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FOURIER TRANSFORM AND L,-MIXED CENTROID BODIES

LIJUAN L1U AND WEI WANG

(Communicated by B. Uhrin)

Abstract. In this paper we introduce the concept of L,-mixed centroid body of a convex body
and consider a Busemann-Petty type problem whether T'_,, ;K CT_, ;L implies W;(K) < W;(L).

1. Introduction

The nature of the duality between the Brunn-Minkowski theory and the dual Brunn-
Minkowski theory is subtle. Lutwak, Yang and Zhang [13] showed that there exists a
new ellipsoid (John ellipsoid) I'_,K associated with convex body K in the dual Brunn-
Minkowski theory, which is the dual analog of the classical Legendre ellipsoid T K
in the Brunn-Minkowski theory. More generally, they [14] introduced the concept of
L, -John ellipsoids. If K is a convex body which contains the origin in its interior and
real p > 0, the L,-John ellipsoid T'_,K is defined by ['*

1
- P n—1
p(T_,K,u)? = (& )/H\u v|PdS,(K,v), ues" !, (1.1)

where S,(K,-) is the L, -surface area measure. If p > 1, the body I'_,K is a convex
body.

The main object of this article is the i-th L,-mixed centroid body I'_, ;K. Let
' ,K,i=0,1,---,n—1,p >0, denote the star body whose radial function is given by

1

. - -
p (F—PﬂKa 6) VVI(K)

/ 16-ulPdS, i(K.u),v0 € 5", (1.2)
N

Here S, ;(K,-) is the i-th L,-mixed surface area measure with n —i— 1 copies of K
and 7 copies of B (the unit ball). More precisely, the Borel measure § W-(K ,*),on s
is defined by (12]

$,4(K, ) /h W)dSi(K,u), (1.3)

for each Borel @ C §" L.
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If i=0,8,:(K,-) is just S,(K,-). Obviously, I'_, oK =T"_,K. In this article, we
consider the following Busemann-Petty type problem for L,-mixed centroid bodies.
Let K and L be origin-symmetric convex bodies in R” and i =0,1,---,n—1,p > 1.
Suppose

Ir_,,KCI'_,L.

Does it follow that
Wi(K) < Wi(L)?

By using the Fourier analytic formula for the L,-mixed centroid body, we will
obtain the following results.

THEOREM 1. Let K and L be origin-symmetric convex bodiesin R", i=0,1,---,
n—1and p > 1,p #n—1i,p is not an even integer. Suppose that the support function
hk is infinitely smooth and the functions C,hk(0) >0 forall 6 € S"~'. If

I K CT il
then

Wi(K) < Wi(L).

THEOREM 2. Let K be an origin-symmetric convex body in R", and i =0,1,-- -,
n—1, p>1,p#n—i,p is not an even integer. If the mixed curvature function f;(K,-)

is positive on "' and Cphﬁ(e) is negative on an open subset of S"~!, then there
exists an origin-symmetric convex body D so that

T piD CT-piK,

but
Wi(D) > Wi(K).

2. Notation and preliminaries

2.1. L,-mixed quermassintegrals and L,-mixed curvature functions

The setting for this paper is n-dimensional Euclidean space R”. Let £ denote
the set of convex bodies (compact, convex subsets with non-empty interiors) in R”.
For the set of convex bodies containing the origin in their interiors, we write JZ". A
compact convex set K is uniquely determined by its support function h(K,-) on the
Euclidean unit sphere S§"—1_ defined by

h(K,u) = hg(u) = max{u-x: x € K}. (2.1)
The radial function p(L,-) of a compact, star-shaped L (about the origin) is defined by

p(L,u) =max{A>0:Aucl}, uecs" ' (2.2)
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We call L a star body if p(L,-) is continuous on §"~! and L contains the origin in its
interior.
For K,L € ¢, and € > 0, the Minkowski linear combination K +L € £ is
defined by
K+L={x+y x€K,y€eL}. (2.3)

It is easy to check that
h(K+¢€L,-)=h(K,-)+eh(L,"). (2.4)

For K,L € #)",p > 1, and € > 0, the Firey Lj,-combination K+, &-L € J" is

defined by (see [1,12])
h(K+pe-L,- )’ =h(K,-)’ +eh(L,-)?, (2.5)

where “” in € L denotes the Firey scalar multiplication, i.e., €- L = S%L.

