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Abstract. In this article we apply an extension of an Avery type fixed point theorem to a family of
boundary value problems for higher order ordinary differential equations. The theorem employs
concave and convex functionals defined on a cone in a Banach space. We begin by extending
a known application to a right focal boundary value problem for a second order problem to a
conjugate boundary value problem for a second order problem. We then extend inductively to
a two point boundary value problem for a higher order equation. Concavity of differentiable
functions plays a key role in the application to second order equations. A concept of generalized
concavity plays the same key role in the application to the higher order equation.

1. Introduction

Richard Avery and co-authors [1, 2, 3, 4] have extended the Leggett-Williams
fixed point theorem [6] in various ways; a recent extension [2] employs topological
methods rather than index theory and as a result the recent extension does not require
the functional boundaries to be invariant with respect to a functional wedge. It is shown
[3] that this extension applies in a natural way to second order right focal boundary
value problems. The concept of concavity implies an inequality that is fundamental to
the technical arguments with respect to concave and convex functionals.

In this article we seek further applications of the extension of the fixed point the-
orem. Initially, we shall extend the applications from a two point right focal boundary
value problem [3] to a two point conjugate boundary value problem. This is made pos-
sible by employing symmetry of solutions about the midpoint of the interval. Then we
shall inductively construct a boundary value problem for a higher order ordinary differ-
ential equation from the conjugate problem for the second order problem. This work is
clearly motivated by the work in [3]; we shall borrow the same notations.

In Section 2 we shall introduce the appropriate definitions and state the fixed point
theorem. In Section 3, we shall apply the fixed point theorem to a conjugate boundary
value problem for a second order problem. We shall briefly mention how concavity is
employed to generate the appropriate inequalities. In Section 4, we shall define a two
point boundary value problem for a k th order differential equation and apply the fixed
point theorem. We shall also show how a generalized concept of concavity to higher
order differential inequalities [5] generates the appropriate inequalities in Section 4.

Mathematics subject classification (2010): 34B15, 34B27, 47H10.
Keywords and phrases: Boundary value problem, fixed point theorem, generalized concavity, higher

order ordinary differential equation.

c© � � , Zagreb
Paper JMI-06-08

79



80 A. A. ALTWATY AND P. ELOE

2. Preliminaries

DEFINITION 2.1. Let E be a real Banach space. A nonempty closed convex set
P ⊂ E is called a cone if it satisfies the following two conditions:

(i) x ∈ P,λ � 0 implies λx ∈ P ;

(ii) x ∈ P,−x ∈ P implies x = 0.

Every cone P ⊂ E induces an ordering in E given by

x � y if and only if y− x ∈ P.

DEFINITION 2.2. An operator is called completely continuous if it is continuous
and maps bounded sets into precompact sets.

DEFINITION 2.3. A map α is said to be a nonnegative continuous concave func-
tional on a cone P of a real Banach space E if α : P → [0,∞) is continuous and

α(tx+(1− t)y) � tα(x)+ (1− t)α(y)

for all x,y ∈ P and t ∈ [0,1] . Similarly we say the map β is a nonnegative continuous
convex functional on a cone P of a real Banach space E if β : P→ [0,∞) is continuous
and

β (tx+(1− t)y) � tβ (x)+ (1− t)β (y)

for all x,y ∈ P and t ∈ [0,1] .

Let α and ψ be non-negative continuous concave functionals on P and δ and β be
non-negative continuous convex functionals on P ; then, for non-negative real numbers
a , b , c and d , we define the following sets:

A := A(α,β ,a,d) = {x ∈ P : a � α(x) and β (x) � d}, (2.1)

B := B(α,δ ,β ,a,b,d) = {x ∈ A : δ (x) � b}, (2.2)

and
C := C(α,ψ ,β ,a,c,d) = {x ∈ A : c � ψ(x)}. (2.3)

We say that A is a functional wedge with concave functional boundary defined by the
concave functional α and convex functional boundary defined by the convex functional
β . We say that an operator T : A→P is invariant with respect to the concave functional
boundary, if a � α(Tx) for all x∈ A , and that T is invariant with respect to the convex
functional boundary, if β (Tx) � d for all x ∈ A . Note that A is a convex set. The
following theorem, proved in [2], is an extension of the original Leggett-Williams fixed
point theorem [6].



