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Abstract. The main purpose of the paper is to give a new interpretation of Chebyshev’s inequality
for the sequences of real numbers from a standpoint of composition functions. As an application,
an n -version of the concavity (or the convexity) of a quasi-arithmetic mean function is obtained
under some conditions.

1. Introduction

The well-known Chebyshev’s inequality for sequences of real numbers may be as
follows:

(x1 + ...+ xn)(y1 + ...+ yn) � n(x1y1 + ...+ xnyn)

holds whenever both {x1, ...,xn} and {y1, ...,yn} are simultaneously monotone increas-
ing or monotone decreasing. We give a generalization of this inequality from a stand-
point of composition functions (see Theorem 1). However, this generalization can be
regarded as a new interpretation of Chebyshev’s inequality.

Throughout the paper, we denote by (Ω,Σ,μ) , I and f a probability space, an
interval of R and a real-valued Σ-measurable function on Ω with f (ω) ∈ I for almost
all ω ∈ Ω , respectively. Let C(I) be the real linear space of all continuous real-valued
functions defined on I . Let C+

sm(I) (resp. C−
sm(I)) be the set of all ϕ ∈ C(I) which is

strictly monotone increasing (resp. decreasing) on I . Put Csm(I) = C+
sm(I)∪C−

sm(I) .
Then Csm(I) denotes the set of all strictly monotone continuous functions on I .

Let Csm, f (I) be the set of all ϕ ∈ Csm(I) with ϕ ◦ f ∈ L1(Ω,Σ,μ) . Let ϕ be an
arbitrary function of Csm, f (I) . Since ϕ(I) is an interval of R and μ is a probability
measure on Ω , it follows that ∫

ϕ ◦ f dμ ∈ ϕ(I).

Then there exists a unique real numberMϕ( f ) ∈ I such that
∫

ϕ ◦ f dμ = ϕ(Mϕ ( f )) .
Since ϕ is one-to-one, it follows that

Mϕ( f ) = ϕ−1
(∫

ϕ ◦ f dμ
)

.
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We call Mϕ( f ) a ϕ –quasi-arithmetic mean of f with respect to μ (or simply, ϕ –mean
of f ). These means are somewhat different from C1 -means introducing by J. I. Fujii,
et al. [1], but they include many known numerical means (cf. [3]).

As an application of Theorem 1, we show that a quasi-arithmetic mean function:
ϕ → Mϕ ( f ) has an n -version of the concavity on a suitable convex subset of Csm(I)
under some conditions (see Theorem 2). Also this function has an n -version of the con-
vexity on a suitable convex subset of Csm(I) under another conditions (see Theorem 3).

2. Lemmas

The first lemma describes a geometric property of convex function, but this will
be standard, so we will omit the proof (cf. [3, Lemma 1]).

LEMMA 1. Let ϕ be a real-valued function on I . Then ϕ is convex (resp. strictly
convex) on I if and only if whenever c is in the interior of I a function λc,ϕ defined by

λc,ϕ(x) =
ϕ(x)−ϕ(c)

x− c
(x ∈ I \ {c})

is monotone increasing (resp. strictly monotone increasing) on I \ {c} .

The following result is our key lemma in which one can feel an atmosphere of
Chebyshev’s inequality for sequences of real numbers. This follows from the proof of
[3, Lemma 5] but we will give a proof for the sake of completeness.

LEMMA 2. Let ϕ and ψ be two functions on I such that ψ −ϕ is monotone
increasing on I and ψ is convex on I . Then

((1− t)ϕ + tψ)((1− t)x+ ty)� (1− t)ϕ(x)+ tψ(y) (1)

holds for all t ∈ (0,1) and x,y ∈ I with x � y.
The equality holds in (1) if and only if x = y, otherwise, (ψ −ϕ)(x) = (ψ −ϕ)(z)

and λz,ψ(x) = λz,ψ(y) , where z = (1− t)x+ ty .

