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LOG–CONVEXITY AND CAUCHY MEANS

RELATED TO BERWALD’S INEQUALITY

NAVEED LATIF, JOSIP PEČARIĆ AND IVAN PERIĆ

(Communicated by A. Čižmešija)

Abstract. In this paper, we investigate the famous Berwald’s inequality. More precisely, we
study the Berwald’s difference in non-weighted and weighted case. We prove an interesting
property of log-convexity of this difference which allows us to deduce Lyapunov’s type inequal-
ity for these differences. Cauchy type means in this setting are also studied.

1. Introduction and preliminaries

Let Ω be a set equipped with a normalized measure μ . Then for a strictly mono-
tonic continuous function g , the quasi-arithmetic mean Mg( f ,μ) is defined as follows:

Mg ( f ,μ) := g−1
(∫

Ω
g( f (u)) dμ(u)

)
. (1)

From (1) we can deduce integral power means. Indeed, for r ∈ R , the integral power
mean is defined as follows:

Mr ( f ,μ) :=

{
(
∫

Ω f r(u)dμ(u))
1
r , r �= 0,

exp(
∫

Ω log f (u)dμ(u)) , r = 0.
(2)

If r < s , then the well-known inequality for means

Mr ( f ,μ) � Ms ( f ,μ) , (3)

is valid (see [2]). The well-known Berwald’s inequality states:

THEOREM 1.1. Let f be a non-negative concave function on [a,b] ⊂ R . If s >
q > 0 , we have

(
q+1
b−a

∫ b

a
f q(x)dx

) 1
q

�
(

s+1
b−a

∫ b

a
f s(x)dx

) 1
s

. (4)
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Note that (4) can be considered as a reverse of (3). Theorem 1.1 can be obtained
from the following result, also obtained by Berwald (cf. [5, p. 214]).

THEOREM 1.2. Let f be a non-negative continuous concave function, not identi-
cally zero on [a,b] , and ψ be a continuous strictly monotonic function on [0,y0] , where
y0 is sufficiently large. If z is the unique positive root of the equation

1
z

∫ z

0
ψ(y)dy =

1
b−a

∫ b

a
ψ ( f (x)) dx, (5)

then for every function φ : [0,y0] → R which is convex with respect to ψ , we have

1
z

∫ z

0
φ(y)dy � 1

b−a

∫ b

a
φ ( f (x)) dx. (6)

In [1], Matloob Anwar and J. Pečarić defined new Cauchy’s means as follows:

Ms
r,l ( f ,μ) :=

(
l(l− s)
r(r− s)

Mr
r ( f ,μ) − Mr

s ( f ,μ)
Ml

l ( f ,μ) − Ml
s ( f ,μ)

) 1
r−l

, l �= r �= s, l,r �= 0. (7)

In the remaining cases, Ms
r,l is defined by the limit procedure. They proved that if t < v ,

r < u , then
Ms

t,r ( f ,μ) � Ms
v,u ( f ,μ) . (8)

In this paper, we define Cauchy’s means motivated by Berwald’s inequality (4)
and we prove results related to (8). We need the following definitions and lemmas from
log-convexity theory (cf. [3]).

DEFINITION 1.3. It is said that a positive function f is log-convex in the Jensen
sense on some interval I ⊆ R if

f (s) f (t) � f 2
(

s+ t
2

)

holds for every s, t ∈ I .

LEMMA 1.4. A positive function f is log-convex in the Jensen sense on an interval
I ⊆ R if and only if the relation

u2 f (s) + 2uw f

(
s+ t
2

)
+ w2 f (t) � 0 (9)

holds for each real u,w and s,t ∈ I.

The following lemma gives a useful characterization of convex functions (cf. [5,
p. 2]).
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LEMMA 1.5. A function φ is convex on an interval I ⊆ R if and only if

φ(s1) (s3 − s2) + φ(s2) (s1 − s3) + φ(s3) (s2 − s1) � 0 (10)

holds for every s1 < s2 < s3 , s1,s2,s3 ∈ I .

Throughout the paper we will frequently use the following family of functions,
convex with respect to ψ(x) = xq (q > 0) on (0,∞) :

ϕs(x) :=

⎧⎪⎪⎨
⎪⎪⎩

q2

s(s−q) xs, s �= 0,q,

−q logx, s = 0,

qxq logx, s = q.