APPLICATIONS OF EXTENSIONS 81

THEOREM 2.4. Suppose P is a cone in a real Banach space E , α and ψ are non-
negative continuous concave functionals on P, δ and β are non-negative continuous
convex functionals on P, and for non-negative real numbers a, b , c and d the sets
A, B and C are as defined in (2.1), (2.2) and (2.3). Furthermore, suppose that A is a
bounded subset of P, that T : A → P is completely continuous and that the following
conditions hold:

(A1) {x ∈ A : c < ψ(x) and δ (x) < b} �= /0 ,{x ∈ P : α(x) < a and d < β (x)} = /0 ;

(A2) α(Tx) � a for all x ∈ B;

(A3) α(Tx) � a for all x ∈ A with δ (Tx) > b;

(A4) β (Tx) � d for all x ∈C; and,

(A5) β (Tx) � d for all x ∈ A with ψ(Tx) < c.

Then T has a fixed point x∗ ∈ A.

A fixed point of T will also be called a solution of T .

3. The second order problem

Let f : R → R
+ is a continuous map and let n > 0 be fixed. We consider the two

point conjugate boundary value problem,

−x′′(t) = f (x(t)), t ∈ [0,n], (3.1)

x(0) = 0, x(n) = 0. (3.2)

The Green’s function for the problem is known and has the form,

G(t,s) =

⎧⎨
⎩

s(n−t)
n : 0 � s < t � n,

t(n−s)
n : 0 � t < s � n.

G satisfies the symmetry property

G(n− t,n− s) = G(t,s), (t,s) ∈ [0,n]× [0,n],

since

G(n− t,n− s) =

⎧⎨
⎩

(n−t)(n−(n−s))
n : 0 � n− t < n− s � n,

(n−s)(n−(n−t))
n : 0 � n− s < n− t � n,

=

⎧⎨
⎩

s(n−t)
n : 0 � s < t � n,

t(n−s)
n : 0 � t < s � n,

= G(t,s).

The Green’s function plays the following role.
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LEMMA 3.1. x is a solution of the boundary value problem, (3.1), (3.2), if, and
only if, x ∈C[0,n] , and

x(t) =
∫ n

0
G(t,s) f (x(s))ds, 0 � t � n.

Let E =C[0,n] , equiped with the usual supremum norm, denote the Banach space.
Define the cone P ⊂ E = C[0,n] by

P :=
{

x ∈ E : x(n− t) = x(t), x is nonnegative and nondecreasing on
[
0,

n
2

]
,

and if 0 � y � w � n, then wx(y) � yx(w)
}

.

Note that, due to the definition of P , we shall obtain symmetric solutions. We do not
know how to apply Theorem 2.4 to a two-point conjugate problem without requiring
the solutions to be symmetric.

Define T : E → E by

Tx(t) =
∫ n

0
G(t,s) f (x(s))ds.

LEMMA 3.2. For any y,w ∈ [0, n
2 ] with y � w we have

min
s∈[0,n]

G(y,s)
G(w,s)

� y
w

. (3.3)

Proof. For y � w � s,

G(y,s)
G(w,s)

=
y( n−s

n )
w( n−s

n )
=

y
w

.

For y � s � w,

G(y,s)
G(w,s)

=
y( n−s

n )
s( n−w

n )
=

y(n− s)
s(n−w)

� y(n−w)
w(n−w)

=
y
w

.

For s � y � w,

G(y,s)
G(w,s)

=
s( n−y

n )
s( n−w

n )
=

n− y
n−w

� 1 � y
w

. �

REMARK 3.3. Concavity of x on [0, n
2 ] implies wx(y) � yx(w) whenever 0 < y �

w� n
2 . We shall show this implication in the higher order case in Section 4. So, note that

Lemma 3.2 points out that G is concave. Moreover, it is the inequality wx(y) � yx(w)
that is used repeatedly in the proof Theorem 3.5.
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LEMMA 3.4. Assume f : R → R
+ is a continuous map. Then

T : P → P.

Proof. To see that Tx(n− t) = Tx(t) ,

Tx(n− t) =
∫ n

0
G(n− t,s) f (x(s))ds

= −
∫ 0

n
G(n− t,n−σ) f (x(n−σ))dσ

=
∫ n

0
G(n− t,n−σ) f (x(σ))dσ =

∫ n

0
G(t,σ) f (x(σ))dσ

= Tx(t).

