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SCHUR–CONVEXITY OF THE WEIGHTED ČEBYŠEV FUNCTIONAL II
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(Communicated by A. Vukelić)

Abstract. In this paper the weighted Čebyšev functional T (p; f ,g;a,b) is regarded as a function
of two variables

T (p; f ,g;x,y) =
∫ y
x p(t) f (t)g(t)dt∫ y

x p(t)dt
−

(∫ y
x p(t) f (t)dt∫ y

x p(t)dt

)(∫ y
x p(t)g(t)dt∫ y

x p(t)dt

)
, (x,y) ∈ [a,b]× [a,b]

where f ,g and p > 0 are Lebesgue integrable functions. For a function

K(p; f ,g;x,y) =
(∫ y

x
p(t)dt

)2

T (p; f ,g;x,y) (x,y) ∈ [a,b]× [a,b]

the property of Schur-covexity, Schur-geometric convexity, Schur-harmonic convexity and (1,1) -
convexity is proved.

1. Introduction

Let f ,g and p > 0 be Lebesgue integrable functions on the interval I = [a,b]⊆R .
In this paper the weighted Čebyšev functional T (p; f ,g;a,b) is regarded as a function
of two variables

T (p; f ,g;x,y) =
∫ y
x p(t) f (t)g(t)dt∫ y

x p(t)dt
−

(∫ y
x p(t) f (t)dt∫ y

x p(t)dt

)(∫ y
x p(t)g(t)dt∫ y

x p(t)dt

)
, (x,y) ∈ I2.

In [4] we proved Schur-convexity of a function T (1; f ,g;x,y) with (x,y) ∈ I2.

THEOREM A 1. Let f and g be Lebesgue integrable functions on I = [a,b] ⊆
R. If they are monotone in the same sense (in the opposite sense) then T (x,y) :=
T (1; f ,g;x,y) , (x,y) ∈ I2 is Schur-convex (Schur-concave) on I.

Using the following notations:
P(x,y) :=

∫ y
x p(t)dt,

fp(x,y) := 1∫ y
x p(t)dt

∫ y
x p(t) f (t)dt and gp(x,y) := 1∫ y

x p(t)dt

∫ y
x p(t)g(t)dt

we obtained next result for the weighted Čebyšev functional (see [5]):
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THEOREM A 2. Let f and g be Lebesgue integrable functions on I = [a,b] ⊆ R

and let p be a positive continuous weight on I such that p f and pg are also Lebesgue
integrable functions on I. Then T (x,y) := T (p; f ,g;x,y) is Schur-convex (Schur-
concave) on I2 if and only if the inequality

T (x,y)� p(x)( fp(x,y)− f (x))(gp(x,y)−g(x))+ p(y)( fp(x,y)− f (y))(gp(x,y)−g(y))
p(x)+ p(y)

.

(1)
holds (reverses) for all x,y in I.

For a function K : I2 ⊆ R
2 → R defined by

K(p; f ,g;x,y) =
(∫ y

x
p(t)dt

)2

·T (p; f ,g;x,y), (x,y) ∈ I2 (2)

the author in [17] proved the following statement:

THEOREM A 3. Let f ,g : [a,b] → R be Lebesgue integrable functions, and let
p : [a,b]→ R+ be a Lebesgue integrable function. A function K(x,y) := K(p; f ,g;x,y)
defined as (2) is increasing (decreasing) with y on I = [a,b] and decreasing (increas-
ing) with x on I if f and g are monotone in the same sense (in the opposite sense).

In this paper we prove the property of Schur-convexity, Schur-geometric convexity
and Schur-harmonic convexity of a function K(x,y) with (x,y), depending of mono-
tonicity and simultan ordering of the functions f and g . We also show (1,1)-convexity
of a function K.

2. Definitions and properties

The concepts of majorizations and Schur-convex functions involve convex func-
tions and measure of the diversity of the components of an n -tuple in R

n. Most of the
basic results are given in Marshall and Olkin’s book [8]. In the recently references [1],
[2], [3], [10], [11], [13], [15], [16], we can find the definitions and applications of the
Schur-convex, Schur-geometrically convex and Schur-harmonic convex functions.