(11)

2. Berwald’s inequality and Berwald’s differences

THEOREM 2.1. Let f be a positive continuous concave function on [a,b] , q > 0
and

ϒs( f ) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q2

s(s−q)

[(
q+1
b−a

∫ b
a f q(x)dx

) s
q − s+1

b−a

∫ b
a f s(x)dx

]
, s �= 0, q,

q + q
b−a

∫ b
a log f (x)dx − log

(
q+1
b−a

∫ b
a f q(x)dx

)
, s = 0,

(
q+1
b−a

∫ b
a f q(x)dx

)
log
(

q+1
b−a

∫ b
a f q(x)dx

)
− q

b−a

∫ b
a f q(x)dx − q(q+1)

b−a

∫ b
a f q(x) log f (x)dx, s = q.

(12)

Then ϒs( f ) is log -convex for s � 0 and the following inequality holds for 0 � r < s <
t < ∞ :

ϒt−r
s ( f ) � ϒt−s

r ( f ) ϒs−r
t ( f ). (13)

Proof. Let us consider the function defined by

φ(x) = u2 ϕs(x) + 2uwϕr(x) + w2 ϕt(x),

where r = s+t
2 , ϕs is defined by (11) and u,w ∈ R .

Now, we shall show that φ(x) is convex with respect to ψ(x) = xq (q > 0) .
Set

F(x) = φ(x
1
q ) = u2 ϕs(x

1
q ) + 2uwϕr(x

1
q ) + w2 ϕt(x

1
q ).

We have

F ′′(x) = u2 x
s
q−2 + 2uwx

r
q−2 + w2 x

t
q−2 =

(
ux

s
2q−1 + wx

t
2q−1

)2
� 0, x > 0.

Therefore, φ(x) is convex with respect to ψ(x) = xq (q > 0) for x > 0. Applying
Theorem 1.2, we get

1
z

∫ z

0
φ(y)dy � 1

b−a

∫ b

a
φ ( f (x)) dx,
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where,

z =
(

q+1
b−a

∫ b

a
f q(x)dx

) 1
q

.

We have

1
z

∫ z

0

[
u2 ϕs(y) + 2uwϕr(y) + w2 ϕt(y)

]
dy

− 1
b−a

∫ b

a

[
u2 ϕs ( f (x)) + 2uwϕr ( f (x)) + w2 ϕt ( f (x))

]
dx � 0,

or equivalently

u2
[
1
z

∫ z

0
ϕs(y)dy − 1

b−a

∫ b

a
ϕs ( f (x)) dx

]

+2uw

[
1
z

∫ z

0
ϕr(y)dy − 1

b−a

∫ b

a
ϕr ( f (x)) dx

]

+w2
[
1
z

∫ z

0
ϕt(y)dy − 1

b−a

∫ b

a
ϕt ( f (x)) dx

]
� 0.

Since

ϒs( f ) :=
1
z

∫ z

0
ϕs(y)dy − 1

b−a

∫ b

a
ϕs ( f (x)) dx,

we have
u2 ϒs( f ) + 2uwϒr( f ) + w2 ϒt( f ) � 0.

By Lemma 1.4, we have that ϒs( f ) is log-convex in the Jensen sense for s � 0.
Note that ϒs( f ) is continuous for s � 0 since

lim
s→0

ϒs( f ) = ϒ0( f ) and lim
s→q

ϒs( f ) = ϒq( f ),

and therefore it is log-convex. Since ϒs( f ) is log-convex, i.e., s �→ logϒs( f ) is convex,
by Lemma 1.5 for 0 � r < s < t < ∞ , we get

logϒt−r
s ( f ) � logϒt−s

r ( f ) + logϒs−r
t ( f ),

which is equivalent to (13). �

THEOREM 2.2. Let f and ϒs( f ) be defined as in Theorem 2.1 and t,s,u,v � 0
such that s � u, t � v,s �= t,u �= v. Then

(
ϒt( f )
ϒs( f )

) 1
t−s

�
(

ϒv( f )
ϒu( f )

) 1
v−u

. (14)
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Proof. For a convex function ϕ , it holds (cf. [5, p. 2])