Proof. Suppose that ψ −ϕ is monotone increasing on I and ψ is convex on I .
Let x,y ∈ I with x � y and t ∈ (0,1) . If x = y , then (1) is clearly true. Indeed, the
equality holds in that case. Then we suppose that x < y and put z = (1− t)x+ ty . Since
x < z < y and ψ −ϕ is monotone increasing on I , it follows that

ψ(z)−ψ(x)−ϕ(z)+ ϕ(x) � 0.
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Also since ψ is convex on I , it follows from Lemma 1 that λz,ψ is monotone increasing
on I \ {z} . Therefore we have

(1− t)ϕ(x)+ tψ(y)− ((1− t)ϕ+ tψ)(z)
= t(ψ(y)−ψ(z))− (1− t)(ϕ(z)−ϕ(x))
� t(ψ(y)−ψ(z))− (1− t)(ψ(z)−ψ(x))

= t(1− t)(y− x)
(

ψ(y)−ψ(z)
(1− t)(y− x)

− ψ(z)−ψ(x)
t(y− x)

)

= t(1− t)(y− x)
(

ψ(y)−ψ(z)
y− z

− ψ(x)−ψ(z)
x− z

)
= t(1− t)(y− x)(λz,ψ(y)−λz,ψ(x))
�0,

and so (1) holds. Moreover, we see from the above equations that the equality holds in
(1) if and only if

t(ψ(y)−ψ(z))− (1− t)(ϕ(z)−ϕ(x)) = t(ψ(y)−ψ(z))− (1− t)(ψ(z)−ψ(x))

and
t(1− t)(y− x)(λz,ψ(y)−λz,ψ(x)) = 0.

Since t(1− t)(x− y) �= 0, it follows that the equality holds in (1) if and only if (ψ −
ϕ)(x) = (ψ −ϕ)(z) and λz,ψ(x) = λz,ψ(y) . �

REMARK 1. If we replace “increasing” and “convex” by “decreasing” and “con-
cave”, respectively in Lemma 2, then we obtain the reverse inequality of (1)

3. Main result

The following result is an n -version of Lemma 2 but it is also a generalization of
a weighted Chebyshev’s inequality for sequences of real numbers (see Corollary 1).

THEOREM 1. Let I and J be two intervals of R . Let n � 2 and w1, ...,wn > 0
with ∑n

i=1 wi = 1 . Suppose that ϕ1, ...,ϕn are real-valued functions on I such that
∑k

i=1 wi(ϕk+1 − ϕi) is monotone increasing on I and ϕk+1 is convex on I for each
k = 1, ...,n−1 , and that ψ1, ...,ψn are functions from J to I such that ∑k

i=1 wi(ψk+1−
ψi) � 0 on J for each k = 1, ...,n−1 . Then

n

∑
i=1

wiϕi ◦
n

∑
i=1

wiψi �
n

∑
i=1

wi(ϕi ◦ψi) (2)

holds on J .
If ψ1 = ... = ψn , then the equality holds in (2) . Conversely if the equality holds in

(2) , then ψ1 = ... = ψn , under the assumption that either ∑k
i=1 wi(ϕk+1−ϕi) is strictly

monotone increasing on I or ϕk+1 is strictly convex on I for each k = 1, ...,n−1 .
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Proof. Let x ∈ J be arbitrary. Put xk = ψk(x) and W (k) = ∑k
i=1 wi for each k =

1, ...,n . By hypothesis, we see easily that ∑k
i=1

wi
W (k)xi � xk+1 and ϕk+1 −∑k

i=1
wi

W (k)ϕi

is monotone increasing on I for each k = 1, ...,n− 1. Since ϕk+1 is convex on I , it
follows from Lemma 2 that

W (k)
W (k+1)

k

∑
i=1

wi

W (k)
ϕi

(
k

∑
i=1

wi

W (k)
xi

)
+

wk+1

W (k+1)
ϕk+1(xk+1)

�
k+1

∑
i=1

wi

W (k+1)
ϕi

(
k+1

∑
i=1

wi

W (k+1)
xi

)

for each k = 1, ...,n−1. These inequalities yield easily the following inequalities:

k

∑
i=1

wiϕi

(
k

∑
i=1

wi

W (k)
xi

)
+wk+1ϕk+1(xk+1) �

k+1

∑
i=1

wiϕi

(
k+1

∑
i=1

wi

W (k+1)
xi

)

for each k = 1, ...,n−1. Therefore we have

n

∑
i=1

wiϕi(xi) �
2

∑
i=1

wiϕi

(
2

∑
i=1

wi

W (2)
xi

)
+

n

∑
i=3

wiϕi(xi)

�
3

∑
i=1

wiϕi

(
3

∑
i=1

wi

W (3)
xi

)
+

n

∑
i=4

wiϕi(xi)

...

