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SCHUR-CONVEXITY OF THE WEIGHTED CEBYSEV FUNCTIONAL II

V. CULJAK

(Communicated by A. Vukelic)

Abstract. In this paper the weighted Ceby3ev functional T(p;f,g;a,b) isregarded as a function

of two variables
V(s (2 p0)f @) ( J2 p(0)s(0)dr
[ ot ‘( )i )( )i )’(x’y)e[“”’“[“”’]

where f,g and p > 0 are Lebesgue integrable functions. For a function

Ji

T(p;f.gx,y) =

K(p:f.&:xy) = </p dt) (psf.g:x.y) (x.y) € [a,b] x [a,]]

the property of Schur-covexity, Schur-geometric convexity, Schur-harmonic convexity and (1,1)-
convexity is proved.

1. Introduction

Let f,g and p > 0 be Lebesgue integrable functions on the interval / = [a,b] CR.
In this paper the weighted CebySev functional T (p; f,g;a,b) is regarded as a function
of two variables

Ep0f0sd (B p0)f0dy (Ep0sdy
T(p:fosoxe) = 5 s ( T o)di )( T p(ds )’(’”E"

In [4] we proved Schur-convexity of a function T'(1; f,g;x,y) with (x,y) € I°.
THEOREM A 1. Let f and g be Lebesgue integrable functions on I = |a,b]

R. If they are monotone in the same sense (in the opposite sense) then T(x,y) :
T(1;f,g:x,y), (x,y) € I? is Schur-convex (Schur-concave) on 1I.

1N

Using the following notations:

P(x,y) := [l p(t)dr,

Fox.y) = oz [ p(Of(0)dr and g, (x,y) := oz 3 p()g(0)de
we obtained next result for the weighted Cebysev functional (see [5]):
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THEOREM A 2. Let f and g be Lebesgue integrable functions on I = [a,b] CR
and let p be a positive continuous weight on I such that pf and pg are also Lebesgue
integrable functions on 1. Then T(x,y) := T(p;f,g;x,y) is Schur-convex (Schur-
concave) on I if and only if the inequality

P (fp(x,y) = f(x) (Ep(x,y) — §(0)) + P) (fp(x,y) — f (1) (8p (x.y) — &)

T(x,y) <
) P+ 00)
(D
holds (reverses) for all x,y in I.
For a function K : I> C R*> — R defined by
y 2 5
K(p:f,g:x,y) = (/ p(t)dt> T(psf,g:x,9), (x,y) €1 2)

the author in [17] proved the following statement:

THEOREM A 3. Let f,g: [a,b] — R be Lebesgue integrable functions, and let
p:la,b] — Ry be a Lebesgue integrable function. A function K(x,y) := K(p; f,g;x,y)
defined as (2) is increasing (decreasing) with y on I = [a,b] and decreasing (increas-
ing) with x on I if f and g are monotone in the same sense (in the opposite sense).

In this paper we prove the property of Schur-convexity, Schur-geometric convexity
and Schur-harmonic convexity of a function K(x,y) with (x,y), depending of mono-
tonicity and simultan ordering of the functions f and g. We also show (1, 1)-convexity
of a function K.

2. Definitions and properties

The concepts of majorizations and Schur-convex functions involve convex func-
tions and measure of the diversity of the components of an n-tuple in R”. Most of the
basic results are given in Marshall and Olkin’s book [8]. In the recently references [1],
[2], [3], [10], [11], [13], [15], [16], we can find the definitions and applications of the
Schur-convex, Schur-geometrically convex and Schur-harmonic convex functions.

In this section we will recall usefull definitions, lemmas and theorems:

DEFINITION 1. Let x,y be in E C R" and let x};, y|; denote the i th largest
component in x and y. We say y majorizes X, denote x <y if
k k
ZX[,-] < Zym, k=1,...n—1,
i=1 i=1
2 Vi
i=1

;xm =
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DEFINITION 2. Let x,y bein E C R". A function F : E — R is called a Schur-
convex function on E if

F(x17x27"7xn> < F(ylay2a"ayn)

for each x and y in E such that x <y.
A function F is Schur-concave if and only if —F is a Schur-convex function.

DEFINITION 3. Let x,y be in E C R".. A function F : E — [0,0) is called a
Schur-geometrically convex function on E if

F(x17x27"7xn> < F(ylay2a"ayn)

for each two positive x and y in E such that (Inx;,Inx;,..,Inx,) < (Iny;,Iny;,..,Iny,)
i.e y logarithm majorizes x.

A function F is Schur-geometrically concave if and only if —F is a Schur-geome-
trically convex function.

