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AN INEQUALITY IN THE COMPLEX DOMAIN

CĂTĂLIN ŢIGĂERU

(Communicated by A. Čižmešija)

Abstract. We prove the inequality |1+ z1|+ |1+ z2|+ |1+ z1z2| � |z1|+ |z2|, where z1,z2 are
two arbitrary complex numbers. Consequently, it results that, if z1, . . . ,zn are n arbitrary com-
plex number, then ∑n

k=1 |1+ zk |+ 1
n−1 ∑1�i< j�n |1+ ziz j| � ∑n

k=1 |zk |.

1. Introduction

An interesting class of inequalities are those that bound the sum of the moduli of
two or more than two complex numbers. An example is represented by the inequality
|z1|+ |z2| � |1 + z1z2| , which is true when |z1| and |z2| satisfy the condition (|z1| −
1)(|z2| − 1) > 1 (see [1] ,3.8.13) , but is not true when (|z1| − 1)(|z2| − 1) � 1. The
aim of this paper is to prove the following general result:

THEOREM 1. If z1,z2 are two arbitrary complex numbers, then it results that

|1+ z1|+ |1+ z2|+ |1+ z1z2| � |z1|+ |z2|. (1.1)

We denote with C∗ the field of the complex numbers which are different from
zero and with |z| the modulus of the complex number z . If z ∈ C∗ , then there exists
an angle ϕ , called the argument of z , which is unique then we restrict ourselves to the
interval [0,2π) , so that z can be written as z = |z|(cosϕ + isinϕ) . As we can easily
see, if one of the two numbers is zero, the inequality is true, so we will assume that
the two numbers are different from zero. Then, using the above trigonometric form,
the inequality can be reformulated in the following form: if z1 = a(cosα + isinα) ,
z2 = b(cosβ + isinβ ) , with |z1| = a > 0, |z2| = b > 0 and arg(z1) = α ∈ [0,2π) ,
arg(z2) = β ∈ [0,2π) , then it results that

√
a2 +2acosα +1+

√
b2 +2bcosβ +1+

+
√

(ab)2 +2abcos(α + β )+1 � a+b.
(1.2)

Squaring the above inequality, we get the following equivalent form:

(1−ab)2 +2(1+acosα)(1+bcosβ )−2absinα sinβ+
+2|1+ z1z2|

(|1+ z1|+ |1+ z2|
)
+2|1+ z1||1+ z2| � 0.

(1.3)
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Let us remind the following important inequalities: if z ∈ C∗ , z = ρ(cosϕ + sinϕ) ,
then it results that

|1+ z|=
√

ρ2 +2ρ cosϕ +1 � max{|ρ + cosϕ |, |1+ ρ cosϕ |,ρ |sinϕ |}. (1.4)

In the next paragraph we prove some lemmas, which we will use in the third paragraph,
where we will prove the result.

2. Lemmas

LEMMA 1. Let us assume α,β ∈ [0,2π) and cosα · cosβ � 0 . It results that

cosα + cosβ + |sin(α + β )| � 0.

Proof. We suppose that cosα +cosβ < 0, otherwise the inequality is obvious. Let
us fix cosα � 0, cosβ � 0. It results that α ∈ [

0, π
2

]∪ [
3π
2 ,2π

)
and β ∈ [ π

2 , 3π
2

]
. We

consider first the case α ∈ [
0, π

2

]
. Then cosα < −cosβ = cos(π −β ) , consequently

−α < π−β < α and therefore |sin(α +β )|=−sin(α +β ) . Let us denote x = cosα ∈
[0,1] and y = cosβ ∈ [−1,0] . Next, let us suppose that β ∈ [π

2 ,π
]
. We get sinβ � 0,

so the above inequality can be reformulated: if x ∈ [0,1],y ∈ [−1,0] and x + y < 0,
then

x+ y− (x
√

1− y2 + y
√

1− x2) � 0.

