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SOME INTEGRAL INEQUALITIES IN TWO

INDEPENDENT VARIABLES ON TIME SCALES

TONGLIN WANG AND RUN XU

(Communicated by A. Peterson)

Abstract. The aim of the present paper is to investigate some integral inequalities in two in-
dependent variable on time scales, which unify and extend some integral inequalities and their
corresponding discrete analogues. The inequalities given here can be used as handy tools to
study the properties of certain partial dynamic equations on time scales.

1. Introduction

Following Hilger’s landmark papers [1] , there have been plenty of references fo-
cused on the theory of time scales in order to unify continuous and discrete analysis.
Recently, many authors have extended some useful dynamic equations on time scale,
for example [2− 10] and [12,13] , and the references therein. In this paper, we in-
vestigate some integral inequalities in two independent variable on time scales, which
extended some discrete inequalities by Li [10] and Meng and Ji [11] to arbitrary time
scales. The inequalities given here can be used as handy tools in the qualitative theory
of certain classes of delay dynamic equations on time scales.

Throughout this paper, a knowledge and understanding of time scale notation is
assumed. For an excellent introduction to the calculus on time scales, we refer the
reader to monographs [2,3] .

2. Some preliminaries

In what follows, R denotes the set of real numbers, R+ = [0,∞),Z denotes the
set of integers, N0 ={0,1,2,...} denotes the set of nonnegative integers, T is an arbitrary
time scale, C rd denotes the set of rd-continuous, R denotes the set of all regressive
and rd-continuous functions, and R+ = {p∈R : 1+μ(t)p(t) > 0,t ∈T} . Throughout
this paper, we always assume that T1 and T2 are time scales, t0 ∈ T1 , s0 ∈ T2 , t � t0 ,
s � s0 and Ω = T1 ×T2 .

The following lemmas are very useful in our main results.
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LEMMA 2.1. ([2]) Suppose u(t),b(t) ∈ Crd ,a(t) ∈ R+ , then

uΔ(t) � a(t)u(t)+b(t), t ∈ T,

implies

u(t) � u(t0)ea(t,t0)+
∫ t

t0
ea(t,σ(τ))b(τ)Δτ, t ∈ T.

LEMMA 2.2. ([9]) Let u(t), f (t),g(t) ∈ Crd , u(t), f (t) and g(t) be nonnegative.
If f (t) is nondecreasing, then

u(t) � f (t)+
∫ t

t0
g(τ)u(τ)Δτ, t ∈ T,

implies
u(t) � f (t)eg(t,t0), t ∈ T.

LEMMA 2.3. ([11]) Assume that p � q > 0,a � 0 , then

a
q
p � q

p
k

q−p
p a+

p−q
p

k
q
p , k > 0.

3. Main results

In this section, we study some integral inequalities on time scales. We always
assume that p,q,r are constants and p � q > 0, p � r > 0.

THEOREM 3.1. Assume that u(t,s) , a(t,s) , b(t,s) , f (t,s) , g(t,s) , h(t,s) are
nonnegative functions that are right-dense continuous for (t,s) ∈ Ω and a(t,s) is non-
decreasing. Then

up(t,s) � a(t,s)+b(t,s)
∫ t

t0

∫ s

s0
[ f (x,y)uq(x,y)

+g(x,y)ur(x,y)+h(x,y)]ΔyΔx, (t,s) ∈ Ω,

(1)

implies

u(t,s) �
[
a(t,s)+b(t,s)

∫ t

t0
B(t)eA(·,s)(t,σ(x))Δx

] 1
p

, (t,s) ∈ Ω, (2)

where

A(t,s) =
∫ s

s0

(
q
p
k

q−p
p f (t,y)+

r
p
k

r−p
p g(t,y)

)
b(t,y)Δy,

B(t,s) =
∫ s

s0

[
f (t,y)

(
q
p
k

q−p
p a(t,y)+

p−q
p

k
q
p

)

+g(t,y)
(

r
p
k

r−p
p a(t,y)+

p− r
p

k
r
p

)
+h(t,y)

]
Δy. (t,s) ∈ Ω.

