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A NEW INTERPRETATION OF CHEBYSHEV’S INEQUALITY FOR
SEQUENCES OF REAL NUMBERS AND QUASI-ARITHMETIC MEANS

YASUO NAKASUJI, KEISAKU KUMAHARA AND SIN-EI TAKAHASI

(Communicated by J. Matkowski)

Abstract. The main purpose of the paper is to give a new interpretation of Chebyshev’s inequality
for the sequences of real numbers from a standpoint of composition functions. As an application,
an n-version of the concavity (or the convexity) of a quasi-arithmetic mean function is obtained
under some conditions.

1. Introduction

The well-known Chebyshev’s inequality for sequences of real numbers may be as
follows:
(14 Fx0) 1+ o yn) Sn(xyr+ . Fx0n)

holds whenever both {x,...,x,} and {y1,...,yn} are simultaneously monotone increas-
ing or monotone decreasing. We give a generalization of this inequality from a stand-
point of composition functions (see Theorem 1). However, this generalization can be
regarded as a new interpretation of Chebyshev’s inequality.

Throughout the paper, we denote by (Q,%, 1), I and f a probability space, an
interval of R and a real-valued X-measurable function on Q with f(®) € I for almost
all o € Q, respectively. Let C(I) be the real linear space of all continuous real-valued
functions defined on I. Let C;, (I) (resp. C,,(I)) be the set of all ¢ € C(I) which is
strictly monotone increasing (resp. decreasing) on I. Put Cy,,(I) = CJ (1) UC;,,(I).
Then Cg,(I) denotes the set of all strictly monotone continuous functions on /.

Let Cyy (1) be the set of all ¢ € Cy,(I) with @ o f € L'(Q,Z,11). Let ¢ be an
arbitrary function of Cg,, ¢(I). Since ¢(I) is an interval of R and u is a probability
measure on Q, it follows that

/wofduep(I)-

Then there exists a unique real number My (f) € I such that [@o fdu = @(My(f)).
Since ¢ is one-to-one, it follows that

Mo(f) = ¢~ (/qoofdu)
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We call My(f) a ¢—quasi-arithmetic mean of f with respectto u (or simply, ¢ —mean
of f). These means are somewhat different from C'-means introducing by J. 1. Fujii,
et al. [1], but they include many known numerical means (cf. [3]).

As an application of Theorem 1, we show that a quasi-arithmetic mean function:
¢@ — My(f) has an n-version of the concavity on a suitable convex subset of Cgy, (1)
under some conditions (see Theorem 2). Also this function has an n-version of the con-
vexity on a suitable convex subset of Cg,, (1) under another conditions (see Theorem 3).

2. Lemmas

The first lemma describes a geometric property of convex function, but this will
be standard, so we will omit the proof (cf. [3, Lemma 1]).

LEMMA 1. Let ¢ be a real-valued function on I. Then @ is convex (resp. strictly
convex) on I if and only if whenever c is in the interior of I a function A, defined by

Aegl) = 2= (e gy g

X —

is monotone increasing (resp. strictly monotone increasing) on I\ {c}.

The following result is our key lemma in which one can feel an atmosphere of
Chebyshev’s inequality for sequences of real numbers. This follows from the proof of
[3, Lemma 5] but we will give a proof for the sake of completeness.

LEMMA 2. Let @ and Wy be two functions on I such that Yy — @ is monotone
increasing on I and  is convex on I. Then

(I=0)@+ry)(1 —1)x+1y) < (1 =1)@(x) +1y(y) (D

holds for all t € (0,1) and x,y € I with x < y.
The equality holds in (1) if and only if x =y, otherwise, (W — @)(x) = (v — 0)(z)
and Ay (x) = Ay (v), where z= (1 —1)x+1y.