In this section we will recall usefull definitions, lemmas and theorems:

DEFINITION 1. Let x,y be in E ⊆ R
n and let x[i] , y[i] denote the i th largest

component in x and y. We say y majorizes x , denote x ≺ y if

k

∑
i=1

x[i] �
k

∑
i=1

y[i], k = 1, ...,n−1,

n

∑
i=1

x[i] =
n

∑
i=1

y[i].
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DEFINITION 2. Let x,y be in E ⊆ R
n . A function F : E → R is called a Schur-

convex function on E if

F(x1,x2, ..,xn) � F(y1,y2, ..,yn)

for each x and y in E such that x ≺ y.
A function F is Schur-concave if and only if −F is a Schur-convex function.

DEFINITION 3. Let x,y be in E ⊆ R
n
+ . A function F : E → [0,∞) is called a

Schur-geometrically convex function on E if

F(x1,x2, ..,xn) � F(y1,y2, ..,yn)

for each two positive x and y in E such that (lnx1, lnx2, .., lnxn)≺ (lny1, lny2, .., lnyn)
i.e y logarithm majorizes x.

A function F is Schur-geometrically concave if and only if −F is a Schur-geome-
trically convex function.

DEFINITION 4. Let x,y be in E ⊆ R
n
+. A function F : E → [0,∞) is called a

Schur-harmonic convex function on E if

F(x1,x2, ..,xn) � F(y1,y2, ..,yn)

for each two positive x and y on E such that it holds ( 1
x1

, 1
x2

, .., 1
xn

) ≺ ( 1
y1

, 1
y2

, .., 1
yn

).

A function F is Schur-harmonic concave if and only if −F is a Schur-harmonic
convex function.

The next lemmas gives us the characterisations of Schur-convexity, Schur-geome-
trically convexity and Schur-harmonic convexity (see [8, p. 57], [11, p. 333], [14], [15,
p. 108], [16]):

LEMMA A 1. Let E ⊆ R
n be a symmetric convex set with a nonempty interior.

Let F : E → R be a continuous function on E and differentiable on the interior of E.
Then F is Schur-convex (Schur-concave) if and only if it is symmetric and(

∂F
∂x2

− ∂F
∂x1

)
(x2 − x1) � 0 (� 0) (3)

holds for all x in the interior of E , x1 �= x2.

LEMMA A 2. Let E ⊆ R
n
+ be a symmetric logarithm convex set with a nonempty

interior, i.e. lnE = {lnx = ( lnx1, ..., lnxn) : x ∈ E} is a convex set. Let F : E →
[0,∞) be a continuous function on E and differentiable on the interior of E. Then F
is Schur-geometrically convex (Schur-geometrically concave) if it is symmetric and the
inequality (

x2
∂F
∂x2

− x1
∂F
∂x1

)
(lnx2− lnx1) � 0 (� 0) (4)

holds for all x in the interior of E , x1 �= x2.
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LEMMA A 3. Let E ⊆ R
n
+ be a symmetric harmonic convex set with a nonempty

interior, i.e. 1/E = {1/x = ( 1
x1

, ..., 1
xn

) : x ∈ E} is a convex set. Let F : E → [0,∞) be
a continuous function on E and differentiable on the interior of E. Then F is Schur-
harmonic convex (Schur-harmonic concave) if it is symmetric and

(
x2
2

∂F
∂x2

− x2
1

∂F
∂x1

)
(x2 − x1) � 0 (� 0) (5)

holds for all x in the interior of E , x1 �= x2.

DEFINITION 5. The functions f and g : In → R are similarly ordered if

( f (x1,x2, ..,xn)− f (y1,y2,..,yn)) · (g(x1,x2, .,xn)−g(y1,y2,..,yn)) � 0,

for each two n -tuples x and y on In.
Function f and g are oppositely ordered if f and −g are similarly ordered.