(3)
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Proof. Define a function v(t,s) by

v(t,s) =
∫ t

t0

∫ s

s0
[ f (x,y)uq(x,y)+g(x,y)ur(x,y)+h(x,y)]ΔyΔx. (4)

Then (3.1) can be restated as

up(t,s) � a(t,s)+b(t,s)v(t,s). (5)

Using Lemma 2.3, for any k > 0 we easily obtain

uq(t,s) � [a(t,s)+b(t,s)v(t,s)]
q
p � q

p
k

q−p
p [a(t,s)+b(t,s)v(t,s)]+

p−q
p

k
q
p ,

ur(t,s) � [a(t,s)+b(t,s)v(t,s)]
r
p � r

p
k

r−p
p [a(t,s)+b(t,s)v(t,s)]+

p− r
p

k
r
p .

(6)

It follows from (3.4) and (3.6) that

vΔt(t,s) �
∫ s

s0

{
f (t,y)

[
q
p
k

q−p
p

(
a(t,y)+b(t,y)v(t,y)

)
+

p−q
p

k
q
p

]

+g(t,y)
[

r
p
k

r−p
p

(
a(t,y)+b(t,y)v(t,y)

)
+

p− r
p

k
r
p

]
+h(t,y)

}
Δy

� B(t,s)+A(t,s)v(t,s), (t,s) ∈ Ω,

(7)

where A(t,s) and B(t,s) are defined by (3.3) respectively. Obviously, A(t,s) , B(t,s)
∈Crd , A(t,s) and B(t,s) are nonnegative, A(t,s) is nondecreasing. Noting v(t0,s) = 0,
using Lemma 2.1, from (3.7) we have

v(t,s) �
∫ t

t0
eA(·,s)(t,σ(x))B(x,s)Δx. (8)

Therefore, the desired inequality (3.2) follows from (3.5) and (3.8) . �

REMARK 3.1. Theorem 3.1 extends some known inequalities on time scales. If
b(t,s) = 1, g(t,s) = h(t,s) = 0, then Theorem 3.1 reduces to [10, Theorem 2]. If
q = 1, b(t,s) = 1, h(t,s) = 0, then Theorem 3.1 reduces to the form of [10, Theorem
3].

COROLLARY 3.1. Let T = R , assume that u(t,s) , a(t,s) , b(t,s) , f (t,s) , g(t,s) ,
h(t,s) are nonnegative functions defined for t,s ∈ R+ , then the following inequality

up(t,s) � a(t,s)+b(t,s)
∫ t

0

∫ s

0
[ f (x,y)uq(x,y)+g(x,y)ur(x,y)+h(x,y)]dydx, (9)

for t,s ∈ R+ , implies

u(t,s) �
[
a(t,s)+b(t,s)B(t,s)exp

(∫ t

0
A(x,s)dx

)] 1
p

, t,s ∈ R+, (10)
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where

A(t,s) =
∫ s

0

(
q
p
k

q−p
p f (t,y)+

r
p
k

r−p
p g(t,y)

)
b(t,y)dy,

B(t,s) =
∫ t

0

∫ s

0

[
f (x,y)

(
q
p
k

q−p
p a(x,y)+

p−q
p

k
q
p

)

+g(x,y)
(

r
p
k

r−p
p a(x,y)+

p− r
p

k
r
p

)
+h(x,y)

]
dydx, t,s ∈ R+.

(11)

COROLLARY 3.2. Let T = Z and assume that u(t,s) , a(t,s) , b(t,s) , f (t,s) ,
g(t,s) , h(t,s) are nonnegative functions and a(t,s) is nondecreasing function defined
for t,s ∈ N0 , then the following inequality

up(t,s) � a(t,s)+b(t,s)
t−1

∑
x=0

s−1

∑
y=0

[ f (x,y)uq(x,y)+g(x,y)ur(x,y)+h(x,y)], t,s ∈ N0,

(12)
implies

u(t,s) �
{

a(t,s)+b(t,s)B(t,s)
t−1

∏
x=0

[
1+A(x,s)

]} 1
p

, t,s ∈ N0, (13)

where

A(t,s) =
s−1

∑
y=0

(
q
p
k

q−p
p f (t,y)+

r
p
k

r−p
p g(t,y)

)
b(t,y),

B(t,s) =
t−1

∑
x=0

s−1

∑
y=0

[
f (x,y)

(
q
p
k

q−p
p a(x,y)+

p−q
p

k
q
p

)

+g(x,y)
(

r
p
k

r−p
p a(x,y)+

p− r
p

k
r
p

)
+h(x,y)

]
, t,s ∈ N0.