ϕ(x2) − ϕ(x1)
x2 − x1

� ϕ(y2) − ϕ(y1)
y2 − y1

, (15)

where x1 � y1, x2 � y2, x1 �= x2, y1 �= y2 . Since by Theorem 2.1, ϒs( f ) is log-convex,
we can set in (15): ϕ(x) = logϒx( f ), x1 = s, x2 = t, y1 = u, y2 = v to obtain

logϒt( f ) − logϒs( f )
t− s

� logϒv( f ) − logϒu( f )
v−u

,

where from (14) trivially follows. �

REMARK 2.3. If we substitute q = 1 in (12), we get

ϒs( f ) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
s(s−1)

[(
2

b−a

∫ b
a f (x)dx

)s − s+1
b−a

∫ b
a f s(x)dx

]
, s �= 0,1,

1 + 1
b−a

∫ b
a log f (x)dx − log

(
2

b−a

∫ b
a f (x)dx

)
, s = 0,

(
2

b−a

∫ b
a f (x)dx

)
log
(

2
b−a

∫ b
a f (x)dx

)
− 1

b−a

∫ b
a f (x)dx − 2

b−a

∫ b
a f (x) log f (x)dx, s = 1,

(16)

which is the same as Δs( f ) defined in [3] for Favard’s inequality.

3. Weighted Berwald’s Inequality

The weighted version of Berwald’s inequality was obtained by L. Maligranda, J.
E. Pečarić, L. E. Persson (cf. [4]).

THEOREM 3.1. Let ϕ be a convex function with respect to the strictly increasing
function ψ on [0,∞) , i.e., let ϕ ◦ψ−1 be convex.

1. If f is a positive increasing concave function on [a,b] and if zi is a positive root
of the equation

1
zi

∫ zi

0
ψ(y)w

(
a+

b−a
zi

y

)
dy =

1
b−a

∫ b

a
ψ ( f (t)) w(t)dt, (17)

then
1

b−a

∫ b

a
ϕ ( f (t)) w(t)dt �

∫ 1

0
ϕ (szi) w [a(1− s)+bs] ds. (18)

If f is an increasing convex function on [a,b] with f (a) = 0 , then the reverse
inequality in (18) holds.
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2. If f is a positive decreasing concave function on [a,b] and if zd is a positive root
of the equation

1
zd

∫ zd

0
ψ(y)w

(
b− b−a

zd
y

)
dy =

1
b−a

∫ b

a
ψ ( f (t)) w(t)dt, (19)

then
1

b−a

∫ b

a
ϕ ( f (t)) w(t)dt �

∫ 1

0
ϕ (szd) w [as+b(1− s)] ds. (20)

If f is a decreasing convex function on [a,b] with f (b) = 0 , then the reverse
inequality in (20) holds.

THEOREM 3.2.

1. Let f be a positive increasing concave function on [a,b] , zi is a positive root of
the equation (17) for ψ(x) = xq (q > 0) and

Γs( f ) :=
∫ 1

0
ϕs (rzi) w [a(1− r)+br] dr − 1

b−a

∫ b

a
ϕs ( f (t)) w(t)dt. (21)

Then Γs( f ) is log-convex for s � 0 and the following inequality holds for 0 �
r < s < t < ∞ :

Γt−r
s ( f ) � Γt−s

r ( f ) Γs−r
t ( f ).

2. Let f be an increasing convex function on [a,b] , f (a) = 0 , Γs( f ) := −Γs( f ) ,
where Γs( f ) is defined as in (21). Then Γs( f ) is log-convex for s � 0 and the
following inequality holds for 0 � r < s < t < ∞ :

Γt−r
s ( f ) � Γt−s

r ( f ) Γs−r
t ( f ).

Proof. Analogous to the proof of Theorem 2.1, only we use Theorem 3.1(1) in-
stead of Theorem 1.2. �

THEOREM 3.3.

1. Let f and Γs( f ) be defined as in Theorem 3.2(1) and t,s,u,v � 0 be such that
s � u, t � v, s �= t , u �= v. Then(

Γt( f )
Γs( f )

) 1
t−s

�
(

Γv( f )
Γu( f )

) 1
v−u

. (22)

2. Let f and Γs( f ) be defined as in Theorem 3.2(2) and t,s,u,v � 0 be such that
s � u, t � v, s �= t , u �= v. Then

(
Γt( f )
Γs( f )

) 1
t−s

�
(

Γv( f )
Γu( f )

) 1
v−u

. (23)
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Proof. Analogous to the proof of Theorem 2.2. �

THEOREM 3.4.