Proof. Suppose that y — ¢ is monotone increasing on I and Y is convex on /.
Let x,y € [ with x <y and ¢ € (0,1). If x =y, then (1) is clearly true. Indeed, the
equality holds in that case. Then we suppose that x <y and put z= (1 —#)x+zy. Since
x < z<yand ¥y — ¢ is monotone increasing on /, it follows that

v(z) —w(x) — @(2) + @(x) > 0.
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Also since y is convex on I, it follows from Lemma I that A, y, is monotone increasing
on I\ {z}. Therefore we have

(1= 1)) +1w(y) — (1— o+ 1) (2)
—1(y ()~ w(2) — (1 - 1)(9(2) — 9(x)

> (W) — (@) — (1 - )W) - w()

_ v(y) -yl w(z) -y
‘““”“‘”((l—zn—x)‘ =) )
(1)) ("’(”;j;”(z) - "’(’“xj;”(z>)
—1(1— 1)y — ) () — ey (1))

207

and so (1) holds. Moreover, we see from the above equations that the equality holds in
(1) if and only if

Hy(y) —v(2) —(1=1)(9(2) — o) =t(y(y) — y(z) — (1 —1)(y(z) — y(x))
and
t(1=1)(y = x)(Aey(y) — Ay (x)) = 0.

Since #(1 —1)(x—y) # 0, it follows that the equality holds in (1) if and only if (y —
@)(x) = (¥ = 9)(z) and Ay (x) = A y(v). O

REMARK 1. If we replace “increasing” and “convex” by “decreasing” and “‘con-
cave”, respectively in Lemma 2, then we obtain the reverse inequality of (1)

3. Main result

The following result is an n-version of Lemma 2 but it is also a generalization of
a weighted Chebyshev’s inequality for sequences of real numbers (see Corollary 1).

THEOREM 1. Let I and J be two intervals of R. Let n > 2 and wy,...,w; >0
with Y w; = 1. Suppose that @y, ...,@, are real-valued functions on I such that
2{-“: | Wi @r+1 — @;) is monotone increasing on I and @y is convex on I for each
k=1,....,n—1, and that y,...,y, are functions from J to I such that Zlew,-(l[/kﬂ —
;) =2 0o0nJ foreachk=1,...n—1. Then

Y wigio Y, wiy; < Z (@iow;) 2)
i=1 i=1 -1
holds on J.
If yi = ... =, then the equality holds in (2). Conversely if the equality holds in
(2), then i = ... = W, under the assumption that either Y*_, wi(@g1 — @;) is strictly

monotone increasing on I or Q1 is strictly convex on I foreach k=1,....n—1.
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Proof Let x € J be arbitrary. Put x; = y/k( ) and W (k) = XX, w; for each k=
1,...,n. By hypothesis, we see easily that Zl 1 W ) Xi < xpyp and @y — Zi‘ 1 W( )qol
is monotone increasing on [ for each k=1,...,n — 1. Since ¢ is convex on I, it
follows from Lemma 2 that

i=1
L, KLy,
> ; wik+ 1) (2; Wk+ 1)’”)
foreach k =1,...,n— 1. These inequalities yield easily the following inequalities:
k L k+1 Ly,
Ewi(Pi (lzi 0 ) + Wit 1 Qg1 (Xe11) 2 Wi Qi (2 W )

foreach k =1,...,n— 1. Therefore we have

W (k) & wi &ow Wit
W(k+1) ; Wi ” (2 W(k)’”) * W(k—kll)(pkﬂ(xk“)

i=3

3 w; n

i=4

and then
> wil@iow)(x <2wl<pl ZWszz>
i=1

Since x is arbitrary, we obtain the desired inequality (2).
Now if y; = ... = y, holds, we can easily verify that the equality holds in (2).
Conversely suppose that the equality holds in (2) and that either 2{-‘: Wi Qrr1
— ;) is strictly monotone increasing on I or ¢y is strictly convex on I for each
k=1,...,n—1. Then the first assumtion implies that

k Koo, k+1 KL,
ZIWi(pi ZW() + Wi 1 Qa1 (K1) sz(Pz ZW

=
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that is,

W (k) & wi &ow Wit
WD Z W " (21 W(k)x’) s 1y P ()

k+1 Wi k+1 w;
=2 5 ® (2 Wk + 1)’”)

i=1 i=1

must hold for each k = 1,...,n — 1 by the above argument. By Lemma 2, we have that
forany k=1,...,n—1, 3%, %xi = X1, otherwise,

ko Kooy,
<(Pk+1 - 2 Wlk)(p’) (y) = <(Pk+1 - 2 W‘Pz‘) (z) 3)

i=1 i=1

and
AZ,(Pkﬂ (karl) = A‘Z7(Pk+1 (})) “4)

where y = Y% | %xi and z =35/ W}q. However since y < z < Xx 1, it follows

that either (3) or (4) do not occur for each k = 1,...,n — 1 by the second assumption

