @) log f(0 wle) =g

(27)

while (24) can be given in the following form

b oo\ o
= l(f%%’qﬁff;) J2b—1ywiyds — [P P Ow(e)dr |, s £ 0,q.
b rd ()
tog (LU 1)1 — g log(s 1) wlt)
+q [ log f(t)wit)dt, =0,
q).\'(f) =
(ﬁfﬂw ) (’Z””W ) TP (b—1)w(t)d
fa fq
v (L) 200 0)08(6—1)w0)
—q [ )logf( w(r)di s=a.
(28)

REMARK 3.8. Ifin Remark 3.7 we take w(#) = 1, then T'x(f) and ®,(f) convert
to Ys(f).

4. Cauchy Means

Let us note that (14), (22), (23), (25) and (26) have the form of some known
inequalities between means (eg. Stolarsky means, Gini means, etc). Here we will prove
that expressions in (22) are also means. The proofs in remaining cases are analogous.

LEMMA 4.1. Let g,h € C>(I), 1 CR™, be such that g'(y) > 0 for every y € I

m< g (y) —r(y)g"(y)
M)’

and

< M. 29)



LOG-CONVEXITY AND CAUCHY MEANS RELATED TO BERWALD’S INEQUALITY 51

Then the functions ¢| and ¢, defined by

and

are convex functions with respect to g.

Proof. Set 1
G(x) = ¢1 [gil(X)] = 5Mx2 —h [gfl(x)jl )
We have
G'(x) =M — g (g_l(x)) " (g_l(x)) —n (g_l(x)) g" (g_l(x)) |

(g'(g71(x)))’

which shows that ¢; is convex with respectto g.
Similarly, set

H(x) = ¢ [gil(x)] =h [gil(x)] - %mxz.

We have
w8 (g W) (g7 () M (g7 W) " (g (x)
H'(x) = — 3 m.
(&' (g7'(x)))

This shows that ¢, is convex with respectto g. [

THEOREM 4.2. Let w be a positive integrable function on [a,b] with [*w(t)dt =
1. Let f be a positive increasing concave function on [a,b], g € C*([0,)) and h €
C?([0,z]]). Let g'(y) > 0 for every y € [0,7;] and Z; is defined as in (17) using the
function g. Then there exists & € [0,z;] such that

/Olh(rzi)w[a(l—r)-i-br] dr - bia /ubh(f(t))w(t)dt (30)
OO WSO o
S e@y L Sl

bia /abgz(f(l))w(t)dt]

Proof. Set m = miny¢z) ¥(y) and M = maxco) ¥(y), where

gWH"0) )& )
M)’

Y(y) =
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Applying (18) for ¢; and ¢, defined in Lemma 4.1, we have

/¢1 rzi)wla(1—r)+br|d b a/ o1 (f

and
1
/0(}52(1"21-) wla(1—r)+br]d b a/ o (f 1
that is,
[/ Fz)wla(l —r) +brldr — _a/g 1H)w (t)dt} (31)
/hrz, 1—r)—|—br]dr—b a/ R(f(t)) w(t)dt
and
/hrz, 1—r)—|—br]dr——/ h(f(t)) w(t)dt (32)

_a/ & )w(t)dt}

By combining (31) and (32), (30) follows from continuity of ¥(y). O

[/g (rzi)wla(l —r)+br]dr —

THEOREM 4.3. Let w be a positive integrable function on [a,b] with [ w(x)dx =
1 and f be a positive increasing concave non-linear function on [a,b]. If g € C*([0,0))
and hy,hy € C*(]0,%]) such that g'(y) > 0 for every y € [0,Z] and Z; is defined as in
Theorem 4.2 using the function g, then there exists £ € [0,7;] such that

gEVI(E) — Hi(8)g"(&) _ JomUz)wla(l —r)+bridr — g5 [ hi (£(1)) w(t)dr

gE)ME) —m(&)g" (&) [l hma(rz)wla(l—r) +brldr — 7= [Phy (f(1)) w(r)dt
(33)

provided that g'(y) h5(y) — 5 (y) g" (y) # 0 for every y € [0,Z].

Proof. Define the functional © : C?([0,7;]) — R with:

o [ hre) o a

and set hg = O(hy) hy — ©(hy)hy. Obviously ©(hg) = 0. Using Theorem 4.2, there
exists & € [0,z;] such that

O(hy) = g’(é)hé)’(zé()g/— [/ S0z wla(l —r) +br] dr

= g2<f<t>>w<z>dz} . En

/ h(rzi)wla(1—r)+br]dr —
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We give a proof that the expression in square brackets in (34) is non-zero (actually
strictly positive by inequality (18)) for non-linear function f. Suppose that the ex-
pression in square brackets in (34) is equal to zero, which is by simple rearrangements
equivalent to equality

o ['|¢ (=) - euo|woar, G9)

In [4], it was proved that

/:g<1ta:a ) /g 1)dt, x € [a,b].