1. Let f be a positive decreasing concave function on [a,b] , zd is a positive root of
the equation (19) for ψ(x) = xq (q > 0) and

Φs( f ) :=
∫ 1

0
ϕs (rzd) w [ar+b(1− r)] dr − 1

b−a

∫ b

a
ϕs ( f (t)) w(t)dt. (24)

Then Φs( f ) is log-convex for s � 0 and the following inequality holds for 0 �
r < s < t < ∞ :

Φt−r
s ( f ) � Φt−s

r ( f ) Φs−r
t ( f ).

2. Let f be a decreasing convex function on [a,b] , f (b) = 0 , Φs( f ) := −Φs( f ) ,
where Φs( f ) is defined as in (24). Then Φs( f ) is log-convex for s � 0 and the
following inequality holds for 0 � r < s < t < ∞ :

Φt−r
s ( f ) � Φt−s

r ( f ) Φs−r
t ( f ).

Proof. Analogous to the proof of Theorem 2.1, only we use Theorem 3.1(2) in-
stead of Theorem 1.2. �

THEOREM 3.5.

1. Let f and Φs( f ) be defined as in Theorem 3.4(1) and t,s,u,v � 0 be such that
s � u, t � v, s �= t , u �= v. Then(

Φt( f )
Φs( f )

) 1
t−s

�
(

Φv( f )
Φu( f )

) 1
v−u

. (25)

2. Let f and Φs( f ) be defined as in Theorem 3.4(2) and t,s,u,v � 0 be such that
s � u, t � v, s �= t , u �= v. Then

(
Φt( f )
Φs( f )

) 1
t−s

�
(

Φv( f )
Φu( f )

) 1
v−u

. (26)

Proof. Analogous to the proof of Theorem 2.2. �

REMARK 3.6. Let 0 < q � s . If w ≡ 1 and f is a positive concave function on
[a,b] , then the decreasing rearrangement f ∗ is also concave function on [a,b] . By
applying Theorem 3.4 to f ∗ , it follows that Φs( f ∗) is log-convex. Equimeasurability
of f with f ∗ gives Φs( f ) = Φs( f ∗) and we see that Theorem 3.4 recaptures Theorem
2.1.
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REMARK 3.7. Let us note that (21) can be given in the following form

Γs( f ) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q2

s(s−q)

[( ∫ b
a f q(t)w(t)dt∫ b

a (t−a)q w(t)dt

) s
q ∫ b

a (t−a)s w(t)dt − ∫ b
a f s(t)w(t)dt

]
, s �= 0,q,

− log

( ∫ b
a f q(t)w(t)dt∫ b

a (t−a)q w(t)dt

)∫ b
a w(t)dt − q

∫ b
a log(t−a)w(t)dt

+q
∫ b
a log f (t)w(t)dt, s = 0,

( ∫ b
a f q(t)w(t)dt∫ b

a (t−a)q w(t)dt

)
log

( ∫ b
a f q(t)w(t)dt∫ b

a (t−a)q w(t)dt

)∫ b
a (t −a)qw(t)dt

+q

( ∫ b
a f q(t)w(t)dt∫ b

a (t−a)q w(t)dt

)∫ b
a (t−a)q log(t −a)w(t)dt

−q
∫ b
a f q(t) log f (t)w(t)dt, s = q,

(27)
while (24) can be given in the following form

Φs( f ) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q2

s(s−q)

[( ∫ b
a f q(t)w(t)dt∫ b

a (b−t)q w(t)dt

) s
q ∫ b

a (b− t)sw(t)dt − ∫ b
a f s(t)w(t)dt

]
, s �= 0,q,

− log

( ∫ b
a f q(t)w(t)dt∫ b

a (b−t)q w(t)dt

)∫ b
a w(t)dt − q

∫ b
a log(b− t)w(t)dt

+q
∫ b
a log f (t)w(t)dt, s = 0,

( ∫ b
a f q(t)w(t)dt∫ b

a (b−t)q w(t)dt

)
log

( ∫ b
a f q(t)w(t)dt∫ b

a (b−t)q w(t)dt

)∫ b
a (b− t)qw(t)dt

+q

( ∫ b
a f q(t)w(t)dt∫ b

a (b−t)q w(t)dt

)∫ b
a (b− t)q log(b− t)w(t)dt

−q
∫ b
a f q(t) log f (t)w(t)dt, s = q.