Let W;(K,L) denote the mixed volume V(K,...,K,L,B) with n—i— 1 copies of
K, i copies of the unit ball B, and one L (i=0,1,---,n—1). In particular, W;(K,K)
is just the quermassintegral W;(K).

For K € #™" and i =0,1,---,n— 1, let S;(K,-) denote the mixed surface area
measure S(K,...,K,B,...,B-) with n—i— 1 copies of K, i copies of B (see [L1]).
The mixed quermassintegral W;(K,L) has the following integral representation:

1
Wi(K,L) = — lh(L,u)dS,-(IQu) (2.6)
n Jsn-
forall Le #™".

Suppose that R is the set of real numbers. A convex body K € #™" is said to
have a continuous i-th curvature function f;(K,-) : §"~! — R, if its mixed surface area
measure S;(K,-) is absolutely continuous with respect to spherical Lebesgue measure
S, and has the Radon-Nikodym derivative

dSi (Kv )

e =Sk, (2.7)

For K,L€ %) and p>1,i=0,1,---,n—1, the i-th L,-mixed quermassintegral
W, i(K,L) with n—i—1 copies of K, i copies of B is defined by [12]
—1i Wi(K -L)—W;(K
t ZWP,i(K,L) = lim (Ktpe-L) = Wil )
p

e—0t €

Moreover, Lutwak [12] proved there exists a regular Borel measure S, ;(K, -), such that
the L,-mixed quermassintegral W, ;(K,L) has the following integral representation:

W, (K,L) = % /S  h(Lu)’dS, (K, u) (2.8)

for all L € %;". And the measure S,;(K,-) is absolutely continuous with respect to
Si(K,-), and has Radon-Nikodym derivative

ds,i(K,-)

S h(K,)'7P. (2.9)
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For K,L € )" and p > 1,i=0,1,---,n— 1, the L,-mixed curvature function
fpi(K,-) is deﬁned by
ds,i(K,-)
i(K,)= 222
f[77 ( 9 ) dS
If the mixed surface area measure S;(K,-) is absolutely continuous with respect to
spherical Lebesgue measure S, we have

fri(K,u) = fi(K,u)h(K,u)' 7. (2.11)

(2.10)

2.2. Fourier transform and Parseval’s formula

Koldobsky’s book [7] is an excellent general reference for the Fourier transform.
Some basic notions and the background material are required. As usual, we denote by
S(R™) the space of rapidly decreasing infinitely differentiable functions (test functions)
on R", and by §'(R") the space of distributions over S(R"). Every locally integrable
real valued function f on R" with power growth at infinity represents a distribution
acting by integration: for any ¢ € S(R"), (f,9) = [g. f(x)d(x)dx.

The Fourier transform f of a distribution f € S'(R") is defined by (f,¢) =
(2rm)"(f, ) for every test function ¢, where

= [otexp(=ix.))dx. (2.12)

A distribution f is called even homogeneous of degree p € R if (f,¢(-/a)) =
la|"tP(f,¢) for every o € R, o # 0. The Fourier transform of an even homogeneous
distribution of degree p is an even homogeneous distribution of degree —n—p. A
distribution f is called positive if (f,¢) > 0 for every ¢ > 0, implying that f is
necessarily a non-negative Borel measure on R”. We use Schwartz’s generalization
of Bochner’s theorem (see [3]) as a definition, and call a homogeneous distribution
positive definite if its Fourier transform is a positive distribution.

Let i be a finite Borel measure on the unit sphere S"~!. We extend u to a homo-
geneous distribution of degree —n — p. A distribution u, . is called the L, extended
measure of U if, for every even test function ¢ € S(R"),

(Hperd) = [ 057,080} (©). (2.13)

In most cases we are only interested in even test functions supported outside of the
origin, for which

T 00E) = [ TeUtdr =3 [ et (214)

(see [2]) for the general definition of (r;' ™7, ¢ (r€)).

If u is absolutely continuous with density g € L;(S"~!), we define the extension
g(x),x e R"\{0} as ahomogeneous function of degree —n—p: g(x) = |x| " Pg(x/|x]),
and identify 1, , with .