Squaring the inequality and taking into account that xy < 0, we get the following equiv-
alent form 1+ xy �

√
1− x2 ·

√
1− y2 . Squaring again, we get (x+ y)2 � 0, which is

obvious. Suppose that β ∈ [
π , 3π

2

]
. Then sinβ � 0 and the inequality has the equiva-

lent form: if x ∈ [0,1] , y ∈ [−1,0] and x+ y < 0, then

x+ y− (y
√

1− x2− x
√

1− y2) � 0,

which is equivalent to xy + x2y2 � −xy
√

1− x2 ·
√

1− y2 , which is obvious, because
the left-hand side of the inequality is negative and the right-hand side is positive. We
consider the case α ∈ [

3π
2 ,2π

)
. Denote α1 = 2π −α,β1 = 2π −β . Then α1 ∈

[
0, π

2

]
,

β1 ∈
[ π

2
3π
2

]
, so we obtain

cosα + cosβ + |sin(α + β )| = cosα1 + cosβ1 + |sin(4π − (α1 + β1))|
= cosα1 + cosβ1 + |sin(α1 + β1)| � 0. �

LEMMA 2. Let us assume that the complex numbers z1 = a(cosα + isinα) , z2 =
b(cosβ + isinβ ) satisfy the condition 1+ 2bcosβ < 0 . Then, if a � 1+(1− ab)2 ,
the inequality (1.1) is true.

Proof. If a � 1 + (1 − ab)2 , then − 1+(1−ab)2
a � −1 � cosα , so we get 1 +

acosα �−(1−ab)2 . Taking into account that 1+bcosβ � 0, we get 2(1+acosα)(1+
bcosβ ) � −2(1−ab)2(1+bcosβ ) . On the other hand, the condition 1+2bcosβ < 0
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leads to −2(1 + bcosβ ) > −1. Multiplying this inequality with (1− ab)2 , we get
−2(1−ab)2(1+bcosβ ) � −(1−ab)2 , so we obtain

(∗)(1−ab)2 +2(1+acosα)(1+bcosβ ) � 0.

Let us consider the inequality (1.3); the left-hand side of the inequality can be arranged
in the following form

(
(1−ab)2 +2(1+acosα)(1+bcosβ )

)
+

+2
(|1+ z1||1+ z2|−absinα sinβ

)
+

+2|1+ z1z2|
(|1+ z1|+ |1+ z2|

)
.

Taking into account (∗) and (1.4), we get that the left-hand side of the inequality
is positive, so the inequality (1.3) is true and the inequality (1.1) is true. �

LEMMA 3. Let us assume that the complex numbers z1 = a(cosα + isinα) , z2 =
b(cosβ + isinβ ) satisfy the following conditions:

ab < 1, a � 1, 1 � b >
1
2
,

α,β ∈
[π
2

,π
]
,

1+2bcosβ < 0,

cosα < −1+(1−ab)2

a
.

It results that

|1+ z1z2| �
√

2+3(1−ab)2 �
√

2.

Proof. Let us denote ab = c . First, let us notice that the conditions c < 1, b > 1
2

and −1 < − 1+(1−c)2
a leads to 1+(1− c)2 < a < 2c . Taking into account that cosβ <

− 1
2b =− a

2c , we get cosα cosβ > 1+(1−c)2
2c . Then, taking into account that 0 � sinα �√

a2−
(
1+(1−c)2

)2

a2 and 0 � sinβ �
√

4c2−a2

4c2 , we get

cos(α + β ) � 1+(1− c)2

2c
−

√
4c2−a2 ·

√
a2− (

1+(1− c)2
)2

2ac
.

It results that

|1+z1z2|2 = c2+2ccos(α+β )+1 � c2+2+(1−c)2−
√

4c2−a2 ·
√

a2−(
1+(1−c)2

)2

a
.
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Let us prove the following inequality:

√
4c2−a2 ·

√
a2− (

1+(1− c)2
)2

a
� (2c−1)− (1− c)2.

Indeed, squaring the above inequality we can reduce it to

4a2c2−4c2(1+(1− c)2)2−a4 +a2 +2a2(1− c)2

� a2(2c−1)2−2a2(2c−1)(1− c)2,

which is equivalent to
(
a2−2c

(
1+(1− c)2

))2 � 0. It results that

|1+ z1z2|2 � c2 +2+(1− c)2− (
(2c−1)− (1− c)2) = 2+3(1− c)2. �

3. Proof of the Theorem 1

The proof will be divided in three cases:
(
A
)

ab � 1,
(
B
)

ab < 1 and cosα ·
cosβ � 0 and

(
C

)
ab < 1 and cosα · cosβ � 0, where α,β ∈ [0,2π) . First, let us

observe that in order to prove the inequality (1.2) it is sufficient to prove the inequality

cosα + cosβ +
√

(ab)2 +2abcos(α + β )+1 � 0, (3.1)

subject to the condition cosα + cosβ < 0, otherwise it is obvious. Indeed, if (3.1) is
true, then, taking into account (1.4), we get

