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FOURIER TRANSFORM AND Lp –MIXED CENTROID BODIES

LIJUAN LIU AND WEI WANG

(Communicated by B. Uhrin)

Abstract. In this paper we introduce the concept of Lp -mixed centroid body of a convex body
and consider a Busemann-Petty type problem whether Γ−p,iK ⊆ Γ−p,iL implies Wi(K) �Wi(L) .

1. Introduction

The nature of the duality between the Brunn-Minkowski theory and the dual Brunn-
Minkowski theory is subtle. Lutwak, Yang and Zhang [13] showed that there exists a
new ellipsoid (John ellipsoid) Γ−2K associated with convex body K in the dual Brunn-
Minkowski theory, which is the dual analog of the classical Legendre ellipsoid Γ2K
in the Brunn-Minkowski theory. More generally, they [14] introduced the concept of
Lp -John ellipsoids. If K is a convex body which contains the origin in its interior and
real p > 0, the Lp -John ellipsoid Γ−pK is defined by [14]

ρ(Γ−pK,u)−p =
1

voln(K)

∫
Sn−1

|u · v|pdSp(K,v), u ∈ Sn−1, (1.1)

where Sp(K, ·) is the Lp -surface area measure. If p � 1, the body Γ−pK is a convex
body.

The main object of this article is the i-th Lp -mixed centroid body Γ−p,iK . Let
Γ−p,iK, i = 0,1, · · · ,n−1, p > 0, denote the star body whose radial function is given by

ρ(Γ−p,iK,θ )−p =
1

Wi(K)

∫
Sn−1

|θ ·u|pdSp,i(K,u),∀θ ∈ Sn−1. (1.2)

Here Sp,i(K, ·) is the i-th Lp -mixed surface area measure with n− i− 1 copies of K
and i copies of B (the unit ball). More precisely, the Borel measure Sp,i(K, ·) , on Sn−1 ,
is defined by [12]

Sp,i(K,ω) =
∫

ω
h1−p

K (u)dSi(K,u), (1.3)

for each Borel ω ⊂ Sn−1 .
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If i = 0, Sp,i(K, ·) is just Sp(K, ·) . Obviously, Γ−p,0K = Γ−pK. In this article, we
consider the following Busemann-Petty type problem for Lp -mixed centroid bodies.
Let K and L be origin-symmetric convex bodies in Rn and i = 0,1, · · · ,n− 1, p � 1.
Suppose

Γ−p,iK ⊆ Γ−p,iL.

Does it follow that
Wi(K) � Wi(L)?

By using the Fourier analytic formula for the Lp -mixed centroid body, we will
obtain the following results.

THEOREM 1. Let K and L be origin-symmetric convex bodies in Rn , i = 0,1, · · · ,
n−1 and p � 1, p �= n− i, p is not an even integer. Suppose that the support function
hK is infinitely smooth and the functions Cpĥ

p
K(θ ) � 0 for all θ ∈ Sn−1 . If

Γ−p,iK ⊆ Γ−p,iL,

then
Wi(K) � Wi(L).

THEOREM 2. Let K be an origin-symmetric convex body in Rn , and i = 0,1, · · · ,
n−1 , p � 1, p �= n− i, p is not an even integer. If the mixed curvature function fi(K, ·)
is positive on Sn−1 and Cpĥ

p
K(θ ) is negative on an open subset of Sn−1 , then there

exists an origin-symmetric convex body D so that

Γ−p,iD ⊆ Γ−p,iK,

but
Wi(D) > Wi(K).

2. Notation and preliminaries

2.1. Lp -mixed quermassintegrals and Lp -mixed curvature functions

The setting for this paper is n -dimensional Euclidean space Rn . Let K n denote
the set of convex bodies (compact, convex subsets with non-empty interiors) in Rn .
For the set of convex bodies containing the origin in their interiors, we write K n

0 . A
compact convex set K is uniquely determined by its support function h(K, ·) on the
Euclidean unit sphere Sn−1 , defined by

h(K,u) = hK(u) = max{u · x : x ∈ K}. (2.1)

The radial function ρ(L, ·) of a compact, star-shaped L (about the origin) is defined by

ρ(L,u) = max{λ � 0 : λu ∈ L}, u ∈ Sn−1. (2.2)
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We call L a star body if ρ(L, ·) is continuous on Sn−1 and L contains the origin in its
interior.