(14)

THEOREM 3.2. Assume that u(t,s) , a(t,s) , b(t,s) , f (t,s) , g(t,s) , h(t,s) are
nonnegative functions that are right-dense continuous for (t,s) ∈ Ω and a(t,s) is non-
decreasing. Then

up(t,s) � a(t,s)+
∫ t

t0
b(x,s)up(x,s)�x+

∫ t

t0

∫ s

s0
[ f (x,y)uq(x,y)

+g(x,y)ur(x,y)+h(x,y)]ΔyΔx, (t,s) ∈ Ω,

(15)

implies

u(t,s) � R
1
p (t,s)

[
a(t,s)+

∫ t

t0
eC(·,s)(t,σ(x))D(x,s)Δx

] 1
p

, (t,s) ∈ Ω, (16)

where
R(t,s) = eb(·,s)(t,t0), (t,s) ∈ Ω, (17)
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C(t,s) =
∫ s

s0

[
q
p
k

q−p
p f (t,y)R

q
p (t,y)+

r
p
k

r−p
p g(t,y)R

r
p (t,y)

]
Δy,

D(t,s) =
∫ s

s0

[
f (t,y)R

q
p (t,y)

(
q
p
k

q−p
p a(t,y)+

p−q
p

k
q
p

)

+g(t,y)R
r
p (t,y)

(
r
p
k

r−p
p a(t,y)+

p− r
p

k
r
p

)
+h(t,y)

]
Δy, (t,s) ∈ Ω.

(18)

Proof. Define a function v(t,s) by

v(t,s) = a(t,s)+
∫ t

t0

∫ s

s0
[ f (x,y)uq(x,y)+g(x,y)ur(x,y)+h(x,y)]ΔyΔx. (19)

Then (3.15) can be restated as

up(t,s) � v(t,s)+
∫ t

t0
b(x,s)up(x,s)�x. (20)

Noting that v(t,s) is nondecreasing, by Lemma 2.2, from (3.20) , we obtain

up(t,s) � R(t,s)v(t,s), (21)

where R(t,s) defined as (3.17) . From (3.19) and (3.21) , we obtain

u(t) � R
1
p (t,s)[a(t)+w(t)]

1
p , (22)

where

w(t,s) =
∫ t

t0

∫ s

s0
[ f (x,y)uq(x,y)+g(x,y)ur(x,y)+h(x,y)]ΔyΔx. (23)

It follows from (3.22) and Lemma 2.3, we get

uq(t,s) � R
q
p (t,s)[a(t,s)+w(t,s)]

q
p

� R
q
p (t,s)

[
q
p
k

q−p
p (a(t,s)+w(t,s))+

p−q
p

k
q
p

]
,

ur(t,s) � R
r
p (t,s)[a(t,s)+w(t,s)]

r
p

� R
r
p (t,s)

[
r
p
k

r−p
p (a(t,s)+w(t,s))+

p− r
p

k
r
p

]
.

(24)

It follows (3.23) and (3.24) that

wΔt(t,s) �
∫ s

s0

{
f (t,y)R

q
p (t,y)

[
q
p
k

q−p
p (a(t,y)+w(t,y))+

p−q
p

k
q
p

]

+g(t,y)R
r
p (t,y)

[
r
p
k

r−p
p (a(t,y)+w(t,y))+

p− r
p

k
r
p

]
+h(t,y)

}
Δy

� D(t,s)+C(t,s)w(t,s), (t,s) ∈ Ω,

(25)
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where C(t,s) and D(t,s) are defined by (3.18) respectively. Obviously, C(t,s) , D(t,s)
∈ Crd , C(t,s) and D(t,s) are nonnegative, C(t,s) is nondecreasing. Noting w(t0,s) =
0, using Lemma 2.1, from (3.25) we have

w(t,s) �
∫ t

t0
eC(·,s)(t,σ(x))D(x,s)Δx. (26)

Therefore, the desired inequality (3.16) follows from (3.22) and (3.26) . �

COROLLARY 3.3. Let T = R , assume that u(t,s) , a(t,s) , b(t,s) , f (t,s) , g(t,s) ,
h(t,s) are nonnegative functions defined for t,s ∈ R+ , then the following inequality

up(t,s) � a(t,s)+
∫ t

0
b(x,s)dx

+
∫ t

0

∫ s

0
[ f (x,y)uq(x,y)+g(x,y)ur(x,y)+h(x,y)]dydx,

(27)

for t,s ∈ R+ , implies

u(t,s) � H
1
p (t,s)