DEFINITION 4. Let x,y be in E C R”.. A function F : E — [0,00) is called a
Schur-harmonic convex function on E if

F(x17x27"7xn> < F(ylay2a"ayn)

1 1 1)

for each two positive x and y on E such that it holds (x_l’ T

(L 1 L)
Y1'y2? /"

A function F' is Schur-harmonic concave if and only if —F is a Schur-harmonic
convex function.

The next lemmas gives us the characterisations of Schur-convexity, Schur-geome-
trically convexity and Schur-harmonic convexity (see [8, p. 571, [11, p. 333], [14], [15,
p. 108], [16]):

LEMMA A 1. Let E C R" be a symmetric convex set with a nonempty interior.
Let F : E — R be a continuous function on E and differentiable on the interior of E.
Then F is Schur-convex (Schur-concave) if and only if it is symmetric and

JF OF
_— — > <
<8x2 8)61) (XQ xl) =z 0 (\ O) (3)
holds for all x in the interior of E, x| # x;.

LEMMA A 2. Let E CR' be a symmetric logarithm convex set with a nonempty
interior; i.e. InE = {Inx = (Inxy,...,Inx,) : X € E} is a convex set. Let F:E —
[0,00) be a continuous function on E and differentiable on the interior of E. Then F
is Schur-geometrically convex (Schur-geometrically concave) if it is symmetric and the
inequality

( JoF JoF

ng—xz—)qg—)q) (111)(:2-111)(1) >O(< 0) (4)

holds for all x in the interior of E, x| # x;.
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LEMMA A 3. Let E CRY be a symmetric harmonic convex set with a nonempty
interior; i.e. 1/E ={1/x= (%7,$) :X € E} is a convex set. Let F : E — [0,00) be
a continuous function on E and differentiable on the interior of E. Then F is Schur-

harmonic convex (Schur-harmonic concave) if it is symmetric and

( ,OF  ,0F

—X
8)62 ! 8)61

)(X2—xl)20(<0) ()
holds for all x in the interior of E, x| # x;.

DEFINITION 5. The functions f and g: 1" — R are similarly ordered if

(f(.Xl,)CQ,-.,Xn) —f(y1a}’27-~7)’n)) . (g(x17x27'axn) —g()’l,}’27-~7)’n)) 2 Oa

for each two n-tuples x and y on [".
Function f and g are oppositely ordered if f and —g are similarly ordered.

We recall the well-known Ceby3ev inequality for monotone functions (see [9, p.
239], [11, p. 197] ) and for similar ordered functions (see [7, p. 168], [9, p. 252]):

THEOREM A 4. Let f and g be Lebesgue integrable on an interval I = [a,b] CR
and let p be a positive continuous weight on I such that pfg, pf and pg are also
Lebesgue integrable functions on 1. If f and g are monotone in the same sense (in the
opposite sense) then it holds

T(p:f,g:a,b) >0 (<0).

THEOREM A 5. Let f and g be Lebesgue integrable functions on I = [a,b] C R
and let p be a positive continuous weight on I such that pfg, pf and pg are also
Lebesgue integrable functions on 1. If f and g are similarly (oppositely) ordered then
it holds

T(p:f,g:a,b) >0 (<0).

Popoviciu in ([12, p. 60]) used the (n,m)- divided difference of the function in the
definition of the (n,m)— convexity (concavity) (see also [11, p. 18]):

DEFINITION 6. A function F : I> — R is (n,m)-convex (concave) if for all dis-
tinct points xg,xq,..,X, € I and yg,y1,..,ym € I yilds

n
X05 X1y +5 xh
>0(<0),
|:y07y1a *y aym:| ZZ J) - (\ )

i=0j= Ow )C,

m

(x—xi), w(y) = IT(y—vj)-

j=0

where o(x) =

L=

1

The next lemma give us the necessary and sufficient conditions for verifying the
(n,m)— convexity (concavity):
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LEMMA A 4. Ifthe partial derivative %t;;y),f exists then F : I — R is (n,m)-

convex (concave) if and only if

omtm
_— > <0).
dx"dy™ 0(<0)

3. Results

THEOREM 3.1. Let f and g be Lebesgue integrable on interval I = [a,b] C R.
Let p be a positive continuous weight on 1 such that pfg, pf and pg are also
Lebesgue integrable functions on 1. If f and g are monotone in the same sense (in
the opposite sense) then for a function K(x,y) := K(p; f,g;x,y) defined by (2) holds

(i) K(x,y) >0 (<0), for (x.y) € I

(ii) K(x,y) is Schur-convex (Schur-concave) with (x,y) on I* C R?;

(iii) K(x,y) Schur-geometrical convex (Schur-geometrical concave) with (x,y) on
P CR?;

(iv) K(x,y) is Schur-harmonic convex (Schur-harmonic concave) with (x,y) on
P CR:;

(v) K(x,y) := K(p: f,g:x,y) is an (1,1)-concave (convex) function on I C R?.