For K,L ∈ K n , and ε > 0, the Minkowski linear combination K + L ∈ K n is
defined by

K +L = {x+ y| x ∈ K, y ∈ L}. (2.3)

It is easy to check that

h(K + εL, ·) = h(K, ·)+ εh(L, ·). (2.4)

For K,L ∈ K n
0 , p � 1, and ε > 0, the Firey Lp -combination K +p ε ·L ∈ K n

0 is
defined by (see [1,12])

h(K +p ε ·L, ·)p = h(K, ·)p + εh(L, ·)p, (2.5)

where “·′′ in ε ·L denotes the Firey scalar multiplication, i.e., ε ·L = ε
1
p L .

Let Wi(K,L) denote the mixed volume V (K, . . . ,K,L,B) with n− i−1 copies of
K , i copies of the unit ball B , and one L (i = 0,1, · · · ,n−1) . In particular, Wi(K,K)
is just the quermassintegral Wi(K) .

For K ∈ K n and i = 0,1, · · · ,n− 1, let Si(K, ·) denote the mixed surface area
measure S(K, . . . ,K,B, . . . ,B·) with n− i− 1 copies of K , i copies of B (see [11]).
The mixed quermassintegral Wi(K,L) has the following integral representation:

Wi(K,L) =
1
n

∫
Sn−1

h(L,u)dSi(K,u) (2.6)

for all L ∈ K n .
Suppose that R is the set of real numbers. A convex body K ∈ K n is said to

have a continuous i-th curvature function fi(K, ·) : Sn−1 → R , if its mixed surface area
measure Si(K, ·) is absolutely continuous with respect to spherical Lebesgue measure
S , and has the Radon-Nikodym derivative

dSi(K, ·)
dS

= fi(K, ·). (2.7)

For K,L ∈ K n
0 and p � 1, i = 0,1, · · · ,n−1, the i-th Lp -mixed quermassintegral

Wp,i(K,L) with n− i−1 copies of K , i copies of B is defined by [12]

n− i
p

Wp,i(K,L) = lim
ε→0+

Wi(K +p ε ·L)−Wi(K)
ε

.

Moreover, Lutwak [12] proved there exists a regular Borel measure Sp,i(K, ·) , such that
the Lp -mixed quermassintegral Wp,i(K,L) has the following integral representation:

Wp,i(K,L) =
1
n

∫
Sn−1

h(L,u)pdSp,i(K,u) (2.8)

for all L ∈ K n
0 . And the measure Sp,i(K, ·) is absolutely continuous with respect to

Si(K, ·) , and has Radon-Nikodym derivative

dSp,i(K, ·)
dSi(K, ·) = h(K, ·)1−p. (2.9)
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For K,L ∈ K n
0 and p � 1, i = 0,1, · · · ,n− 1, the Lp -mixed curvature function

fp,i(K, ·) is defined by

fp,i(K, ·) =
dSp,i(K, ·)

dS
. (2.10)

If the mixed surface area measure Si(K, ·) is absolutely continuous with respect to
spherical Lebesgue measure S , we have

fp,i(K,u) = fi(K,u)h(K,u)1−p. (2.11)

2.2. Fourier transform and Parseval’s formula

Koldobsky’s book [7] is an excellent general reference for the Fourier transform.
Some basic notions and the background material are required. As usual, we denote by
S(Rn) the space of rapidly decreasing infinitely differentiable functions (test functions)
on Rn , and by S′(Rn) the space of distributions over S(Rn) . Every locally integrable
real valued function f on Rn with power growth at infinity represents a distribution
acting by integration: for any φ ∈ S(Rn),〈 f ,φ〉 =

∫
Rn f (x)φ(x)dx .

The Fourier transform f̂ of a distribution f ∈ S′(Rn) is defined by 〈 f̂ , φ̂ 〉 =
(2π)n〈 f ,φ〉 for every test function φ , where

φ̂ (y) =
∫

φ(x)exp(−i〈x,y〉)dx. (2.12)

A distribution f is called even homogeneous of degree p ∈ R if 〈 f ,φ(·/α)〉 =
|α|n+p〈 f ,φ〉 for every α ∈ R,α �= 0. The Fourier transform of an even homogeneous
distribution of degree p is an even homogeneous distribution of degree −n− p . A
distribution f is called positive if 〈 f ,φ〉 � 0 for every φ � 0, implying that f is
necessarily a non-negative Borel measure on Rn . We use Schwartz’s generalization
of Bochner’s theorem (see [3]) as a definition, and call a homogeneous distribution
positive definite if its Fourier transform is a positive distribution.