(28)

REMARK 3.8. If in Remark 3.7 we take w(t)≡ 1, then Γs( f ) and Φs( f ) convert
to ϒs( f ) .

4. Cauchy Means

Let us note that (14), (22), (23), (25) and (26) have the form of some known
inequalities between means (eg. Stolarsky means, Gini means, etc). Here we will prove
that expressions in (22) are also means. The proofs in remaining cases are analogous.

LEMMA 4.1. Let g,h ∈ C2(I) , I ⊆ R
+ , be such that g′(y) > 0 for every y ∈ I

and

m � g′(y)h′′(y) − h′(y)g′′(y)
(g′(y))3 � M. (29)
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Then the functions φ1 and φ2 defined by

φ1(x) =
1
2

Mg2(x) − h(x),

and

φ2(x) = h(x) − 1
2

mg2(x),

are convex functions with respect to g.

Proof. Set

G(x) = φ1
[
g−1(x)

]
=

1
2

Mx2 − h
[
g−1(x)

]
.

We have

G′′(x) = M − g′
(
g−1(x)

)
h′′
(
g−1(x)

) − h′
(
g−1(x)

)
g′′
(
g−1(x)

)
(g′(g−1(x)))3 ,

which shows that φ1 is convex with respect to g .
Similarly, set

H(x) = φ2
[
g−1(x)

]
= h

[
g−1(x)

] − 1
2

mx2.

We have

H ′′(x) =
g′
(
g−1(x)

)
h′′
(
g−1(x)

) − h′
(
g−1(x)

)
g′′
(
g−1(x)

)
(g′ (g−1(x)))3 − m.

This shows that φ2 is convex with respect to g . �

THEOREM 4.2. Let w be a positive integrable function on [a,b] with
∫ b
a w(t)dt =

1 . Let f be a positive increasing concave function on [a,b] , g ∈ C2 ([0,∞)) and h ∈
C2 ([0,zi]) . Let g′(y) > 0 for every y ∈ [0,zi] and zi is defined as in (17) using the
function g. Then there exists ξ ∈ [0,zi] such that

∫ 1

0
h(rzi)w [a(1− r)+br] dr − 1

b−a

∫ b

a
h( f (t)) w(t)dt (30)

=
g′ (ξ ) h′′ (ξ ) − h′ (ξ ) g′′ (ξ )

2 (g′ (ξ ))3

[∫ 1

0
g2(rzi)w [a(1− r)+br] dr

− 1
b−a

∫ b

a
g2( f (t))w(t)dt

]
.

Proof. Set m = miny∈[0,zi] Ψ(y) and M = maxy∈[0,zi] Ψ(y) , where

Ψ(y) =
g′(y)h′′(y) − h′(y)g′′(y)

(g′(y))3 .
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Applying (18) for φ1 and φ2 defined in Lemma 4.1, we have
∫ 1

0
φ1(rzi)w [a(1− r)+br] dr � 1

b−a

∫ b

a
φ1 ( f (t)) w(t)dt

and ∫ 1

0
φ2(rzi)w [a(1− r)+br] dr � 1

b−a

∫ b

a
φ2 ( f (t)) w(t)dt,

that is,

M
2

[∫ 1

0
g2(rzi)w [a(1− r)+br] dr − 1

b−a

∫ b

a
g2( f (t))w(t)dt

]
(31)

�
∫ 1

0
h(rzi)w [a(1− r)+br] dr − 1

b−a

∫ b

a
h( f (t)) w(t)dt

and ∫ 1

0
h(rzi)w [a(1− r)+br] dr − 1

b−a

∫ b

a
h( f (t)) w(t)dt (32)

� m
2

[∫ 1

0
g2(rzi)w [a(1− r)+br] dr − 1

b−a

∫ b

a
g2( f (t))w(t)dt

]
.

By combining (31) and (32), (30) follows from continuity of Ψ(y) . �

THEOREM 4.3. Let w be a positive integrable function on [a,b] with
∫ b
a w(x)dx =

1 and f be a positive increasing concave non-linear function on [a,b] . If g∈C2 ([0,∞))
and h1,h2 ∈C2 ([0,zi]) such that g′(y) > 0 for every y ∈ [0,zi] and zi is defined as in
Theorem 4.2 using the function g, then there exists ξ ∈ [0,zi] such that

g′(ξ )h′′1(ξ ) − h′1(ξ )g′′(ξ )
g′(ξ )h′′2(ξ ) − h′2(ξ )g′′(ξ )

=

∫ 1
0 h1(rzi)w [a(1− r)+br] dr − 1

b−a

∫ b
a h1 ( f (t)) w(t)dt∫ 1

0 h2(rzi)w [a(1− r)+br] dr − 1
b−a

∫ b
a h2 ( f (t)) w(t)dt

(33)
provided that g′(y)h′′2(y) − h′2(y)g′′(y) �= 0 for every y ∈ [0,zi] .