(see the strict case of Lemma 1) and then Zf?: 1 %xi = X+ must hold for any k =

1,...,n— 1. This implies easily that x; = ... = x,, thatis, y;(x) = ... = y,(x). Since x
is arbitrary, it follows that y; = ... = y,. U

REMARK 2. (i) If we replace “increasing” and “convex” by “decreasing” and
“concave”, respectively in Theorem 1, then we obtain the reverse inequality of (2)

(i) If all @i+ — @i (1 < i< n—1) are monotone increasing on I, then all
Sk wi@er1 — @) (1 <k < n—1) also are monotone increasing on I. However the
converse does not hold (cf. Proof of Corollary 1 and Proposition 1).

(iii) If y; < ... <y on J, then 35, wi(y1 —wi) =0 forall k=1,...,n—1.
However the converse does not hold (cf. Proof of Corollary 1 and Proposition 1).

The following inequality may be a weighted Chebyshev’s inequality for sequences
of real numbers.

COROLLARY 1. Ifboth sequences {xi,...,x,} and {y1,...,yn} in R are simulta-
neously monotone increasing or monotone decreasing, then

n n n
Zwix,- Zwiy,- < Zwixiyi
i=1 i=1 i=1
Sforall wi,...,w, >0 with 3!, w; = 1.
Proof. Suppose that both sequences {xi,...,x,} and {yi,...,yn} are simultane-

ously monotone increasing. Put @;(x) = x;x and y;(x) =y; foreach i=1,2,....n and
x € R. Then we have y; < ... <y, on R and all ¢;;| — ¢; are monotone increasing
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on R and all ¢; are convex on R. Therefore the desired result follows immediately
from Theorem 1 and Remark 2.

For the decreasing case, we also obtain the same result replacing x; and y; by —x;
and —y;, respectively in the above argument. [l

REMARK 3. Incase of w) = ... =w, = %, it is well-known that this inequality
follows from the rearrangement inequality. Also there are other proofs ([2, p. 108] and
SO on).

4. Applications
For each ¢ € Cy,(I), t € [0,1] and x,y €I, put

2Vipy =0~ (1-1)p() +19()).

This can be regarded as a ¢ —mean of {x,y} with respect to a probability measure which
represents a weighted arithmetic mean (1 —7)x+ty.
For each ¢ € Cy,,(I), denote by V,, athree variable real-valued function:

(t7x7y) _>xvt.,q)y

on (0,1) x {(x,y) € I : x # y}. For each ¢,y € Cyu(I), we write V¢ <V, (resp.
Vo <Vy)if
xVipy <xViyy (resp.xVipy <xV,yy)

forall r € (0,1) and x,y €I with x # y.

REMARK 4. The continuity of ¢ implies that V, <V, (resp. Vy < Vy,) if and
only if
xV%@y ng%Wy (resp.xV%@y <xV%7Wy)

forall x,y € I with x # y.

The following lemma is just [3, Theorem 1] which asserts that a ¢ —mean function:
Vo — My(f) is well-defined and order-preserving, and simultaneously gives a new
interpretation of Jensen’s inequality.

LEMMA 3. Suppose that f is non-constant on I and @,y € Cyy ¢(I). Then
(i) If Vo < Vy holds, then My (f) < My/(f).
(ii) If Vo < Vy holds, then My(f) < My(f).

The following result is an n-version of [3, Theorem 3—(i)] and asserts that a quasi-
arithmetic mean function: @ — My (f) has an n-version of the concavity on a suitable
convex subset of Cgy,(1).

THEOREM 2. Let n > 2 and wy,...,wp, >0 with ¥} | w; = 1. Suppose that f is
non-constant on I and that @\, ..., @, € Cyy r(I) are such that
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(i) Vq)l < V(PZ < vee g Vq)n’
(it) all @1, 3% wi(ges1 — @) (k=1,...,n — 1) are monotone increasing on I,
(iii) all @a,...,Q, are convexon I.