�
n

∑
i=1

wiϕi

(
n

∑
i=1

wi

W (n)
xi

)

=
n

∑
i=1

wiϕi

(
n

∑
i=1

wixi

)

and then
n

∑
i=1

wi(ϕi ◦ψi)(x) �
(

n

∑
i=1

wiϕi ◦
n

∑
i=1

wiψi

)
(x).

Since x is arbitrary, we obtain the desired inequality (2).
Now if ψ1 = ... = ψn holds, we can easily verify that the equality holds in (2).
Conversely suppose that the equality holds in (2) and that either ∑k

i=1 wi(ϕk+1

−ϕi) is strictly monotone increasing on I or ϕk+1 is strictly convex on I for each
k = 1, ...,n−1. Then the first assumtion implies that

k

∑
i=1

wiϕi

(
k

∑
i=1

wi

W (k)
xi

)
+wk+1ϕk+1(xk+1) =

k+1

∑
i=1

wiϕi

(
k+1

∑
i=1

wi

W (k+1)
xi

)
,
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that is,

W (k)
W (k+1)

k

∑
i=1

wi

W (k)
ϕi

(
k

∑
i=1

wi

W (k)
xi

)
+

wk+1

W (k+1)
ϕk+1(xk+1)

=
k+1

∑
i=1

wi

W (k+1)
ϕi

(
k+1

∑
i=1

wi

W (k+1)
xi

)

must hold for each k = 1, ...,n−1 by the above argument. By Lemma 2, we have that
for any k = 1, ...,n−1, ∑k

i=1
wi

W (k)xi = xk+1 , otherwise,

(
ϕk+1−

k

∑
i=1

wi

W (k)
ϕi

)
(y) =

(
ϕk+1−

k

∑
i=1

wi

W (k)
ϕi

)
(z) (3)

and
λz,ϕk+1(xk+1) = λz,ϕk+1(y) (4)

where y = ∑k
i=1

wi
W(k)xi and z = ∑k+1

i=1
wi

W(k+1)xi . However since y < z < xk+1 , it follows
that either (3) or (4) do not occur for each k = 1, ...,n− 1 by the second assumption
(see the strict case of Lemma 1) and then ∑k

i=1
wi

W (k)xi = xk+1 must hold for any k =
1, ...,n−1. This implies easily that x1 = ... = xn , that is, ψ1(x) = ... = ψn(x) . Since x
is arbitrary, it follows that ψ1 = ... = ψn . �

REMARK 2. (i) If we replace “increasing” and “convex” by “decreasing” and
“concave”, respectively in Theorem 1, then we obtain the reverse inequality of (2)

(ii) If all ϕi+1 − ϕi (1 � i � n − 1) are monotone increasing on I , then all
∑k

i=1 wi(ϕk+1 −ϕi)(1 � k � n− 1) also are monotone increasing on I . However the
converse does not hold (cf. Proof of Corollary 1 and Proposition 1).

(iii) If ψ1 � ... � ψn on J , then ∑k
i=1 wi(ψk+1 −ψi) � 0 for all k = 1, ...,n− 1.

However the converse does not hold (cf. Proof of Corollary 1 and Proposition 1).

The following inequality may be a weighted Chebyshev’s inequality for sequences
of real numbers.

COROLLARY 1. If both sequences {x1, ...,xn} and {y1, ...,yn} in R are simulta-
neously monotone increasing or monotone decreasing, then(

n

∑
i=1

wixi

)(
n

∑
i=1

wiyi

)
�

n

∑
i=1

wixiyi

for all w1, ...,wn > 0 with ∑n
i=1 wi = 1 .

Proof. Suppose that both sequences {x1, ...,xn} and {y1, ...,yn} are simultane-
ously monotone increasing. Put ϕi(x) = xix and ψi(x) = yi for each i = 1,2, ...,n and
x ∈ R . Then we have ψ1 � ... � ψn on R and all ϕi+1 −ϕi are monotone increasing
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on R and all ϕi are convex on R . Therefore the desired result follows immediately
from Theorem 1 and Remark 2.

For the decreasing case, we also obtain the same result replacing xi and yi by −xi

and −yi , respectively in the above argument. �
REMARK 3. In case of w1 = ... = wn = 1

n , it is well-known that this inequality
follows from the rearrangement inequality. Also there are other proofs ([2, p. 108] and
so on).