Set

We have F(x) < 0 and F(a) = F(b) =0. By (35), obvious estimations and integration
by parts we have

o= ['le ( soan) - 200 | war
> [ 2500 |55

= [(2500)art) =~ [ Fiars(0) > o0

This implies

[ (122) - e v woa= 2500 o (147) - st0)] wora

or equivalently
b f—a 2
[ (¢(3252) - et wirar =0,

which implies that f is a linear function.

Since the function f is non-linear, the expression in square brackets of (34) is
strictly positive which implies that g'(§) kg (&) — hi(&) g” (&) = 0, and this gives (33).
Notice that Theorem 4.2 for 7 = h, implies that the denominator of the right-hand side
of (33) is non-zero. [l

COROLLARY 4.4. Let w be a positive integrable function with f:w(x)dx =1.1If
f is a positive increasing concave non-linear function on |a,b] and 7; is defined as in
Theorem 4.3 for g(x) = x4 (g > 0) or explicitly

N GO
as )<fab(t—a)qw(t)dz> ’
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thenfor 0 <s #1t # q+#s, there exists & € (0,7;] such that

(s—q) Jo (%) wla(l =) +brldr — 5L [0 /(1) w(r)dr
(t—a) [} (rz)) wla(1 = r) +br] dr — = I fs(ryw(r)dr

t—s S
&= . (36)

Proof. Set hy(x) =x', hy(x) =x* and g(x) =x9, 1t #£s5s#0,q in (33). O

REMARK 4.5. Since the function & — £'~* is invertible, then from (36) we have

L

) 7 <zi. 37

(s(s— q) fol (rz)) wla(1 —r) +br|dr— ﬁ f:f’(r)w(r) dr
0< _ 1/ =\s 1 b,
1t—q) [y 7z wla(l —r)+brldr — 5% [2 fs(ryw(r)dr

In fact, a similar result can also be given for (33). Namely, suppose that
A = (£0IH0) = H0)g"0)) /(£ 0)M0) — B8 ())
has an inverse function. Then from (33) we have

_p (folhl(rzi)w[a(l ) brldr — g U () w(z)dz> .

Jo ha(rz)wla(L—r) +brldr — iz [Py (f(2)) wit)dt

By the inequality (37) we can consider

s(s—q) Jo (%) wla(1 —r) +brldr — hl—afff’(r)w(r)dr> ﬁ
te=q) fy (rz)* wla(l—r) +brldr — gz [P ps(ryw(r)yar )

M (f,w) = (

(39)
for 0 < s #t # q # s, as means in broader sense. Moreover we can extend these means
in other cases. By taking the limit we get

fol (rz;)" log (rz;) wla(1 — r) + br] dr — ﬁ fffs(r) log f(r)w(r)dr
Jo 07 wla(l —r)+br]dr — g [2 fs(r)w(r)dr
_ 2s—q
s(s—q)’

logM, s (f,w) =

s #0,q,

, Zi)wla(l —r rldr— L [° r)w(r)dr
log Moo (f,w) — foltl)gz(rm la(1—r)+br]d bila fublong() (dr 1
2| fo log(rzi)wla(l —r) +brldr — 5— |, logf(r)w(r)dr] q

1 2 fo Mlog? (rz)wla(1—r)+brldr — 5= [ f9(r) log? £ (r)w(r)dr
logM, 4 (fow)=—=+ 1 — za b
q 27! [y rilog(rzi)wa(1—r)+brldr— 5= [ f4(r)log f(r)w(r)dr
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Finally, we prove that this new mean is monotonic.

THEOREM 4.6. Let t < u, r < s, then the following inequality is valid

My (f,w) < Mus(fow). (40)
Proof. Since T5(f) is log-convex, by (22) we get (40). O

REMARK 4.7. If w=1, then the above means become

,0<t#s,

% foZ(Pt()’)dy - ﬁ f:(Pz (f(x)) dx) =
M s (f, 1) := —
s (% o) dy — 55 7 05 (f(x)) d

i logo— 5L 2 5(x)dx — LD P g5 () log f(x) dx

logM,(f,1) =

L yd(f)
2s—q
_S(S—q)7s7é0’q’
oty (1) — 1980 35 Iy 0w (dx — 5L [ Iog f(Wdx | 1
o 2q [IOga—q—mfa log f(x) x] q’

alog?a — 22 7 f9(x) log f(x)dx — T [ pa(x) log? f(x) dx
2 |@loga — 5 [ f9(x)dx— L [2 fo(x) log f(x) dx

logM, 4 (f,1) =

)

1
q

where

1
‘“L /fq )dx.

In this way (40) for w =1 gives an extension of (14) (see Remark 3.6).
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