Then Y., wi@; is strictly monotone increasing on I and

ZWiM(Pi (f) < MZ,’-':1Wi<Pi (f) o)
i=1
holds.
If My, (f) = ... = My, (f), then the equality holds in (5). Conversely if the
equality holds in (5), then My, (f) = ... = My, (f), under the assumption that either

2{-“: Wi Qrr1 — @) is strictly monotone increasing on I or @y is strictly convex on I
forany k=1,...n—1.

Proof. Put x; = Mgy, (f),....xn = Mg, (f). Then all xq,...,x, are in I and it fol-
lows that x; < ... < x, from the condition (i) and Lemma 3. Moreover put y;(x) =
X1y.eey Wn(x) = x, for each x € I. Since y; < ... < ¥, on [ and then Zlewi(u/kH —
y;) 20 on I for each k= 1,...,n— 1, it follows from the conditions (ii), (iii) and

Theorem 1 that
(Z Wi(Pi> (Z wm) < D wigi(xi).- (6)
i=1 i=1 i=1

Since ¢ is strictly monotone increasing on I and ¢, — ¢ is monotone increasing on /,

it follows that ¢, also is strictly monotone increasing on I. Then XL2%2%2 ¢ ctrictly
wi+wy

monotone increasing on I. Moreover since wi (@3 — @) + wa (@3 — @) is monotone

increasing on I, it follows that @3 — % is monotone increasing on / and hence

(@3 also is strictly monotone increasing on /. Similarly, we see that all ¢y,..., @, are

strictly monotone increasing on 7. Thus Y7 | w;¢; also is strictly monotone increasing

on . Put u=Ms» ,q(f) and then u €. Since

(i Wi(Pi> (u) = /(i wi@i)o fdu = iwi/(Piofd.u = iwi(Pi(xi)a
i=1 i=1 i=1 i=1

it follows from (6) that

(iwi%) (i Wixi> < (i Wi‘Pz‘) (u). 7
i=1 i=1 i=1

Since Y, w;@; is strictly monotone increasing on /, it follows from (7) that Y7 | w;x; <
u, thatis, 3 wiMo, (f) < Myn e, (f)-

Note that the equality holds in (5) if and only if the equality holds in (7) and hence
(6). Therefore if My, (f) = ... = My, (f) and hence x| = ... = x,, then the equality
holds in (6) and hence (5).
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Conversely suppose that the equality holds in (5) and that either 2{-‘: Wi Ok 1 — i)
is strictly monotone increasing on I or ¢ is strictly convexon [ forany k=1,...,n—
1. Then the equality holds in (6) and hence it follows from Theorem 1 that y; = ... =y,
on I, thatis, My, (f) = ... =My, (f). O

The following result is an n-version of [3, Theorem 3—(ii)] and asserts that a quasi-
arithmetic mean function: ¢ — My (f) has an n-version of the convexity on a suitable
convex subset of Cy,,,(1).

THEOREM 3. Let n > 2 and wy,...,w, >0 with ¥}, w; = 1. Suppose that f is
non-constant on I and that @\, ..., @, € Cyy r(I) are such that

(i) Vq)l < V(PZ < e g Vq)n’
(it) all ¥*_  wi(@ry1 — @) (k=1,...,n— 1) are monotone increasing on I,
(iii) all @a,...,Q, are monotone decreasing and convex on 1.

Then Y, wi@; is strictly monotone decreasing on I and

ZWiMwi (f) = MZ}’:IWI'%‘ (f) ®)
i=1
holds.
If My, (f) = ... = My, (f), then the equality holds in (8). Conversely if the
equality holds in (8), then My, (f) = ... = My, (f), under the assumption that either

2{-“: | Wi @1 — @) is strictly monotone increasing on I or @y is strictly convex on 1
forany k=1,..,n—1.