[
a(t,s)+b(t,s)D(t,s)exp

(∫ t

0
C(x,s)dx

)] 1
p

, t,s ∈ R+, (28)

where

H(t,s) = exp
∫ t

0
b(x,s)dx, t,s ∈ R+, (29)

C(t,s) =
∫ s

0

(
f (t,y)H

q
p (t,y)

( q
p
k

q−p
p a(t,y)+

p−q
p

k
q
p
)

+g(t,y)H
r
p (t,y)

( r
p
k

r−p
p a(t,y)+

p− r
p

k
r
p
)
+h(t,y)

)
,

D(t,s) =
∫ t

0

∫ s

0

(
f (x,y)H

q
p (x,y)

( q
p
k

q−p
p a(x,y)+

p−q
p

k
q
p
)

+g(x,y)H
r
p (x,y)

( r
p
k

r−p
p a(x,y)+

p− r
p

k
r
p
)
+h(x,y)

)
dydx, t,s ∈ R+.

(30)

COROLLARY 3.4. Let T = Z and assume that u(t,s) , a(t,s) , b(t,s) , f (t,s) ,
g(t,s) , h(t,s) are nonnegative functions and a(t,s) is nondecreasing function defined
for t,s ∈ N0 , then the following inequality

up(t,s) �a(t,s)+
t−1

∑
x=0

b(x,s)up(x,s)+
t−1

∑
x=0

s−1

∑
y=0

[ f (x,y)uq(x,y)

+g(x,y)ur(x,y)+h(x,y)], t,s ∈ N0,

(31)

implies

u(t,s) � R
1
p (t,s)

{
a(t,s)+D(t,s)

t−1

∏
x=0

[
1+C(x,s)

]} 1
p

, t,s ∈ N0, (32)
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where

R =
t−1

∏
x=0

[1+b(x,s)], t,s ∈ N0, (33)

C(t,s) =
s−1

∑
y=0

[
q
p
k

q−p
p R

q
p (t,y) f (t,y)+

r
p
k

r−p
p R

r
p (t,y)g(t,y)

]
,

D(t,s) =
t−1

∑
x=0

s−1

∑
y=0

[
R

q
p (x,y) f (x,y)

(
q
p
k

q−p
p a(x,y)+

p−q
p

k
q
p

)

+R
r
p (x,y)g(x,y)

(
r
p
k

r−p
p a(x,y)+

p− r
p

k
r
p

)
+h(x,y)

]
, t,s ∈ N0.

(34)

THEOREM 3.3. Assume that u(t,s) , a(t,s) , b(t,s) , f (t,s) , g(t,s) , h(t,s) are
nonnegative functions that are right-dense continuous for (t,s) ∈ Ω and a(t,s) is non-
decreasing. If L : T0 ×R+ → R+ is a continuous function such that

0 � L(t,s,u)−L(t,s,v) � M(t,s,v)(u− v) (35)

for (t,s) ∈ Ω and u � v � 0, where M : T0 ×R+ → R+ is a nonnegative continuous
function. Then

up(t,s) � a(t,s)+
∫ t

t0
b(x,s)up(x,s)�x+

∫ t

t0

∫ s

s0
L
(
x,y, f (x,y)uq(x,y)

+g(x,y)ur(x,y)+h(x,y)
)
ΔyΔx, (t,s) ∈ Ω,

(36)

implies

u(t,s) � R
1
p (t,s)

[
a(t,s)+

∫ t

t0
eE(·,s)(t,σ(x))F(x,s)Δx

] 1
p

, (t,s) ∈ Ω, (37)

where R(t,s) defined as (3.17) and

E(t,s) =
∫ s

s0
M

(
t,y, f (t,y)R

q
p (t,y)

( q
p
k

q−p
p a(t,y)+

p−q
p

k
q
p
)

+g(t,y)R
r
p (t,y)

( r
p
k

r−p
p a(t,y)+

p− r
p

k
r
p
)
+h(t,y)

)

×
[

q
p
k

q−p
p f (t,y)R

q
p (t,y)+

r
p
k

r−p
p g(t,y)R

r
p (t,y)

]
Δy,

F(t,s) =
∫ s

s0
L

(
t,y, f (t,y)R

q
p (t,y)

( q
p
k

q−p
p a(t,y)+

p−q
p

k
q
p
)

+g(t,y)R
r
p (t,y)

( r
p
k

r−p
p a(t,y)+

p− r
p

k
r
p
)
+h(t,y)

)
Δy, (t,s) ∈ Ω.