Proof. Let f and g be monotone in the same sense (in the opposite sense). Let
p be a positive continuous weight on [ such that pfg, pf and pg are also Lebesgue
integrable functions on I = [a, b].

We may assume that x <y without loss of generality.

Now, we calculate aKa(;"Y) , ‘9K8(?Y) and azalig;’y) :
8K(x’y) = p(y)/yp(t)(f(t)—f(y))(g(t)—g(y))dt; (6)
8Ka(§y / plt = f(x))(g(r) —g(x))dt; (7
2 X,
85,67(3;) —p(X)p)(f(y) — f(x)(8(y) —g(x)) (8)

(i) Applying Cebygev inequality, Theorem A4 to the function K(p:f,g:x,y) =
[P(x,y)]?>-T(p; f,g:x,y) we obtain that holds K(x,y) >0 (<0).

(ii) To prove Schur-convexity of K(p;x,y) (or Schur-concavity) we apply Lemma

IK(xy) aK( )) (y x) 0

dy
(<0), for all x,y € [a,b], since the function K(x,y) is evidently symmetrlc. Ac-
cording Theorem A3 we know that K(x,y) is increasing (decreasing) with y on I and
decreasing (increasing) with x on /. So, it follows Schur-convexity (Schur-concavity)
of K as in the statement (ii).

(iii) The set 1> C R% is a symmetric logarithm convex set. By applying the con-

dition in Lemma A2 to the function K(x,y) we conclude that (y%);’y) aKa(i V)>

Al. It is sufficient to discuss the following inequlity (
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Iny—Inx) >0 (<0), (x,y) € > CRZ, i.e. K(x,y) is Schur-geometically convex
T g y
(Schur - geometically concave) with (x,y) on 7> C R?.
(iv) The set I C R? is a symmetric harmonic convex set. According Lemma

A3 we conclude that (yz%’v"y) — 529K ’y)> (y—x) =0 (<0), (x,y) e > CRZ,

K(x,y) is Schur-harmonic convex (Schur-harmonic concave) with (x,y) on I?> C Ri.
(v) Since azfx—gxy’y) <0 (>0), Lemma A4 implies that K(x,y) is the (1,1)-

concave (convex) functionon 12 CR2. O

THEOREM 3.2. Let f and g be Lebesgue integrable functions on I = [a,b] C
Ry and let p be a positive continuous weight on I such that pfg, pf and pg are
also Lebesgue integrable functions on I = [a,b]. If f and g are similarly (oppositely)
ordered then for the function K(x,y) := K(p; f,g;x,y) defined by (2) holds

(i) K(x,y) is increasing (decreasing) with y on I and decreasing (increasing) with
xonl;

(i) K(x,y) >0 (<0) , for (x,y) € I CRZ;

(iii) K (x,y) is Schur-convex (Schur-concave) with (x,y) on I C R?;

(iv) K(x,y) is Schur-geometrical convex (Schur-geometrical concave) with (x,y)
on > CR%;

(v) K(x,y) is Schur-harmonic convex (Schur-harmonic concave) with (x,y) on
P CR?;

(vi) K(x,y) is an (1,1)-concave (convex) function on I C R?.

Proof. Let f and g are similarly ordered (oppositely ordered) on I = [a,b] C
R4 . Let p be a positive continuous weight on I such that pfg, pf and pg are also
Lebesgue integrable functions on 1.

(i) From (6) and (7) we have that 257 > 0 (< 0) and 2 <0 (> 0) So, it
holds statement (i). ’

(i) K(p:f,g:x,y) = [P(x,y)]>- T(p:f,g:x,y) and CebySev inequality, Theorem
AS implies statement (ii).

(iii) The claim (i) implises that (%’;y’ - @) (y—x) >0 (<0) on Iand

according Lemma A3 it follows the property of Schur-convexity (Schur-concavity) of
K(x,y) on I*.

(iv) Similarly, by statement (i) we conclude that (y%;c’y) —x%) - (Iny —
Inx) >0 (<0) on /? and according Lemma A2 we obtain the property of Schur-
geometricaly convexity (Schur-geometricaly concavity) of K on /2.

(v) The claim (i) implies that <y2 8Ka(§’y ) 2x9[§(x V)> (y—x) =0 (<0) on I?
and according Lemma A3 we obtain the property of Schur-harmonic convexity (Schur-
harmonic concavity) of K on 2.

(vi) Applying (8) for similarly (opposit) ordered functions f and g we have

J ali (axvy ) <o (>0). Lemma A4 implies that K(x,y) is an (1,1)-concave (convex)
function. U
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