Clearly, Tx(t) � 0 on [0,n] since G(t,s) � 0 on [0,n]× [0,n] and f : R → R
+.

To see that Tx(t) is nondecreasing on [0, n
2 ] , we calculate d

dt T x(t) .

d
dt

[∫ t

0

s(n− t)
n

f (x(s))ds+
∫ n

t

t(n− s)
n

f (x(s))
]
ds

=
t(n− t)

n
f (x(t))+

∫ t

0
− s

n
f (x(s))ds+

∫ n

t

(n− s)
n

f (x(s))ds− t(n− t)
n

f (x(t))

=
∫ t

0
− s

n
f (x(s))ds+

∫ n

t

(n− s)
n

f (x(s))ds.

Set s = n−σ and recall t ∈ [0, n
2 ].

=
∫ t

0
− s

n
f (x(s))ds+

∫ n

t

(n− s)
n

f (x(s))ds

∫ t

0
− s

n
f (x(s))ds+

∫ n
2

t

(n− s)
n

f (x(s))ds+
∫ 0

n
2

σ
n

f (x(n−σ))(−dσ)

=
∫ t

0
− s

n
f (x(s))ds+

∫ n
2

t

(n− s)
n

f (x(s))ds+
∫ n

2

0

s
n

f (x(s))ds

=
∫ n

2

t
f (x(s))ds � 0.

Now let 0 < y � w � n. Apply Lemma 3.2 to see that

Tx(y) =
∫ n

0
G(y,s) f (x(s))ds � y

w

∫ n

0
G(w,s) f (x(s))ds.

Thus, wTx(y) � yTx(w) and Tx satisfies the concavity condition. �
For fixed ν,τ,μ ∈ [0, n

2 ] and x ∈ P , define the concave functionals α and ψ on
P by

α(x) := min
t∈[τ, n

2 ]
x(t) = x(τ), ψ(x) := min

t∈[μ, n
2 ]

x(t) = x(μ),
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and the convex functionals δ and β on P by

δ (x) := max
t∈[0,ν]

(x(t)) = x(ν), β (x) := max
t∈[0, n

2 ]
x(t) = x

(n
2

)
.

THEOREM 3.5. Assume τ,ν,μ ∈ (0, n
2 ] are fixed with τ � μ < ν , d and L are

positive real numbers with 0 < L � 2dμ
n and f : [0,∞)→ [0,∞) is a continuous function

such that

(a) f (w) � 4d
n(ν−τ) for w ∈ [ 2τd

n , 2νd
n ] ,

(b) f (w) is decreasing for w ∈ [0,L] with f (L) � f (w) for w ∈ [L,d] , and

(c)
∫ t
0 s f

(
Ls
μ

)
ds � 2d− f (L)(n2−t2)

2 , 0 � t � μ .

Then the operator T has at least one positive solution x∗ ∈ A(α,β , 2τd
n ,d) .

Proof. Let a = 2τd
n , b = 2νd

n = aν
τ , and c = 2μd

n . Let x ∈ A(α,β ,a,d) . An
immediate corollary of Lemma 3.4 is

T : A(α,β ,a,d) → P.

By the Arzela-Ascoli Theorem it is a standard exercise to show that T is a completely
continuous operator using the properties of G and f ; by the definition of β , A is a
bounded subset of the cone P . Also, if x ∈ P and β (x) > d , then by the properties of
the cone P (in particular, the concavity of x ),

α(x) = x(τ) �
(

2τ
n

)
x
(n

2

)
=

2τ
n

β (x) >
2τd
n

= a.

Thus,
{x ∈ P : α(x) < a and d < β (x)} = /0.

For any r ∈
(

4d
n(n−μ) ,

4d
n(n−ν)

)
define xr by

xr(t) ≡
∫ n

0
rG(t,s)ds = r

(∫ t

0

s(n− t)
n

ds+
∫ n

t

t(n− s)
n

ds

)
=

rt(n− t)
2

.

We claim xr ∈ A.