(38)

Proof. Define a function v(t,s) by

v(t,s) = a(t,s)+w(t,s), (39)
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where

w(t,s) =
∫ t

t0

∫ s

s0
L
(
x,y, f (x,y)uq(x,y)+g(x,y)ur(x,y)+h(x,y)

)
ΔyΔx. (40)

Then (3.36) can be restated as (3.20) . Similarly we have (3.21),(3.22) and (3.24) .
Noting the hypotheses on L , from (3.24) and (3.40) that

wΔt(t,s) �
∫ s

s0

{
L

(
t,y, f (t,y)R

q
p (t,y)

( q
p
k

q−p
p (a(t,y)+w(t,y))+

p−q
p

k
q
p
)

+g(t,y)R
r
p (t,y)

( r
p
k

r−p
p (a(t,y)+w(t,y))+

p− r
p

k
r
p
)
+h(t,y)

)

−L

(
t,y, f (t,y)R

q
p (t,y)

( q
p
k

q−p
p a(t,y)+

p−q
p

k
q
p
)

+g(t,y)R
r
p (t,y)

( r
p
k

r−p
p a(t,y)+

p− r
p

k
r
p
)
+h(t,y)

)

+L

(
t,y, f (t,y)R

q
p (t,y)

( q
p
k

q−p
p a(t,y)+

p−q
p

k
q
p
)

+g(t,y)R
r
p (t,y)

( r
p
k

r−p
p a(t,y)+

p− r
p

k
r
p
)
+h(t,y)

)}
Δy

� F(t,s)+E(t,s)w(t,s), (t,s) ∈ Ω,

(41)

where E(t,s) and F(t,s) are defined by (3.28) respectively. Obviously, G(t,s) , H(t,s)
∈ Crd , G(t,s) and H(t,s) are nonnegative, G(t,s) is nondecreasing. Noting w(t0,s) =
0, using Lemma 2.2, from (3.41) we have

w(t,s) �
∫ t

t0
eE(·,s)(t,σ(x))F(x,s)Δx, (t,s) ∈ Ω. (42)

Therefore, the desired inequality (3.37) follows from (3.22) and (3.42) . �

COROLLARY 3.5. Let T = R , assume that u(t,s) , a(t,s) , b(t,s) , f (t,s) , g(t,s) ,
h(t,s) are nonnegative functions defined for t,s ∈ R+ . L,M ∈C (R2

+,R+) satisfied the
inequality as (3.35) , then the inequality

up(t,s) � a(t)+
∫ t

0
b(x,s)up(x,s)dx+

∫ t

0

∫ s

0
L
(
x,y, f (x,y)uq(x,y)

+g(x,y)ur(x,y)+h(x,y)
)
dydx, t,s ∈ R+,

(43)

implies

u(t,s) � H
1
p (t,s)

[
a(t,s)+F(t,s)exp

(∫ t

0
E(x,s)dx

)] 1
p

,t,s ∈ R+, (44)
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where H(t,s) defined as (3.29) and

E(t,s) =
∫ s

0
M

(
t,y, f (t,y)H

q
p (t,y)

( q
p
k

q−p
p a(t,y)+

p−q
p

k
q
p
)

+g(t,y)H
r
p (t,y)

( r
p
k

r−p
p a(t,y)+

p− r
p

k
r
p
)
+h(t,y)

)

×
[

q
p
k

q−p
p f (t,y)H

q
p (t,y)+

r
p
k

r−p
p g(t,y)H

r
p (t,y)

]
dy,

F(t,s) =
∫ t

0

∫ s

0
L

(
x,y, f (x,y)H

q
p (x,y)

( q
p
k

q−p
p a(x,y)+

p−q
p

k
q
p
)

+g(x,y)H
r
p (x,y)

( r
p
k

r−p
p a(x,y)+

p− r
p

k
r
p
)
+h(x,y)

)
dydx, t,s ∈ R+.