Let μ be a finite Borel measure on the unit sphere Sn−1 . We extend μ to a homo-
geneous distribution of degree −n− p . A distribution μp,e is called the Lp extended
measure of μ if, for every even test function φ ∈ S(Rn) ,

〈μp,e,φ〉 =
∫

Sn−1
〈r−1−p

+ ,φ(rξ )〉dμ(ξ ). (2.13)

In most cases we are only interested in even test functions supported outside of the
origin, for which

〈r−1−p
+ ,φ(rξ )〉 =

∫
R

r−1−p
+ φ(rξ )dr =

1
2

∫
R
|r|−1−pφ(rξ )dr, (2.14)

(see [2]) for the general definition of 〈r−1−p
+ ,φ(rξ )〉 .

If μ is absolutely continuous with density g ∈ L1(Sn−1) , we define the extension
g(x),x∈Rn\{0} as a homogeneous function of degree −n− p : g(x)= |x|−n−pg(x/|x|) ,
and identify μ̂p,e with ĝ .

Since Koldobsky found the Fourier analytic characterization of intersection bod-
ies, the Fourier analytic approach to Busemann-Petty type problems has recently been
developed and has led to many results (see [4–9, 15–18]).
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3. Main results

In order to prove our main results, the following results are required.

LEMMA 3.1. [7] Let p > −1 , p �= 2k , k ∈ N ∪{0} . For every θ ∈ Sn−1 ,

μ̂p,e(θ ) =
1

4πCp

∫
Sn−1

|θ · y|pdμ(y), (3.1)

where the constant

Cp =
2p+1√πΓ((p+1)/2)

Γ(−p/2)

is positive for each p ∈ (4k−2,4k) and negative for each p ∈ (4k,4k+2) .

LEMMA 3.2. [12] If K,L ∈ K n
0 , i = 0,1, · · · ,n−1 and p > 1 , then

Wp,i(K,L)n−i � Wi(K)n−i−pWi(L)p, (3.2)

with equality if and only if K and L are dilates.

The following statement follows from (1.2) and Lemma 3.1.

LEMMA 3.3. Let p � 1 , p is not an even integer and i = 0,1, · · · ,n−1 . Then for
every θ ∈ Sn−1 ,

̂Sp,i(K, ·)(θ ) =
Wi(K)
4πCp

ρ(Γ−p,iK,θ )−p, (3.3)

where Cp is as above.

In particular, if Sp,i(K,) is absolutely continuous with respect to the spherical
Lebesgue measure, then

̂fp,i(K, ·)(θ )
Wi(K)

=
1

4πCp
ρ(Γ−p,iK,θ )−p. (3.4)

Taking i = 0 to Lemma 3.3, we immediately obtain that

COROLLARY 3.1. Let p � 1 , p is not an even integral. If Sp(K,) is absolutely
continuous with respect to the spherical Lebesgue measure, then for every θ ∈ Sn−1 ,

̂fp(K, ·)(θ )
voln(K)

=
1

4πCp
ρ(Γ−pK,θ )−p. (3.5)

THEOREM 3.1. Let K and L be origin-symmetric convex bodies in Rn , i =
0,1, · · · ,n−1 and p � 1 , p �= n− i, p is not an even integer. If

Γ−p,iK = Γ−p,iL,

then
K = L.
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Proof. Applying (1.2) and the uniqueness theorem of the Fourier transform, we
have Sp,i,e(K, ·) = Sp,i,e(L, ·) . By homogeneity, Sp,i(K, ·) = Sp,i(L, ·) is the same as
Sp,i,e(K, ·) = Sp,i,e(L, ·). It remains to use the uniqueness property of Lp -mixed surface
area measures for p �= n− i (see [12]). �

REMARK. In the case p = n− i and p is not an even integer, it follows that
Γ−(n−i),iK = Γ−(n−i),iL implies K and L are dilates. Theorem 3.1 is not true for even
values of p . Indeed, one can perturb Sp,i(K, ·) (i.e. to perturb a body K ) without
changing ρ(Γ−p,iK, ·) ( see the following theorem).

THEOREM 3.2. Let K be an origin-symmetric convex body in Rn , i = 0,1, · · · ,n−
1 and p � 1 , p �= n− i. If p is an even integer, then there exists an origin-symmetric
convex body L, such that

Γ−p,iK = Γ−p,iL,

but
Wi(K) �= Wi(L).