Since Koldobsky found the Fourier analytic characterization of intersection bod-
ies, the Fourier analytic approach to Busemann-Petty type problems has recently been
developed and has led to many results (see [4-9, 15-18]).
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3. Main results

In order to prove our main results, the following results are required.

LEMMA 3.1. [7] Let p> —1, p# 2k, k€ NU{0}. Forevery 6 € S !,

_— 1
e p— . 17 ) .1
Be(®) = g 1037 d) (3.1)
where the constant
2T ((p+1)/2)
i I'(—-p/2)

is positive for each p € (4k —2,4k) and negative for each p € (4k,4k+2).
LEMMA 3.2. [12] IfK,Le %", i=0,1,---,n—1 and p > 1, then
Wyi(K,L)"™" = Wi(K)" " PWi(L)?, (32)
with equality if and only if K and L are dilates.

The following statement follows from (1.2) and Lemma 3.1.

LEMMA 3.3. Let p > 1, p is not an even integer and i =0,1,---,n— 1. Then for
every 0 € "1,
S Wi(K)
S,.i(K,-) (0
ATSIOEES

p(T_piK,0) 7 (3.3)

where C, is as above.

In particular, if S,;(K,) is absolutely continuous with respect to the spherical
Lebesgue measure, then

frilK)(8) 1
Wi(K) 4nC,

p(T_,K,0)°7. (3.4)

Taking i = 0 to Lemma 3.3, we immediately obtain that

COROLLARY 3.1. Let p > 1, p is not an even integral. If S,(K,) is absolutely
continuous with respect to the spherical Lebesgue measure, then for every 6 € §"~ 1,

HE)6) 1
vol, (K) 4nC,

p(I_,K,0). (3.5)
THEOREM 3.1. Let K and L be origin-symmetric convex bodies in R", i =
0,1,---,n—1and p > 1, p#n—i,p is not an even integer. If
FopiK=T_L,

then
K=L.
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Proof. Applying (1.2) and the uniqueness theorem of the Fourier transform, we
have S, ;c(K,-) = Spie(L,-). By homogeneity, S, (K, ) =S,:(L,-) is the same as
Spie(K,") =Spie(L,-). It remains to use the uniqueness property of L,-mixed surface
area measures for p £ n—i (see [12]). O

REMARK. In the case p =n—1i and p is not an even integer, it follows that
I' (i) K=T_(—j,L implies K and L are dilates. Theorem 3.1 is not true for even
values of p. Indeed, one can perturb S,;(K,-) (i.e. to perturb a body K) without
changing p(I'_,;K,-) ( see the following theorem).

THEOREM 3.2. Let K be an origin-symmetric convex body in R*, i=0,1,---,n—
land p>1, p#n—i. If p is an even integer, then there exists an origin-symmetric
convex body L, such that

r_,,K=T_,,L,

but
Wi(K) # Wi(L).
Proof. Then there exists a nonzero continuous even function g on §"~! such that

/S xeEPsdr=0, s (3.6)

Indeed, if p = 2k, then |x- &|* is a polynomial of degree 2k with coefficients depend-
ing on &. So, it is enough to construct a nontrivial even function g, satisfying

/nilxillx?---x;”g(x)dxzo, (3.7)

for all integer power 0 < i;j < 2k such that ¥7_,i; = 2k.

Taking g(x) =3] c;x%l and solving the system of linear equations, one can find a
nontrivial solution c1,---,c;, provided m is big enough. Consider an origin-symmetric
convex body K in R" with a strictly positive i-th L,-mixed curvature function (i.e.,
fri(K,E) >0, forall &€ S"!). We may assume that

[, H©s@a >0 (3.8)
(otherwise consider —g(&) instead of g(&)). Choose € > 0 such that
%’25)—%(5) 50, (3.9)

Then we may use the existence theorem for L,-mixed curvature functions to conclude
that there exists an origin-symmetric convex body L in R” such that

FpilL&) _ fpilK.E)
Wi(L) Wi (K)

eg(&). (3.10)
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Applying (1.2) (2.10) (3.6) and (3.10), we obtain that

Py &) 7 = s [ 10-817d8,.(L.8)
= T fo 18- EP L. )aS(E)
= R o 10-EP . )aS(E) — [ 16-EPa@)as )
= T o 108K E)as(E)
= TR o 10-EPASp.2)
= p(TiK.§) "
It is just to say
I ,L=T_,iK. (3.11)
But
WpJ(K,K)
YT W)
1 e
2 fomelaea [ e o)
>0 kel
_ WPJ(L,K)
WL
Hence

VVI(L) P Wp,i(LaK)'
It follows from Lemma 3.2 that
Wi(L) > Wi(K).