Proof. Define the functional Θ : C2 ([0,zi]) → R with:

Θ(h) =
∫ 1

0
h(rzi)w [a(1− r)+br] dr − 1

b−a

∫ b

a
h( f (t)) w(t)dt

and set h0 = Θ(h2)h1 −Θ(h1)h2 . Obviously Θ(h0) = 0. Using Theorem 4.2, there
exists ξ ∈ [0,zi] such that

Θ(h0) =
g′(ξ )h′′0(ξ ) − h′0(ξ )g′′(ξ )

2 (g′(ξ ))3

[∫ 1

0
g2(rzi)w [a(1− r)+br] dr

− 1
b−a

∫ b

a
g2( f (t))w(t)dt

]
. (34)
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We give a proof that the expression in square brackets in (34) is non-zero (actually
strictly positive by inequality (18)) for non-linear function f . Suppose that the ex-
pression in square brackets in (34) is equal to zero, which is by simple rearrangements
equivalent to equality

0 =
∫ b

a

[
g2
(

t−a
b−a

zi

)
− g2( f (t))

]
w(t)dt. (35)

In [4], it was proved that∫ x

a
g

(
t−a
b−a

zi

)
w(t)dt �

∫ x

a
g( f (t)) w(t)dt, x ∈ [a,b].

Set

F(x) =
∫ x

a

[
g

(
t−a
b−a

zi

)
− g( f (t))

]
w(t)dt.

We have F(x) � 0 and F(a) = F(b) = 0. By (35), obvious estimations and integration
by parts we have

0 =
∫ b

a

[
g2
(

t −a
b−a

zi

)
− g2( f (t))

]
w(t)dt

�
∫ b

a
2g( f (t))

[
g

(
t−a
b−a

zi

)
− g( f (t))

]
w(t)dt

=
∫ b

a
2g( f (t)) dF(t) = −

∫ b

a
F(t)d [2g( f (t))] � 0.

This implies∫ b

a

[
g2
(

t−a
b−a

zi

)
− g2 ( f (t))

]
w(t)dt =

∫ b

a
2g( f (t))

[
g

(
t−a
b−a

zi

)
− g( f (t))

]
w(t)dt

or equivalently ∫ b

a

(
g

(
t−a
b−a

zi

)
− g( f (t))

)2

w(t)dt = 0,

which implies that f is a linear function.
Since the function f is non-linear, the expression in square brackets of (34) is

strictly positive which implies that g′(ξ )h′′0(ξ ) − h′0(ξ )g′′(ξ ) = 0, and this gives (33).
Notice that Theorem 4.2 for h = h2 implies that the denominator of the right-hand side
of (33) is non-zero. �

COROLLARY 4.4. Let w be a positive integrable function with
∫ b
a w(x)dx = 1 . If

f is a positive increasing concave non-linear function on [a,b] and zi is defined as in
Theorem 4.3 for g(x) = xq (q > 0) or explicitly

zi = (b − a)

( ∫ b
a f q(t)w(t)dt∫ b

a (t − a)q w(t)dt

) 1
q

,
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then for 0 < s �= t �= q �= s, there exists ξ ∈ (0,zi] such that

ξ t−s =
s(s−q)
t(t−q)

∫ 1
0 (rzi)t w [a(1− r)+br] dr − 1

b−a

∫ b
a f t (r)w(r)dr∫ 1

0 (rzi)s w [a(1− r)+br] dr − 1
b−a

∫ b
a f s(r)w(r)dr

. (36)

Proof. Set h1(x) = xt , h2(x) = xs and g(x) = xq , t �= s �= 0,q in (33). �

REMARK 4.5. Since the function ξ → ξ t−s is invertible, then from (36) we have

0 <

(
s(s−q)
t(t−q)