4. Applications

For each ϕ ∈Csm(I) , t ∈ [0,1] and x,y ∈ I , put

x∇t,ϕ y = ϕ−1((1− t)ϕ(x)+ tϕ(y)).

This can be regarded as a ϕ –mean of {x,y} with respect to a probabilitymeasure which
represents a weighted arithmetic mean (1− t)x+ ty .

For each ϕ ∈Csm(I) , denote by ∇ϕ a three variable real-valued function:

(t,x,y) → x∇t,ϕ y

on (0,1)×{(x,y) ∈ I2 : x �= y} . For each ϕ ,ψ ∈ Csm(I) , we write ∇ϕ � ∇ψ (resp.
∇ϕ < ∇ψ ) if

x∇t,ϕ y � x∇t,ψ y (resp. x∇t,ϕ y < x∇t,ψ y)

for all t ∈ (0,1) and x,y ∈ I with x �= y .

REMARK 4. The continuity of ϕ implies that ∇ϕ � ∇ψ (resp. ∇ϕ < ∇ψ ) if and
only if

x∇ 1
2 ,ϕ y � x∇ 1

2 ,ψ y (resp. x∇ 1
2 ,ϕ y < x∇ 1

2 ,ψ y)

for all x,y ∈ I with x �= y .

The following lemma is just [3, Theorem 1] which asserts that a ϕ –mean function:
∇ϕ → Mϕ( f ) is well-defined and order-preserving, and simultaneously gives a new
interpretation of Jensen’s inequality.

LEMMA 3. Suppose that f is non-constant on I and ϕ ,ψ ∈Csm, f (I) . Then

(i) If ∇ϕ � ∇ψ holds, then Mϕ ( f ) � Mψ ( f ) .

(ii) If ∇ϕ < ∇ψ holds, then Mϕ( f ) < Mψ( f ) .

The following result is an n -version of [3, Theorem 3–(i)] and asserts that a quasi-
arithmetic mean function: ϕ → Mϕ( f ) has an n -version of the concavity on a suitable
convex subset of Csm(I) .

THEOREM 2. Let n � 2 and w1, ...,wn > 0 with ∑n
i=1 wi = 1 . Suppose that f is

non-constant on I and that ϕ1, ...,ϕn ∈Csm, f (I) are such that
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(i) ∇ϕ1 � ∇ϕ2 � ... � ∇ϕn ,

(ii) all ϕ1,∑k
i=1 wi(ϕk+1 −ϕi)(k = 1, ...,n−1) are monotone increasing on I ,

(iii) all ϕ2, ...,ϕn are convex on I .

Then ∑n
i=1 wiϕi is strictly monotone increasing on I and

n

∑
i=1

wiMϕi( f ) � M∑n
i=1 wiϕi( f ) (5)

holds.
If Mϕ1( f ) = ... = Mϕn( f ) , then the equality holds in (5) . Conversely if the

equality holds in (5) , then Mϕ1( f ) = ... = Mϕn( f ) , under the assumption that either

∑k
i=1 wi(ϕk+1 −ϕi) is strictly monotone increasing on I or ϕk+1 is strictly convex on I

for any k = 1, ...,n−1 .

Proof. Put x1 = Mϕ1( f ), ...,xn = Mϕn( f ) . Then all x1, ...,xn are in I and it fol-
lows that x1 � ... � xn from the condition (i) and Lemma 3. Moreover put ψ1(x) =
x1, ...,ψn(x) = xn for each x ∈ I . Since ψ1 � ... � ψn on I and then ∑k

i=1 wi(ψk+1 −
ψi) � 0 on I for each k = 1, ...,n− 1, it follows from the conditions (ii), (iii) and
Theorem 1 that (

n

∑
i=1

wiϕi

)(
n

∑
i=1

wixi

)
�

n

∑
i=1

wiϕi(xi). (6)