We recall the well-known Čebyšev inequality for monotone functions (see [9, p.
239], [11, p. 197] ) and for similar ordered functions (see [7, p. 168], [9, p. 252]):

THEOREM A 4. Let f and g be Lebesgue integrable on an interval I = [a,b]⊆R

and let p be a positive continuous weight on I such that p f g , p f and pg are also
Lebesgue integrable functions on I . If f and g are monotone in the same sense (in the
opposite sense) then it holds

T (p; f ,g;a,b) � 0 (� 0).

THEOREM A 5. Let f and g be Lebesgue integrable functions on I = [a,b] ⊆ R

and let p be a positive continuous weight on I such that p f g , p f and pg are also
Lebesgue integrable functions on I. If f and g are similarly (oppositely) ordered then
it holds

T (p; f ,g;a,b) � 0 (� 0).

Popoviciu in ([12, p. 60]) used the (n,m)- divided difference of the function in the
definition of the (n,m)−convexity (concavity) (see also [11, p. 18]):

DEFINITION 6. A function F : I2 → R is (n,m)-convex (concave) if for all dis-
tinct points x0,x1, ..,xn ∈ I and y0,y1, ..,ym ∈ I yilds

[
x0, x1, ., ., xn

y0, y1, ., ., ym

]
F =

n

∑
i=0

m

∑
j=0

F(xi,x j)
ω ′(xi) ·w′(y j)

� 0 (� 0),

where ω(x) =
n
∏
i=0

(x− xi), w(y) =
m
∏
j=0

(y− y j).

The next lemma give us the necessary and sufficient conditions for verifying the
(n,m)−convexity (concavity):
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LEMMA A 4. If the partial derivative ∂ (n+m)F
∂xn∂ym exists then F : I2 → R is (n,m)-

convex (concave) if and only if

∂ (n+m)F
∂xn∂ym � 0 (� 0).

3. Results

THEOREM 3.1. Let f and g be Lebesgue integrable on interval I = [a,b] ⊆ R.
Let p be a positive continuous weight on I such that p f g , p f and pg are also
Lebesgue integrable functions on I . If f and g are monotone in the same sense (in
the opposite sense) then for a function K(x,y) := K(p; f ,g;x,y) defined by (2) holds

(i) K(x,y) � 0 (� 0) , for (x,y) ∈ I2;
(ii) K(x,y) is Schur-convex (Schur-concave) with (x,y) on I2 ⊆ R

2 ;
(iii) K(x,y) Schur-geometrical convex (Schur-geometrical concave) with (x,y) on

I2 ⊆ R
2
+;

(iv) K(x,y) is Schur-harmonic convex (Schur-harmonic concave) with (x,y) on
I2 ⊆ R

2
+;

(v) K(x,y) := K(p; f ,g;x,y) is an (1,1)-concave (convex) function on I2 ⊆ R
2.

Proof. Let f and g be monotone in the same sense (in the opposite sense). Let
p be a positive continuous weight on I such that p f g , p f and pg are also Lebesgue
integrable functions on I = [a,b] .

We may assume that x < y without loss of generality.

Now, we calculate ∂K(x,y)
∂y , ∂K(x,y)

∂x and ∂ 2K(x,y)
∂x∂y :

∂K(x,y)
∂y

= p(y)
∫ y

x
p(t)( f (t)− f (y))(g(t)−g(y))dt; (6)

∂K(x,y)
∂x

= −p(x)
∫ y

x
p(t)( f (t)− f (x))(g(t)−g(x))dt; (7)

∂ 2K(x,y)
∂x∂y

= −p(x)p(y)( f (y)− f (x))(g(y)−g(x)) (8)

(i) Applying Čebyšev inequality, Theorem A4 to the function K(p; f ,g;x,y) =
[P(x,y)]2 ·T (p; f ,g;x,y) we obtain that holds K(x,y) � 0 (� 0).

(ii) To prove Schur-convexity of K(p;x,y) (or Schur-concavity) we apply Lemma

A1. It is sufficient to discuss the following inequlity
(

∂K(x,y)
∂y − ∂K(x,y)

∂x

)
(y− x) � 0

(� 0), for all x,y ∈ [a,b], since the function K(x,y) is evidently symmetric. Ac-
cording Theorem A3 we know that K(x,y) is increasing (decreasing) with y on I and
decreasing (increasing) with x on I . So, it follows Schur-convexity (Schur-concavity)
of K as in the statement (ii).