√
a2 +2acosα +1+

√
b2 +2bcosβ +1+

√
(ab)2 +2abcos(α + β )+1

� a+b+
(

cosα + cosβ +
√

(ab)2 +2abcos(α + β )+1
)

� a+b.

(
A
)

Let us suppose that ab � 1. We prove that, if cosα + cosβ < 0 and α,β ∈
[0,2π) , then cos α+β

2 < 0. Indeed, let us suppose that, on the contrary, cos α+β
2 > 0

and let us assume that α � β . Then, because cosα + cosβ = 2cos α+β
2 cos α−β

2 < 0,

it would result that cos α−β
2 < 0. The angles α and β would satisfy π

2 < α−β
2 < 3π

2

and α+β
2 ∈

[
0, π

2

)
∪

(
3π
2 ,2π

]
. Consequently, we would get either β < 0 or α > 2π ,

which are both not true. Let us notice that the condition α,β ∈ [0,2π) is necessary,
because, if cosα + cosβ < 0 and α,β ∈ R , then it does not result that cos α+β

2 < 0.
Next, let us consider the function f : [0,∞) → R ,

f (x) =
√

x2 +2xcos(α + β )+1 (3.2)

which is increasing on the interval [1,∞) . As ab � 1, it results that f (ab) � f (1) =
2
∣∣∣cos α+β

2

∣∣∣ = −2cos α+β
2 . Also we have

cosα + cosβ −2cos
α + β

2
= 2cos

α + β
2

(
cos

α −β
2

−1
)

� 0.
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It results that the inequality (3.1) is true and so (1.1) is true.(
B
)

Let us suppose that ab < 1 and cosα · cosβ � 0. Suppose that cosα +
cosβ < 0. If cos(α +β ) � 0, it results that

√
(ab)2 +2abcos(α + β )+1 � 1. Taking

into account the fact that one of the number cosα or cosβ is positive, it results that
cosα +cosβ +

√
(ab)2 +2abcos(α + β )+1� cosα +cosβ +1� 0, so the inequality

(3.1)is true. Let us suppose that cos(α + β ) < 0. The function (3.2) has the minimal
value f (−cos(α +β ))= |sin(α +β )| . According to Lemma 1, we get cosα +cosβ +√

(ab)2 +2abcos(α + β )+1 � cosα + cosβ + |sin(α + β )| � 0 and the inequality
(3.1) is true and so (1.1) is true.(

C
)

Let us suppose that ab = c < 1 and cosα · cosβ > 0.
First, let us prove the inequality (1.1), subject to the conditions |z1| = a ∈ (0,1] ,

|z2| = b ∈ (0,1] . Taking into account that 1
|z1| � 1, 1

|z2| � 1 and the case (A) , we get
|z2||1+ z1|+ |z1||1+ z2|+ |1+ z1z2| � |z1|+ |z2| , which proves the inequality (1.1).

Let us suppose that one of the modulus is greater than 1 and one is not. Let us fix
a � 1, b � 1 with c < 1 and cosα < 0,cosβ < 0.

Suppose that α ∈ [π
2 ,π

]
and β ∈ [

π , 3π
2

]
or β ∈ [π

2 ,π
]

and α ∈ [
π , 3π

2

]
. Then

it results
|z1 − z2|+ |1+ z1z2| � |z1|+ |z2|.

Indeed, squaring the above inequality, we get the following inequality

(1− c)2−4csinα sinβ +2|z1− z2||1+ z1z2| � 0,

which is true, because sinα sinβ � 0. But |1+z1|+ |1+z2|� |z1−z2| , so the inequal-
ity (1.1) is true.