∫ 1
0 (rzi)t w [a(1− r)+br] dr− 1

b−a

∫ b
a f t(r)w(r)dr∫ 1

0 (rzi)s w [a(1− r)+br] dr − 1
b−a

∫ b
a f s(r)w(r)dr

) 1
t−s

� zi. (37)

In fact, a similar result can also be given for (33). Namely, suppose that

Λ(y) =
(
g′(y)h′′1(y) − h′1(y)g′′(y)

)/(
g′(y)h′′2(y) − h′2(y)g′′(y)

)
has an inverse function. Then from (33) we have

ξ = Λ−1

(∫ 1
0 h1(rzi)w [a(1− r)+br] dr − 1

b−a

∫ b
a h1 ( f (t)) w(t)dt∫ 1

0 h2(rzi)w [a(1− r)+br] dr − 1
b−a

∫ b
a h2 ( f (t)) w(t)dt

)
. (38)

By the inequality (37) we can consider

Mt,s ( f ,w) :=

(
s(s−q)
t(t−q)

∫ 1
0 (rzi)

t w [a(1− r)+br] dr − 1
b−a

∫ b
a f t(r)w(r)dr∫ 1

0 (rzi)
s w [a(1− r)+br] dr − 1

b−a

∫ b
a f s(r)w(r)dr

) 1
t−s

,

(39)
for 0 < s �= t �= q �= s , as means in broader sense. Moreover we can extend these means
in other cases. By taking the limit we get

logMs,s ( f ,w) =

∫ 1
0 (rzi)

s log(rzi) w [a(1− r)+br] dr − 1
b−a

∫ b
a f s(r) log f (r)w(r)dr∫ 1

0 (rzi)s w [a(1− r)+br] dr − 1
b−a

∫ b
a f s(r)w(r)dr

− 2s−q
s(s−q)

, s �= 0,q,

logM0,0 ( f ,w) =

∫ 1
0 log2 (rzi) w [a(1− r)+br] dr − 1

b−a

∫ b
a log2 f (r)w(r)dr

2
[∫ 1

0 log(rzi)w [a(1− r)+br] dr − 1
b−a

∫ b
a log f (r)w(r)dr

] +
1
q

,

logMq,q ( f ,w) = −1
q

+
zq
i

∫ 1
0 rq log2(rzi)w [a(1−r)+br]dr− 1

b−a

∫ b
a f q(r) log2 f (r)w(r)dr

2zq
i

∫ 1
0 rq log(rzi)w [a(1−r)+br]dr− 2

b−a

∫ b
a f q(r) log f (r)w(r)dr
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Finally, we prove that this new mean is monotonic.

THEOREM 4.6. Let t � u, r � s, then the following inequality is valid

Mt,r ( f ,w) � Mu,s ( f ,w) . (40)

Proof. Since Γs( f ) is log-convex, by (22) we get (40). �

REMARK 4.7. If w ≡ 1, then the above means become

Mt,s ( f ,1) :=

(
1
z

∫ z
0 ϕt(y)dy − 1

b−a

∫ b
a ϕt ( f (x)) dx

1
z

∫ z
0 ϕs(y)dy − 1

b−a

∫ b
a ϕs ( f (x)) dx

) 1
t−s

, 0 < t �= s,

logMs,s ( f ,1) =
α

s
q logα − q

b−a

∫ b
a f s(x)dx − q(s+1)

b−a

∫ b
a f s(x) log f (x)dx

s(s−q)
q ϒq

s ( f )

− 2s−q
s(s−q)

, s �= 0,q,

logM0,0 ( f ,1) =
log2 α − 2q2

b−a

∫ b
a log f (x)dx − q2

b−a

∫ b
a log2 f (x)dx

2q
[
logα − q − q

b−a

∫ b
a log f (x)dx

] +
1
q

,

logMq,q ( f ,1) =
α log2 α − 2q2

b−a

∫ b
a f q(x) log f (x)dx − q2(q+1)

b−a

∫ b
a f q(x) log2 f (x)dx

2q
[
α logα − q

b−a

∫ b
a f q(x)dx− q(q+1)

b−a

∫ b
a f q(x) log f (x)dx

]
−1

q
,

where

α =
q+1
b−a

∫ b

a
f q(x)dx.

In this way (40) for w ≡ 1 gives an extension of (14) (see Remark 3.6).



56 NAVEED LATIF, JOSIP PEČARIĆ AND IVAN PERIĆ
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