(45)

COROLLARY 3.6. Let T = Z and assume that u(t,s) , a(t,s) , b(t,s) , f (t,s) ,
g(t,s) , h(t,s) are nonnegative functions and a(t,s) is nondecreasing function defined
for t,s ∈ N0 , L : N0 ×R+ → R+ is a function that satisfies the condition as (3.35) ,
then the following inequality

up(t,s) � a(t,s)+
t−1

∑
x=0

b(x,s)up(x,s)+
t−1

∑
x=0

s−1

∑
y=0

L
(
x,y, f (x,y)uq(x,y)

+g(x,y)ur(x,y)+h(x,y)
)
, t,s ∈ N0,

(46)

implies

u(t,s) � R
1
p (t,s)

{
a(t,s)+F(t,s)

t−1

∏
x=0

[
1+E(x,s)

]} 1
p

, t,s ∈ N0, (47)

where R(t,s) defined as (3.29) and

E(t,s) =
s−1

∑
y=0

M

(
t,y,R

q
p (t,y) f (t,y)

( q
p
k

q−p
p a(t,y)+

p−q
p

k
q
p
)

+R
r
p (t,y)g(t,y)

( r
p
k

r−p
p a(t,y)+

p− r
p

k
r
p
)
+h(t,y)

)

×
[

q
p
k

q−p
p R

q
p (t,y) f (t,y)+

r
p
k

r−p
p R

r
p (t,y)g(t,y)

]
,

F(t,s) =
t−1

∑
x=0

s−1

∑
y=0

L

(
x,y,R

q
p (x,y) f (x,y)

( q
p
k

q−p
p a(x,y)+

p−q
p

k
q
p
)

+R
r
p (x,y)g(x,y)

( r
p
k

r−p
p a(x,y)+

p− r
p

k
r
p
)
+h(x,y)

)
, t,s ∈ N0.

(48)
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4. Some applications

In this section, we present two applications of our main result. Consider the fol-
lowing partial dynamic equation on time scales

(up(t))ΔtΔs = F(t,s,u(t,s)), (t,s) ∈ Ω (1)

with boundary conditions

up(t0,s) = α(t), up(t,s0) = β (s), up(t0,s0) = γ, (2)

where F : T1 ×T2 ×R → R is right-dense continuous on Ω and continuous on R ,
α : T1 → R and β : T2 → R are right-dense continuous, and γ ∈ R is a constant.

EXAMPLE 4.1. Assume that

F(t,s,u(t,s)) � f (t,s)uq(t,s)+g(t,s)ur(t,s),
| α(t)+ β (s)− γ |� K, (t,s) ∈ Ω.

(3)

where f (t,s),g(t,s) are nonnegative right-dense continuous function for (t,s) ∈ Ω .
p � q > 0, p � r > 0, K > 0 are constants.

If every solution u(t) of (4.1) satisfying the boundary condition (4.2) , implies

| u(t,s) |�
[
| K | +

∫ t

t0
B(x,s)eA(·,s)(t,σ(x))

] 1
p

, (t,s) ∈ Ω. (4)

where A(t) , B(t) are defined as in (3.3) and (3.4) with a(t,s) = K , b(t,s) = 1,
h(t,s) = 0.

Indeed, the solution u(t) of (4.1) satisfies the following equivalent equation

up(t,s) = α(t)+ β (s)− γ +
∫ t

t0

∫ s

s0
F(x,y,u(x,y))ΔyΔx, (t,s) ∈ Ω. (5)

It follows from (4.3) and (4.5) that

| u(t) |p =| α(t)+ β (s)− γ | +
∫ t

t0

∫ s

s0
| F(x,y,u(x,y)) | ΔyΔx

� K +
∫ t

t0

∫ s

s0
[ f (x,y) | u(x,y) |q +g(x,y) | u(x,y) |r]ΔyΔx, (t,s) ∈ Ω.

(6)

Using Theorem 3.1, the inequality (4.4) is obtained from (4.6) .
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EXAMPLE 4.2. Assume that

| F(t,s,u1)−F(t,s,u2) |� f (t,s) | up
1(t,s)−up

2(t,s) |, (t,s) ∈ Ω. (7)

where f (t,s) is defined as in Example 4.1. Then the problems (4.1) and (4.2) has at
most one solution on Ω .

Indeed, let u1(t,s) and u2(t,s) be two solution of the problems (4.1) with (4.2) .
It follows from (4.5) that

| up
1(t,s)−up

2(t,s) |�
∫ t

t0

∫ s

s0
f (x,y) | up

1(x,y)−up
2(x,y) | ΔyΔx, (t,s) ∈ Ω. (8)

By Theorem 3.1, from (4.8) we have | up
1(t,s)−up

2(t,s) |≡ 0, which implies that the
problems (4.1) with (4.2) has at most one solution on Ω . This completes the proof of
example 4.2.
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