Next we suppose α,β ∈ [ π
2 ,π

]
. Let us notice that in this conditions it results that

|1− z1| � 1 and |1− z2| � 1. This fact has two important consequences. First, let us
observe that if b � 1

2 , then (1.1) is true. Indeed, we get

|1+ z1|+ |1+ z2|+ |1+ z1z2| � |1+ z1z2 −1− z1|+ |1+ z2|
� |z1||1− z2|+(1−|z2|) � |z1|+ |z2|,

which is true, because 1− |z2| � |z2| . Secondly, let us observe that if |1+ z2| � |z2| ,
then |1+ z1|+ |1+ z2|+ |1+ z1z2| � |z2|+ |z1||1− z2| � |z1|+ |z2| , so (1.1) is true. We
get the same conclusion if |1+ z1| � |z1| .

Next, we suppose that |1+z2|< |z2| and b∈ ( 1
2 ,1] . Replacing in the trigonometric

form of the complex numbers, we get the following set of conditions

ab < 1, a � 1, 1 � b > 1
2 ,

α,β ∈
[

π
2 ,π

]
,

1+2bcosβ < 0.

If a � 1+(1− c)2 , then, according to Lemma 2, it results that (1.1) is true. Suppose

that a > 1+(1−c)2 , which can be rewritten as −1<− 1+(1−c)2
a . If − 1+(1−c)2

a � cosα ,
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then, following the same line as in the proof of the Lemma 2, we get that the inequality
(1.1) is true.

Let us suppose that cosα < − 1+(1−c)2
a . Then, according to the Lemma 3, we

deduce |1+ z1z2| �
√

2. The left-hand side of the inequality (1.3) can be arranged in
the following form

(1−ab)2 +2
(
|1+ z1||1+ z2|+(1+acosα)(1+bcosβ )

)
+

+2
(
|1+ z1z2|

(|1+ z1|+ |1+ z2|
)−absinα sinβ

)
.

Taking into account (1.4), we get |1+ z1||1+ z2|+(1+acosα)(1+bcosβ ) � 0. Tak-
ing into account (1.4) and |1+ z1z2| �

√
2, we get

|1+ z1z2|
(|1+ z1|+ |1+ z2|

)−absinα sinβ �
√

2(asinα +bsinβ )−absinα sinβ

= asinα(
√

2−bsinβ )+
√

2bsinβ � 0.

It results that the left-hand side of the inequality (1.3) is positive, so it is true and so
(1.1) is true.

We suppose that α,β ∈ [
π , 3π

2

]
. Let us consider the complex conjugate of the

complex numbers z1 and z2 , denoted z1 and z2 . Then their arguments, denoted
arg(z1) = α ′ = 2π −α and arg(z2) = β ′ = 2π − β have the property that α ′,β ′ ∈[π

2 ,π
]
. It results that

|1+ z1|+ |1+ z2|+ |1+ z1z2| = |1+ z1|+ |1+ z2|+ |1+ z1 · z2|
� |z1|+ |z1| = |z1|+ |z2|.

This concludes the proof of the Theorem 1.
If we put z1 = z2 in the inequality (1.1) we obtain:

PROPOSITION 1. If z is an arbitrary complex number, then

|1+ z2| � 2
(|z|− |1+ z|). (3.3)

A generalization of the inequality (1.1) is represented by the next result.

PROPOSITION 2. If z1,z2, ...zn are n arbitrary complex numbers, then

n

∑
k=1

|1+ zk|+ 1
n−1 ∑

1�i< j�n

|1+ ziz j| �
n

∑
k=1

|zk|. (3.4)

Proof. Applying the inequality (1.1) to each pair (i, j) with i < j , where i, j ∈
{1, . . . ,n} , we get:

|1+z1|+ |1+z2|+ |1+z1z2| � |z1|+ |z2|, . . . , |1+z1|+ |1+zn|+ |1+z1zn| � |z1|+ |zn|,
|1+z2|+ |1+z3|+ |1+z2z3| � |z2|+ |z3|, . . . , |1+z2|+ |1+zn|+ |1+z2zn| � |z2|+ |zn|,

...
|1+zn−1|+ |1+zn|+ |1+zn−1zn| � |zn−1|+ |zn|.
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Summing up the inequalities, one obtains

(n−1)
n

∑
k=1

|1+ zk|+ ∑
1�i< j�n

|1+ ziz j| � (n−1)
n

∑
k=1

|zk|.

It results that (3.4) is true. �
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