α(xr) = xr(τ) =
rτ(n− τ)

2
>

2dτ(n− τ)
n(n− μ)

� 2dτ
n

= a,

β (xr) = xr

(n
2

)
=

r( n
2 )(n− n

2 )
2

<
dn

2(n−ν)
� d,

since n
2(n−ν) � 1 � n−τ

n−μ . Thus, the claim is true. Moreover, xr has the properties that

ψ(xr) = xr(μ) =
rμ(n− μ)

2
>

(
4d

n(n− μ)

)(
μ(n− μ)

2

)
=

2dμ
n

= c
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and

δ (xr) = xr(ν) =
rν(n−ν)

2
<

(
4d

n(n−ν)

)(
ν(n−ν)

2

)
=

2dν
n

= b.

In particular,

{x ∈ A : c < ψ(x) and δ (x) < b} �= /0.

We have shown that condition (A1) of Theorem 2.4 is satisfied.
We now verify that condition (A2) of Theorem 2.4, α(Tx) � a for all x ∈ B, is

satisfied. Let x ∈ B . Apply condition (a) of Theorem 3.5, and

α(Tx) =
∫ n

0
G(τ,s) f (x(s)) ds �

(
4d

n(ν − τ)

) ∫ ν

τ
G(τ,s) ds

=
(

2a
τ(ν − τ)

)(
τ(ν − τ)[1− (ν + τ)

2n
]
)

� 2a
2

= a.

We now verify that condition (A3) of Theorem 2.4, α(Tx) � a , for all x ∈ A with
δ (Tx) > b, is satisfied. Let x ∈ A with δ (Tx) > b . Apply Lemma 3.2 to obtain

α(Tx) =
∫ n

0
G(τ,s) f (x(s)) ds �

( τ
ν

)∫ n

0
G(ν,s) f (x(s)) ds

=
( τ

ν

)
δ (Tx) >

( τ
ν

)
(
2dν
n

) = a.

We now verify that condition (A4) of Theorem 2.4, β (Tx) � d , for all x ∈C, is
satisfied. Let x ∈C . Since c = 2dμ

n , 0 < L � 2dμ
n = c. The concavity of x implies, for

s ∈ [0,μ ] ,

x(s) � cs
μ

� Ls
μ

.

Let t � μ be such that x(t) = L. Apply properties (b) and (c) of Theorem 3.5, to obtain

β (Tx) =
∫ n

0
G(

n
2
,s) f (x(s)) ds =

∫ n
2

0
s f (x(s)) ds

=
∫ t

0
s f (x(s)) ds+

∫ n
2

t
s f (x(s)) ds

�
∫ t

0
s f

(
Ls
μ

)
ds+ f (L)

∫ n
2

t
s ds

�
2d− f (L)(( n

2 )2 − t2)
2

+
f (L)(( n

2 )2− t2)
2

= d.

We close the proof by verifying that condition (A5), β (Tx) � d , for all x∈ A with
ψ(Tx) < c is satisfied. Let x ∈ A with ψ(Tx) < c . Apply Lemma 3.2 to obtain
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β (Tx) =
∫ n

0
G(

n
2
,s) f (x(s)) ds �

(
n

2μ

)∫ n

0
G(μ ,s) f (x(s)) ds

=
(

n
2μ

)
Tx(μ) =

(
n

2μ

)
ψ(Tx) �

(
n

2μ

)
c = d.

Therefore, the hypotheses of Theorem 2.4 have been satisfied; thus the operator T has
at least one positive solution x∗ ∈ A(α,β ,a,d) . �

4. The higher order problem

In this section, we apply Theorem 2.4 to a two point boundary value problem for
a k th order ordinary differential equation. Throughout this section, we shall assume
that k � 3. The concept of concavity is extended to k th order differential inequalities
as developed in [5]. We consider the k th order problem

−x(k)(t) = f (x(t)), t ∈ [0,n], (4.1)

x(0) = x′(0) = ..... = x(k−2)(0) = 0, x(k−2)(n) = 0, (4.2)

where f : R → R
+ is a continuous map.

The Green’s function for this problem has the form,

G(t,s) =

⎧⎨
⎩

tk−1(n−s)
(k−1)!n − (t−s)k−1

(k−1)! : 0 � s < t � n,

tk−1(n−s)
(k−1)!n : 0 � t < s � n.

