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INEQUALITIES FOR THE JACOBIAN ELLIPTIC

FUNCTIONS WITH COMPLEX MODULUS

KLAUS SCHIEFERMAYR

(Communicated by A. Čižmešija)

Abstract. Despite the fact that there is a huge amount on papers and books devoted to the theory
of Jacobian elliptic functions, very little is known when the modulus k of these functions lies
outside the unit interval [0,1] . In this note, we prove some simple inequalities for the absolute
value of Jacobian elliptic functions with complex modulus.

1. Introduction and Main Result

Consider the Jacobian elliptic functions sn(z,k) , cn(z,k) , dn(z,k) with complex
parameter (modulus) k ∈ C . Starting with the works of Jacobi in the 1820’s until now,
there exists a huge amount on papers and books devoted to the theory of Jacobian ellip-
tic functions, see, e.g., [3], [2], or [6]. Almost all of these contributions are restricted
to the case when the modulus k is in the unit interval [0,1] . Exceptions are, e.g., the
articles of Walker [4], [5]. Since the functions sn(z,k) , cn(z,k) , and dn(z,k) depend on
k2 rather than k , we shall use m = k2 as parameter but use the same notation sn(z,m) ,
cn(z,m) , and dn(z,m) .

There seems to exist no estimates for the absolute value of sn(z,m) , cn(z,m) , and
dn(z,m) in terms of elementary functions. In this paper, we give such estimates.

THEOREM 1. Let m ∈ C , |m|� 1 , and z ∈ C , |z|� R < π
2 . Then the inequalities

|sn(z,m)| � sn(|z|,m1)
cn(|z|,m1)

� tan |z|, (1)

|cn(z,m)| � 1
cn(|z|,m1)

� 1
cos |z| , (2)

|dn(z,m)| � dn(|z|,m1)
cn(|z|,m1)

� 1
cos |z| , (3)

hold, where m1 := 1−|m| ∈ [0,1] . For all inequalities we have equality if z = 0 or if
z = iy, −R � y � R, and m = 1 . Further, in the first inequalities of (1)–(3), equality is
attained if z = iy, −R � y � R, and m = |m| .
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2. Proof

Proof of Theorem 1. Starting point for the proof are the Taylor expansions of
sn(z,m) , cn(z,m) , and dn(z,m) , respectively, given by [4, Eq. (3.6)]

sn(z,m) =
∞

∑
n=0

(−1)nsn(m)
z2n+1

(2n+1)!
, (4)

cn(z,m) =
∞

∑
n=0

(−1)ncn(m)
z2n

(2n)!
, (5)

dn(z,m) =
∞

∑
n=0

(−1)ndn(m)
z2n

(2n)!
, (6)

where sn(m) , cn(m) , and dn(m) are polynomials with positive integer coefficients.
Thus, we have the inequalities

|sn(m)| � sn(|m|) � sn(1), (7)

|cn(m)| � cn(|m|) � cn(1), (8)

|dn(m)| � dn(|m|) � dn(1). (9)

Note that each of the power series (7)–(9) are absolutely convergent for |m| � 1 and
|z| < π

2 , see [4, Thm. 3.2]. Especially,

sn(iz,m) = i
∞

∑
n=0

sn(m)
z2n+1

(2n+1)!
, (10)

cn(iz,m) =
∞

∑
n=0

cn(m)
z2n

(2n)!
, (11)

dn(iz,m) =
∞

∑
n=0

dn(m)
z2n

(2n)!
. (12)

If we put m = 1 in formulae (10)–(12), we get (note that cn(1) = dn(1))

tanh(iz) = i
∞

∑
n=0

sn(1)
z2n+1

(2n+1)!
, (13)

1
cosh(iz)

=
∞

∑
n=0

cn(1)
z2n

(2n)!
=

∞

∑
n=0

dn(1)
z2n

(2n)!
. (14)
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Hence, the inequalities

|sn(z,m)| �
∞

∑
n=0

|sn(m)| |z|2n+1

(2n+1)!
by (4)

�
∞

∑
n=0

sn(|m|) |z|2n+1

(2n+1)!
=: (∗1) by (7)

=
1
i

sn(i|z|, |m|) by (10)

=
sn(|z|,1−|m|)
cn(|z|,1−|m|) by [2, Eq. (2.6.12)]

and

|cn(z,m)| �
∞

∑
n=0

|cn(m)| |z|
2n

(2n)!
by (5)

�
∞

∑
n=0

cn(|m|) |z|2n

(2n)!
=: (∗2) by (8)

= cn(i|z|, |m|) by (11)

=
1

cn(|z|,1−|m|) by [2, Eq. (2.6.12)]

and

|dn(z,m)| �
∞

∑
n=0

|dn(m)| |z|
2n

(2n)!
by (6)

�
∞

∑
n=0

dn(|m|) |z|2n

(2n)!
=: (∗3) by (9)

= dn(i|z|, |m|) by (12)

=
dn(|z|,1−|m|)
cn(|z|,1−|m|) by [2, Eq. (2.6.12)]

hold and we have proved the first inequalities of (1)–(3), respectively. Analogously,

(∗1) �
∞

∑
n=0

sn(1)
|z|2n+1

(2n+1)!
by (8)

=
1
i

tanh(i|z|) by (13)

= tan |z|
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and

(∗2),(∗3) �
∞

∑
n=0

cn(1)
|z|2n

(2n)!
by (8)

=
1

cosh(i|z|) by (14)

=
1

cos |z|
holds. �

REMARK 1. Another (much more complicated) possibility for proving the second
inequalities of (1)–(3), respectively, is the following: For fixed u ∈ [0, π

2 ] , consider the
functions

f1(m1) :=
sn(u,m1)
cn(u,m1)

, f2(m1) :=
1

cn(u,m1)
, f3(m1) :=

dn(u,m1)
cn(u,m1)

for 0 � m1 � 1. Then one has to prove that these functions are strictly monotone
decreasing in m1 , i.e. f ′j(m1) < 0, j = 1,2,3, using formulae (710.54), (710.57), and
(710.60) of [1].
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