Proof. Then there exists a nonzero continuous even function g on Sn−1 such that∫
Sn−1

|x ·ξ |pg(x)dx = 0, ξ ∈ Sn−1. (3.6)

Indeed, if p = 2k , then |x ·ξ |2k is a polynomial of degree 2k with coefficients depend-
ing on ξ . So, it is enough to construct a nontrivial even function g , satisfying

∫
Sn−1

xi1
1 xi2

2 · · ·xin
n g(x)dx = 0, (3.7)

for all integer power 0 � i j � 2k such that ∑n
j=1 i j = 2k.

Taking g(x) = ∑n
l=1 clx2l

1 and solving the system of linear equations, one can find a
nontrivial solution c1, · · · ,cm provided m is big enough. Consider an origin-symmetric
convex body K in Rn with a strictly positive i-th Lp -mixed curvature function (i.e.,
fp,i(K,ξ ) > 0, for all ξ ∈ Sn−1 ). We may assume that

∫
Sn−1

hp
K(ξ )g(ξ )dξ � 0, (3.8)

(otherwise consider −g(ξ ) instead of g(ξ )). Choose ε > 0 such that

fp,i(K,ξ )
Wi(K)

− εg(ξ ) > 0. (3.9)

Then we may use the existence theorem for Lp -mixed curvature functions to conclude
that there exists an origin-symmetric convex body L in Rn such that

fp,i(L,ξ )
Wi(L)

=
fp,i(K,ξ )
Wi(K)

− εg(ξ ). (3.10)
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Applying (1.2) (2.10) (3.6) and (3.10), we obtain that

ρ(Γ−p,iL,ξ )−p =
1

Wi(L)

∫
Sn−1

|θ ·ξ |pdSp,i(L,ξ )

=
1

Wi(L)

∫
Sn−1

|θ ·ξ |p fp,i(L,ξ )dS(ξ )

=
1

Wi(K)

∫
Sn−1

|θ ·ξ |p fp,i(K,ξ )dS(ξ )− ε
∫

Sn−1
|θ ·ξ |pg(ξ )dS(ξ )

=
1

Wi(K)

∫
Sn−1

|θ ·ξ |p fp,i(K,ξ )dS(ξ )

=
1

Wi(K)

∫
Sn−1

|θ ·ξ |pdSp,i(K,ξ )

= ρ(Γ−p,iK,ξ )−p.

It is just to say
Γ−p,iL = Γ−p,iK. (3.11)

But

1 =
Wp,i(K,K)

Wi(K)

=
1
n

∫
Sn−1

hp
K(ξ )

fp,i(K,ξ )
Wi(K)

dξ

=
1
n

∫
Sn−1

hp
K(ξ )

fp,i(L,ξ )
Wi(L)

dξ +
ε
n

∫
Sn−1

hp
K(ξ )g(ξ )dξ

� 1
n

∫
Sn−1

hp
K(ξ )

fp,i(L,ξ )
Wi(L)

dξ

=
Wp,i(L,K)

Wi(L)
.

(3.12)

Hence
Wi(L) � Wp,i(L,K).

It follows from Lemma 3.2 that

Wi(L) � Wi(K).

So if Wi(L) = Wi(K) , then there is an equality in (3.2) and then L and K are dilates.
This contradicts the construction of the body L . �
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Proof of Theorem 1. Noting that

Γ−p,iK ⊆ Γ−p,iL ⇒Cp

̂fp,i(K, ·)(θ )
Wi(K)

� Cp

̂fp,i(L, ·)(θ )
Wi(L)

. (3.13)

From Cp

̂fp,i(K, ·)(θ )
Wi(K)

� Cp

̂fp,i(L, ·)(θ )
Wi(L)

and Cpĥ
p
K(θ ) � 0, ∀ θ ∈ Sn−1 , we get

∫
Sn−1

ĥp
K(θ )

̂fp,i(K, ·)(θ )
Wi(K)

dθ �
∫

Sn−1
ĥp

K(θ )
̂fp,i(L, ·)(θ )

Wi(L)
dθ = (∗) (3.14)

Using Parseval’s formula on the sphere, one can have

(∗) =
(2π)n

Wi(L)

∫
Sn−1

hp
K(θ ) fp,i(L,θ )dθ

=
(2π)n

Wi(L)

∫
Sn−1

hp
K(θ )dSp,i(L,θ )

= n(2π)nWp,i(L,K)
Wi(L)

(3.15)

But

∫
Sn−1

ĥp
K(θ )

̂fp,i(K, ·)(θ )
Wi(K)

(θ )dθ =
(2π)n

Wi(K)

∫
Sn−1

hp
K(θ ) fp,i(K,θ )dθ

= n(2π)nWp,i(K,K)
Wi(K)

= n(2π)n.