(iii) The set I2 ⊆ R
2
+ is a symmetric logarithm convex set. By applying the con-

dition in Lemma A2 to the function K(x,y) we conclude that
(
y ∂K(x,y)

∂y − x ∂K(x,y)
∂x

)
·
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(lny− lnx) � 0 (� 0), (x,y) ∈ I2 ⊆ R
2
+, i.e. K(x,y) is Schur-geometically convex

(Schur - geometically concave) with (x,y) on I2 ⊆ R
2
+.

(iv) The set I2 ⊆ R
2
+ is a symmetric harmonic convex set. According Lemma

A3 we conclude that
(
y2 ∂K(x,y)

∂y − x2 ∂K(x,y)
∂x

)
(y− x) � 0 (� 0), (x,y) ∈ I2 ⊆ R

2
+, i.e.

K(x,y) is Schur-harmonic convex (Schur-harmonic concave) with (x,y) on I2 ⊆ R
2
+.

(v) Since ∂ 2K(x,y)
∂x∂y � 0 (� 0) , Lemma A4 implies that K(x,y) is the (1,1)-

concave (convex) function on I2 ⊆ R
2. �

THEOREM 3.2. Let f and g be Lebesgue integrable functions on I = [a,b] ⊆
R+ and let p be a positive continuous weight on I such that p f g , p f and pg are
also Lebesgue integrable functions on I = [a,b] . If f and g are similarly (oppositely)
ordered then for the function K(x,y) := K(p; f ,g;x,y) defined by (2) holds

(i) K(x,y) is increasing (decreasing) with y on I and decreasing (increasing) with
x on I;

(ii) K(x,y) � 0 (� 0) , for (x,y) ∈ I2 ⊆ R
2
+;

(iii) K(x,y) is Schur-convex (Schur-concave) with (x,y) on I2 ⊆ R
2;

(iv) K(x,y) is Schur-geometrical convex (Schur-geometrical concave) with (x,y)
on I2 ⊆ R

2
+;

(v) K(x,y) is Schur-harmonic convex (Schur-harmonic concave) with (x,y) on
I2 ⊆ R

2
+;

(vi) K(x,y) is an (1,1)-concave (convex) function on I2 ⊆ R
2.

Proof. Let f and g are similarly ordered (oppositely ordered) on I = [a,b] ⊆
R+ . Let p be a positive continuous weight on I such that p f g , p f and pg are also
Lebesgue integrable functions on I.

(i) From (6) and (7) we have that ∂K(x,y)
∂y � 0 (� 0) and ∂K(x,y)

∂x � 0 (� 0) So, it
holds statement (i).

(ii) K(p; f ,g;x,y) = [P(x,y)]2 · T (p; f ,g;x,y) and Čebyšev inequality, Theorem
A5 implies statement (ii).

(iii) The claim (i) implises that
(

∂K(x,y)
∂y − ∂K(x,y)

∂x

)
(y− x) � 0 (� 0) on I2 and

according Lemma A3 it follows the property of Schur-convexity (Schur-concavity) of
K(x,y) on I2.

(iv) Similarly, by statement (i) we conclude that
(
y ∂K(x,y)

∂y − x ∂K(x,y)
∂x

)
· (lny−

lnx) � 0 (� 0) on I2 and according Lemma A2 we obtain the property of Schur-
geometricaly convexity (Schur-geometricaly concavity) of K on I2.

(v) The claim (i) implies that
(
y2 ∂K(x,y)

∂y − x2 x∂K(x,y)
∂x

)
(y− x) � 0 (� 0) on I2

and according Lemma A3 we obtain the property of Schur-harmonic convexity (Schur-
harmonic concavity) of K on I2.

(vi) Applying (8) for similarly (opposit) ordered functions f and g we have
∂ 2K(x,y)

∂x∂y � 0 (� 0) . Lemma A4 implies that K(x,y) is an (1,1)-concave (convex)
function. �
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