Again, let E =C[0,n] , equiped with the usual supremum norm, denote the Banach
space. Define the cone P ⊂ E = C[0,n] by

P := {x ∈ E : x is nonnegative and nondecreasing on [0,n],

and if 0 < y � w � n, then wk−1x(y) � yk−1x(w)}.
Define T : E → E by

Tx =
∫ n

0
G(t,s) f (x(s))ds.

For fixed ν,τ,μ ∈ [0,n] and x ∈ P , define the concave functionals α and ψ on P
as before by

α(x) := min
t∈[τ,n]

x(t) = x(τ), ψ(x) := min
t∈[μ,n]

x(t) = x(μ),
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and the convex functionals δ and β on P as before by

δ (x) := max
t∈[0,ν]

(x(t)) = x(ν), β (x) := max
t∈[0,n]

x(t) = x(n).

LEMMA 4.1. For any y,w ∈ [0,n] with 0 < y � w,

min
s∈[0,n]

G(y,s)
G(w,s)

� yk−1

wk−1 . (4.3)

Proof. For 0 < y � w � s,

G(y,s)
G(w,s)

=
yk−1( n−s

(k−1)!n )

wk−1( n−s
(k−1)!n )

=
yk−1

wk−1 .

For 0 < y � s � w,

G(y,s)
G(w,s)

=
yk−1 n−s

(k−1)!n

wk−1 n−w
(k−1)!n − (w−s)k−1

(k−1)!

�
yk−1(n−w)
(k−1)!n

wk−1(n−w)
(k−1)!n

=
yk−1

wk−1 .

For 0 < s � y � w,

(y− s)k−1

(k−1)!
� yk−1(w− s)k−1

(k−1)!wk−1 .

Thus,

G(y,s) =
yk−1(n− s)
(k−1)!n

− (y− s)k−1

(k−1)!
� yk−1(n− s)

(k−1)!n
− yk−1(w− s)k−1

(k−1)!wk−1

=
yk−1

wk−1 (
wk−1(n− s)
(k−1)!n

− (w− s)k−1

(k−1)!
) =

yk−1

wk−1 G(w,s). �

REMARK 4.2. Assume x satisfies the differential inequality −x(k)(t) � 0,
0 < t < n , and x satisfies the boundary conditions (4.2). Then 0 < y � w � n, im-
plies

wk−1x(y) � yk−1x(w). (4.4)

This is the extended concept of concavity that will be employed in the proof of the
following theorem. Note that Lemma 4.1 merely states the extended concavity of G .
To see that (4.4) is true, let 0 < y < w � n, and let p(t) denote the solution of the
boundary value problem,

−p(k)(t) = 0, 0 < t < n,

p(0) = p′(0) = ..... = p(k−2)(0) = 0, p(w) = x(w).
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Then p(t) = x(w)
wk−1 t

k−1. Moreover, z = x− p satisfies a boundary value problem for a
differential inequality of the form

−z(k)(t) � 0, z(0) = z′(0) = ..... = z(k−2)(0) = 0, z(w) = 0.

The Green’s function for this conjugate boundary value problem is positive and so
x(t) � p(t) , 0 < t < w; evaluate this inequality at t = y to obtain (4.4).

THEOREM 4.3. Assume τ,ν,μ ∈ (0, n
2 ] are fixed with τ � μ < ν, d and L are

positive real numbers with 0 < L � dμk−1

nk−1 and f : [0,∞) → [0,∞) is a continuous func-
tion such that

(a) f (w) � 2(k−1)!d
nk−1(ν−τ) for w ∈ [ τk−1d

nk−1 , νk−1d
nk−1 ] ,

(b) f (w) is decreasing for w ∈ [0,L] with f (L) � f (w) for w ∈ [L,d] , and

(c)
∫ t
0

(n−s)(nk−2−(n−s)k−2)
(k−1)! f (Lsk−1

μk−1 )ds � 2k!d− f (L)(knk−2(n−t)2−2(n−t)k)
2k! , 0 � t � μ .

Then the operator T has at least one positive solution x∗ ∈ A(α,β , τk−1d
nk−1 ,d) .

Proof. Let a = τk−1d
nk−1 , b = νk−1d

nk−1 , and c = μk−1d
nk−1 . Let x∈ A(α,β ,a,d) . As before,

T : A(α,β ,a,d) → P,

and T is a completely continuous operator. Also, if x ∈ P and β (x) > d , then by the
properties of the cone P , in particular, the k th order concavity of x,

α(x) = x(τ) �
(

τk−1

nk−1

)
x(n) =

τk−1

nk−1 β (x) >
τk−1d
nk−1 = a.

Thus,
{x ∈ P : α(x) < a and d < β (x)} = /0.