Proof. Put x; = Mgy, (f),....xn = Mg, (f). Then all xy,x2,...,x, are in I and it
follows that x; < x < ... < x;,; from the condition (i) and Lemma 3. Moreover put
Y1 (x) = x1, ..., Wu(x) = x, foreach x € I. Since y; < ... < ¥, on [, it follows from
the conditions (ii), (iii) and Theorem 1 that (6) holds. Since ¢, is strictly monotone
decreasing on I and ¢; — ¢, is monotone decreasing on I, it follows that ¢; also is
strictly monotone decreasing on /. Then all ¢y, ..., @, are strictly monotone decreasing
on I by the condition (iii). Thus Y, w;¢; also is strictly monotone decreasing on
1. Put u=Msn 0 (f) and then u € I. Therefore, as can be observed in the proof
of Theorem 2, it follows that (6) implies (7). Since X_, w;¢; is strictly monotone
decreasing on 1, it follows from (7) that > | w;x; > u, that is, (8).

For the equality condition, it is just the same with the proof of Theorem 2. [J

5. Examples

Let ¢« € R, n >3, {ai,...,an—1} CR and wy,...,w, >0 with 3", w; = 1. Let
{x1,x2,...,x4} be a sequence defined by

1 k
— Zwix,-—f—ak (k=1,..,n—1),

X1 = O, X1 = 0
i=1
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where W (k) = Zk (wi. Let 1 <k<n—1 andput Sk—z (wixi. Then x| = W
and hence we have

Sk+1— S S
RLTOk Ok o
Wit 1 W (k)
This implies easily that
Skt Sk Wik

Wk+1) Wk) WkE+1)

By addition, we obtain

Sk i Wit1di
Wk+1) SW(i+1)
Since % = infl = x1 = o, it follows that
Spt = (k+1)a+W(k+1)2%
Then we have
Sk Sk
Xp=—
Wi
 Wma+WER) S gt — Wk - Da—Wk- 1D E5] i
= o
wio +wy Sh2 Ty + W (k) S
= o

W+1(1
OC-FE A +ak,1

for each 3 <k < n. Of course, x; = o¢,x = & + a; . Moreover, we have

_ k=2
Wit1di Wit1di
Xpt] =X =0+ D) ———<+ @G —0— D) ———~ — k|
Z W(i+1) g{W(H—l)
W1+...+Wk_1
=ay— —————————aj—1.
Wi+ ...+ wi
foreach 3 <k <n—1. However since
wi
X3 —Xp) =0+ ar+a—o—ay =ap; — ay,
w1 +wp w1 +wy

it follows that
N N u W1+...+Wk,1a
k+1 — Xk = Qg — ————————Qj—|
+ Wi+ ...+ wi

foreach2 <k<n—1.
Then the above observation implies easily the following
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PROPOSITION 1. Let a € R, n >3 and wy,...,w, >0 with Y} jw; =1. Let
{ai,...,an—1} be such that
Wi+ .o Weq

O<aqp < ———a;
Wi+ ...+ wy

Joreach 2 <k <n—1. Then a sequence {xi,...,x,} defined by
k=2

X1 =0,xy =0 +ay,xy = 0+ ag_ 1+27
1Wl+ +Wl+l

Wir1a;
i i Skﬂl’l)

satisfies the following properties:
(i) Xpq1 > ﬁz{;l wix; (k=1,...,n—1).
(i) If xp > x3 > ... > x5 > X1.

REMARK 5. (i) Let n > 3, wy,...,w, >0 with 37 ,w; =1 and {x,...,x,} a
strictly monotone increasing sequence of real numbers. Then by Theorem 1 and Propo-
sition 1, we can found many sequences {yj,...,yn} such that

n n n
(2 w,-x,-) (2 w,-y,-) < 2 WiXiyi
i=1 i=1 i=1

Y2>y3>...>Yn > V1.

and

(i) In Proposition I,let o« =0, wy =... =w, = % and a; = kLZ foreach k=1,...n—1.
In this time, we can easily see that
Wi+ ... Wi

O<gp< ——— a1 (2<k<<n—1
k W1+ oW et )

and
1 kiz 1 (
(k—=1)2 & i2(i+1)

X1 ZO,)CQ = l,xk =

However we also see that

1 “1
—1+Y 5 (3<k<n).

Xp=——+
(k—1)2 parii 2

Therefore we have

1 n?
a2 1= s 1 (Euler,1735)

Mz

Xoo = hm X =
ke i l

and hence s

3 T
x2=1>x3=Z>x4>...>xm=€—l>x1:0.
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