Since ϕ1 is strictly monotone increasing on I and ϕ2−ϕ1 is monotone increasing on I ,
it follows that ϕ2 also is strictly monotone increasing on I . Then w1ϕ1+w2ϕ2

w1+w2
is strictly

monotone increasing on I . Moreover since w1(ϕ3 −ϕ1)+ w2(ϕ3 −ϕ2) is monotone
increasing on I , it follows that ϕ3− w1ϕ1+w2ϕ2

w1+w2
is monotone increasing on I and hence

ϕ3 also is strictly monotone increasing on I . Similarly, we see that all ϕ1, ...,ϕn are
strictly monotone increasing on I . Thus ∑n

i=1 wiϕi also is strictly monotone increasing
on I . Put u = M∑n

i=1 wiϕi( f ) and then u ∈ I . Since

(
n

∑
i=1

wiϕi

)
(u) =

∫
(

n

∑
i=1

wiϕi)◦ f dμ =
n

∑
i=1

wi

∫
ϕi ◦ f dμ =

n

∑
i=1

wiϕi(xi),

it follows from (6) that(
n

∑
i=1

wiϕi

)(
n

∑
i=1

wixi

)
�
(

n

∑
i=1

wiϕi

)
(u). (7)

Since ∑n
i=1 wiϕi is strictly monotone increasing on I , it follows from (7) that ∑n

i=1 wixi �
u , that is, ∑n

i=1 wiMϕi( f ) � M∑n
i=1 wiϕi( f ) .

Note that the equality holds in (5) if and only if the equality holds in (7) and hence
(6). Therefore if Mϕ1( f ) = ... = Mϕn( f ) and hence x1 = ... = xn , then the equality
holds in (6) and hence (5).
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Conversely suppose that the equality holds in (5) and that either ∑k
i=1 wi(ϕk+1−ϕi)

is strictly monotone increasing on I or ϕk+1 is strictly convex on I for any k = 1, ...,n−
1. Then the equality holds in (6) and hence it follows from Theorem1 that ψ1 = ... = ψn

on I , that is, Mϕ1( f ) = ... = Mϕn( f ) . �
The following result is an n -version of [3, Theorem 3–(ii)] and asserts that a quasi-

arithmetic mean function: ϕ → Mϕ( f ) has an n -version of the convexity on a suitable
convex subset of Csm(I) .

THEOREM 3. Let n � 2 and w1, ...,wn > 0 with ∑n
i=1 wi = 1 . Suppose that f is

non-constant on I and that ϕ1, ...,ϕn ∈Csm, f (I) are such that

(i) ∇ϕ1 � ∇ϕ2 � ... � ∇ϕn ,

(ii) all ∑k
i=1 wi(ϕk+1−ϕi)(k = 1, ...,n−1) are monotone increasing on I ,

(iii) all ϕ2, ...,ϕn are monotone decreasing and convex on I .

Then ∑n
i=1 wiϕi is strictly monotone decreasing on I and

n

∑
i=1

wiMϕi( f ) � M∑n
i=1 wiϕi( f ) (8)

holds.
If Mϕ1( f ) = ... = Mϕn( f ) , then the equality holds in (8) . Conversely if the

equality holds in (8) , then Mϕ1( f ) = ... = Mϕn( f ) , under the assumption that either

∑k
i=1 wi(ϕk+1 −ϕi) is strictly monotone increasing on I or ϕk+1 is strictly convex on I

for any k = 1, ...,n−1 .

Proof. Put x1 = Mϕ1( f ), ...,xn = Mϕn( f ) . Then all x1,x2, ...,xn are in I and it
follows that x1 � x2 � ... � xn from the condition (i) and Lemma 3. Moreover put
ψ1(x) = x1, ...,ψn(x) = xn for each x ∈ I . Since ψ1 � ... � ψn on I , it follows from
the conditions (ii), (iii) and Theorem 1 that (6) holds. Since ϕ2 is strictly monotone
decreasing on I and ϕ1 −ϕ2 is monotone decreasing on I , it follows that ϕ1 also is
strictly monotone decreasing on I . Then all ϕ1, ...,ϕn are strictly monotone decreasing
on I by the condition (iii). Thus ∑n

i=1 wiϕi also is strictly monotone decreasing on
I . Put u = M∑n

i=1 wiϕi( f ) and then u ∈ I . Therefore, as can be observed in the proof
of Theorem 2, it follows that (6) implies (7). Since ∑n

i=1 wiϕi is strictly monotone
decreasing on I , it follows from (7) that ∑n

i=1 wixi � u , that is, (8).
For the equality condition, it is just the same with the proof of Theorem 2. �

5. Examples

Let α ∈ R , n � 3, {a1, ...,an−1} ⊂ R and w1, ...,wn > 0 with ∑n
i=1 wi = 1. Let

{x1,x2, ...,xn} be a sequence defined by

x1 = α, xk+1 =
1

W (k)

k

∑
i=1

wixi +ak (k = 1, ...,n−1),
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where W (k) = ∑k
i=1 wi . Let 1 � k � n−1 and put Sk = ∑k

i=1 wixi . Then xk+1 = Sk+1−Sk
wk+1

and hence we have
Sk+1−Sk

wk+1
=

Sk

W (k)
+ak.