So if W;(L) = W;(K), then there is an equality in (3.2) and then L and K are dilates.
This contradicts the construction of the body L. [
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Proof of Theorem 1. Noting that

—_—

1K)(0) _ . filL)(6)

I ,,KCl'_,,L=C >
p,it = pit p VVI(K) p VVI(L)

(3.13)

From Cpfp’i‘g/[j(’lg)(e) > Cpfp’i‘g;&))w) and Cpl/zZ(G) >0, YOS, we get
/SH @(9)%619 > @(0)%&9 — (%) (3.14)

Using Parseval’s formula on the sphere, one can have

(2"
Wi(L)

()= 5o | W (O)f,u(L.0)d0

(2n)"

= VVI(L) /S,Flhllé(e)dspi(l‘ve) (315)

W,.i(L,K)

=n(2m)" WiL)

But

—

v Jpi(K;)(0)
[ e 0

W,.i(K,K) (3.16)

Thus
Wpi(L,K) < Wi(L). (3.17)

Applying the Lemma 3.2, we get

Wi(K) <Wi(L). O (3.18)

Proof of Theorem 2. Let Q= {6 € S"~!: C,hk(0) < 0}. Consider a function
v € C°(5"!) such that Cpv is a positive even function supported on £, v is not
identically zero. We extend v to a homogeneous function r’v(0) of degree p on R".
Then the Fourier transform of #”v(0) is a homogeneous function of degree —n—p :

rl’/v(\O) =r"""Pg(@), where g is an infinitely smooth function on §"~!. Since g is
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bounded on $"~! and f,(K,0) = h;{p(e)f,-(K, 0) > 0, one can choose a small € >0
so that, for every 6 € S"~! and r > 0,

fP7i(D7re) _ fP7i(K7r9)
Wi(D) Wi(K)
By Lutwak’s extension of the Minkowski’s existence theorem, f}, ;(D, ) defines a con-
vex body D € R". By the definition of the function v, one can obtain that

o — — —

BilD IO _ ¢, il D00)  rocyvio) » ¢, 2l 00),

or equivalently

+er " Pg(0) > 0. (3.19)

c, (3.20)

r,.DCT_,KK.

—pii

Next, since C,V is supported and is positive in the set where Cphk < 0,

o —

7(0) 22D)(0)

-1 K W;(D) 40

—

pr(K»')(

= [ (6) %) 40 +/SH 12 (0)ev(0)do (3.21)

sn—1 VVI(K)

o Jpi(K,)(8)
< [ ko i 2

Now the Parseval’s formula gives

(2n)"

()= 35715 o RO (K, 00

d6 = (x)

_ ’;[(/2(’2) [ H(6)dS,.(K.6) (3.22)

- n(Zn)"% = n(2m)".

And

—

= o Jpi(D,-)(0)
/Snilhg(e)ipm(m a6

= W(D) -1 hl;((e)fpl(D7 e)de
’ (3.23)

_ P .
- W.D) SnilhK(G)dSpJ(D,G)
WpJ(D,K)

=n(2m)" Wi(D)
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Thus
W,.i(D,K) < W;(D). (3.24)

As in the previous lemma, this implies

Wi(K) <Wi(D). O

Taking i = 0 to Theorem 1 and Theorem 2, respectively, we obtain that

COROLLARY 3.2. [15] Let K and L be origin-symmetric convex bodies in R",
and p > 1,p # n,p is not an even integer. Suppose that the support function hg is
infinitely smooth and the functions Cphk.(8) >0 forall 6 € "~ 1. If

r ,KCT_,L,

then
vol,(K) < vol,(L).

COROLLARY 3.3. [15] Let K be an origin-symmetric convex body in R", and
p = 1,p # n,p is not an even integer. If the curvature function f(K,-) is positive on

S and Cphk(0) is negative on an open subset of S"=L then there exists an origin-
symmetric convex body D so that

I ,DCT_,K,

but
vol, (D) > vol,(K).
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