(3.16)

Thus
Wp,i(L,K) � Wi(L). (3.17)

Applying the Lemma 3.2, we get

Wi(K) � Wi(L). � (3.18)

Proof of Theorem 2. Let Ω = {θ ∈ Sn−1 : Cpĥ
p
K(θ ) < 0} . Consider a function

ν ∈ C∞(Sn−1) such that Cpν is a positive even function supported on Ω , ν is not
identically zero. We extend ν to a homogeneous function rpν(θ ) of degree p on Rn .
Then the Fourier transform of rpν(θ ) is a homogeneous function of degree −n− p :

r̂pν(θ ) = r−n−pg(θ ) , where g is an infinitely smooth function on Sn−1 . Since g is
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bounded on Sn−1 and fp,i(K,θ ) = h1−p
K (θ ) fi(K,θ ) > 0, one can choose a small ε > 0

so that, for every θ ∈ Sn−1 and r > 0,

fp,i(D,rθ )
Wi(D)

=
fp,i(K,rθ )

Wi(K)
+ εr−n−pg(θ ) > 0. (3.19)

By Lutwak’s extension of the Minkowski’s existence theorem, fp,i(D,θ ) defines a con-
vex body D ∈ Rn . By the definition of the function ν , one can obtain that

Cp

̂fp,i(D, ·)(rθ )
Wi(D)

= Cp

̂fp,i(K, ·)(rθ )
Wi(K)

+ εrpCpν(θ ) � Cp

̂fp,i(K, ·)(rθ )
Wi(K)

, (3.20)

or equivalently
Γ−p,iD ⊆ Γ−p,iK.

Next, since Cpν is supported and is positive in the set where Cpĥ
p
K < 0,

∫
Sn−1

ĥp
K(θ )

̂fp,i(D, ·)(θ )
Wi(D)

dθ

=
∫

Sn−1
ĥp

K(θ )
̂fp,i(K, ·)(θ )
Wi(K)

dθ +
∫
Sn−1

ĥp
K(θ )εν(θ )dθ

<

∫
Sn−1

ĥp
K(θ )

̂fp,i(K, ·)(θ )
Wi(K)

dθ = (∗)

(3.21)

Now the Parseval’s formula gives

(∗) =
(2π)n

Wi(K)

∫
Sn−1

hp
K(θ ) fp,i(K,θ )dθ

=
n(2π)n

Wi(K)

∫
Sn−1

hp
K(θ )dSp,i(K,θ )

= n(2π)nWp,i(K,K)
Wi(K)

= n(2π)n.

(3.22)

And ∫
Sn−1

ĥp
K(θ )

̂fp,i(D, ·)(θ )
Wi(D)

dθ

=
(2π)n

Wi(D)

∫
Sn−1

hp
K(θ ) fp,i(D,θ )dθ

=
(2π)n

Wi(D)

∫
Sn−1

hp
K(θ )dSp,i(D,θ )

= n(2π)nWp,i(D,K)
Wi(D)

(3.23)
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Thus
Wp,i(D,K) < Wi(D). (3.24)

As in the previous lemma, this implies

Wi(K) <Wi(D). �

Taking i = 0 to Theorem 1 and Theorem 2, respectively, we obtain that

COROLLARY 3.2. [15] Let K and L be origin-symmetric convex bodies in Rn ,
and p � 1, p �= n, p is not an even integer. Suppose that the support function hK is
infinitely smooth and the functions Cpĥ

p
K(θ ) � 0 for all θ ∈ Sn−1 . If

Γ−pK ⊆ Γ−pL,

then
voln(K) � voln(L).

COROLLARY 3.3. [15] Let K be an origin-symmetric convex body in Rn , and
p � 1, p �= n, p is not an even integer. If the curvature function f (K, ·) is positive on

Sn−1 and Cpĥ
p
K(θ ) is negative on an open subset of Sn−1 , then there exists an origin-

symmetric convex body D so that

Γ−pD ⊆ Γ−pK,

but
voln(D) > voln(K).
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