This implies easily that

Sk+1

W (k+1)
− Sk

W (k)
=

wk+1ak

W (k+1)
.

By addition, we obtain

Sk+1

W (k+1)
− S1

W (1)
=

k

∑
i=1

wi+1ai

W (i+1)
.

Since S1
W (1) = w1x1

w1
= x1 = α , it follows that

Sk+1 = W (k+1)α +W(k+1)
k

∑
i=1

wi+1ai

W (i+1)
.

Then we have

xk =
Sk −Sk−1

wk

=
W (k)α +W (k)∑k−1

i=1
wi+1ai
W (i+1) −W (k−1)α −W(k−1)∑k−2

i=1
wi+1ai
W(i+1)

wk

=
wkα +wk ∑k−2

i=1
wi+1ai
W(i+1) +W(k)wkak−1

W (k)

wk

=α +
k−2

∑
i=1

wi+1ai

W (i+1)
+ak−1

for each 3 � k � n . Of course, x1 = α,x2 = α +a1 . Moreover, we have

xk+1 − xk =α +
k−1

∑
i=1

wi+1ai

W (i+1)
+ak −α −

k−2

∑
i=1

wi+1ai

W (i+1)
−ak−1

=ak − w1 + ...+wk−1

w1 + ...+wk
ak−1.

for each 3 � k � n−1. However since

x3 − x2 = α +
w2

w1 +w2
a1 +a2−α −a1 = a2− w1

w1 +w2
a1,

it follows that
xk+1− xk = ak − w1 + ...+wk−1

w1 + ...+wk
ak−1

for each 2 � k � n−1.
Then the above observation implies easily the following
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PROPOSITION 1. Let α ∈ R , n � 3 and w1, ...,wn > 0 with ∑n
i=1 wi = 1 . Let

{a1, ...,an−1} be such that

0 < ak <
w1 + ...+wk−1

w1 + ...+wk
ak−1

for each 2 � k � n−1 . Then a sequence {x1, ...,xn} defined by

x1 = α,x2 = α +a1,xk = α +ak−1 +
k−2

∑
i=1

wi+1ai

w1 + ...+wi+1
(3 � k � n)

satisfies the following properties:

(i) xk+1 > 1
W(k) ∑k

i=1 wixi (k = 1, ...,n−1) .

(ii) If x2 > x3 > ... > xn > x1 .

REMARK 5. (i) Let n � 3, w1, ...,wn > 0 with ∑n
i=1 wi = 1 and {x1, ...,xn} a

strictly monotone increasing sequence of real numbers. Then by Theorem 1 and Propo-
sition 1, we can found many sequences {y1, ...,yn} such that(

n

∑
i=1

wixi

)(
n

∑
i=1

wiyi

)
<

n

∑
i=1

wixiyi

and
y2 > y3 > ... > yn > y1.

(ii) In Proposition 1, let α = 0, w1 = ... = wn = 1
n and ak = 1

k2 for each k = 1, ...,n−1.
In this time, we can easily see that

0 < ak <
w1 + ...+wk−1

w1 + ...+wk
ak−1 (2 � k � n−1)

and

x1 = 0,x2 = 1,xk =
1

(k−1)2 +
k−2

∑
i=1

1
i2(i+1)

(3 � k � n).

However we also see that

xk =
1

(k−1)2 +
1

k−1
−1+

k−2

∑
i=1

1
i2

(3 � k � n).

Therefore we have

x∞ ≡ lim
k→∞

xk =
∞

∑
i=1

1
i2
−1 =

π2

6
−1 (Euler,1735)

and hence

x2 = 1 > x3 =
3
4

> x4 > ... > x∞ =
π2

6
−1 > x1 = 0.
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