For r ∈ ( 2k!d
nk−1(kn−2μ) ,

2k!d
nk−1(kn−2ν) ) define xr by

xr(t) = r
∫ n

0
G(t,s)ds =

rtk−1(kn−2t)
2k!

.

We claim xr ∈ A.

α(xr) = xr(τ) =
rτk−1(kn−2τ)

2k!
>

τk−1d(kn−2τ)
nk−1(kn−2μ)

� τk−1

nk−1 d = a.

β (xr) = xr(n) =
rnk−1(kn−2n)

2k!
<

d(kn−2n)
kn−2ν

� d.
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Thus, xr ∈ A. Moreover,

ψ(xr) = xr(μ) =
rμk−1(kn−2μ)

2k!
>

2k!d
nk−1(kn−2μ)

μk−1(kn−2μ)
2k!

=
dμk−1

nk−1 = c

and

δ (xr) = xr(ν) =
rνk−1(kn−2ν)

2k!
<

2k!d
nk−1(kn−2ν)

νk−1(kn−2ν)
2k!

=
dνk−1

nk−1 = b.

We now verify that condition (A2), α(Tx) � a for all x ∈ B, is satisfied. Let
x ∈ B . Apply condition (a) of Theorem 3.5, and

α(Tx) =
∫ n

0
G(τ,s) f (x(s)) ds �

(
2(k−1)!d
nk−1(ν − τ)

) ∫ ν

τ
G(τ,s) ds

=
(

2(k−1)!a
τk−1(ν − τ)

)(
τk−1(ν − τ)

(k−1)!

[
1− (ν + τ)

2n

])
� 2a

2
= a.

We now verify that condition (A3), α(Tx) � a , for all x ∈ A with δ (Tx) > b, is
satisfied. Let x ∈ A with δ (Tx) > b . Apply Theorem 3.2 to obtain

α(Tx) =
∫ n

0
G(τ,s) f (x(s)) ds �

(
τk−1

νk−1

)∫ n

0
G(ν,s) f (x(s)) ds

=
(

τk−1

νk−1

)
δ (Tx) >

(
τk−1

νk−1

)(
dνk−1

nk−1

)
= a.

We now verify that condition (A4), β (Tx) � d , for all x ∈C, is satisfied. Let x ∈
C . Since c = dμk−1

nk−1 , 0 < L � dμk−1

nk−1 = c. The concavity of x implies, for s ∈ [0,μk−1] ,

x(s) � csk−1

μk−1 � Lsk−1

μk−1 .

Let t � μ be such that x(t) = L. Apply properties (b) and (c) of Theorem 4.3, to obtain

β (Tx) =
∫ n

0
G(n,s) f (x(s)) ds

=
∫ n

0

(
nk−1(n− s)
(k−1)!n

− (n− s)k−1

(k−1)!

)
f (x(s)) ds

=
∫ t

0

(
nk−1(n− s)
(k−1)!n

− (n− s)k−1

(k−1)!

)
f (x(s)) ds

+
∫ n

t

(
nk−1(n− s)
(k−1)!n

− (n− s)k−1

(k−1)!

)
f (x(s)) ds

�
∫ t

0

(
nk−1(n− s)
(k−1)!n

− (n− s)k−1

(k−1)!

)
f

(
Lsk−1

μk−1

)
ds
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+ f (L)
∫ n

t
(
nk−1(n− s)
(k−1)!n

− (n− s)k−1

(k−1)!
) ds

� 2k!d− f (L)(knk−2(n− t)2−2(n− t)k)
2k!

+
f (L)(knk−2(n− t)2−2(n− t)k)

2k!
= d.

We close the proof by verifying that condition (A5), β (Tx) � d , for all x∈ A with
ψ(Tx) < c . Let x ∈ A with ψ(Tx) < c . Thus by Lemma 4.1,

β (Tx) =
∫ n

0
G(n,s) f (x(s)) ds �

(
nk−1

μk−1

)∫ n

0
G(μ ,s) f (x(s)) ds

=
(

nk−1

μk−1

)
Tx(μ) =

(
nk−1

μk−1

)
ψ(Tx) �

(
nk−1

μk−1

)
c = d.

Therefore, the hypotheses of Theorem 2.4 have been satisfied; thus the operator T has
at least one positive solution x∗ ∈ A(α,β ,a,d) . �
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