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AN INEQUALITY FOR THE GAMMA
FUNCTION CONJECTURED BY D. KERSHAW
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(Communicated by N. Elezovic)

Abstract. We prove the inequality I'(x) +T'(1/x) <T(1+x+1/x).

1. Introduction

It has long been known that T'(x) +T'(1/x) > 2; a quick proof is by convex-
ity of T'(x) and T'(1/x). Gautschi [3] generalized this statement by showing that the
harmonic mean of I'(x) and T'(1/x) is not less than 1, which of course implies also
that T'(x)T'(1/x) > 1. Since then, inequalities concerning I'(1/x) have been investi-
gated in many further articles. Alzer [1] extended Gautschi’s result to the power means
M,|T(x),T(1/x)]. Kershaw and Laforgia [5] showed that [['(1+ 1/x)]* is decreasing,
while x[I'(1 + 1/x)]* is increasing. Giordano and Laforgia [4] extended Gautschi’s
product inequality by proving that

1 1 1
%F(H—)H——) sr@)r(—) <F<1+x+—).
X X X

In connection with these results, Donald Kershaw, in private communication, for-
mulated the following conjecture: for all x > 0,

r(x)+r<1> <r<1+x+1>, (1)
X X

with equality only at x = 1. In a recent article [2], Alzer obtained the following result
in this direction (alongside a further generalization of Gautschi’s result on harmonic
means): I'(x) +T'(1/x) < bI'(x+1/x), where b ~ 2.098. Since x+ 1/x > 2, this
implies a version of (1) with an intervening factor b/2 (which, of course, fails to re-
produce equality at 1). The methods of [2] rely on a considerable number of specific
values of the gamma function and higher derivatives.

Here we will prove that Kershaw’s conjecture is true, without any extra factor.
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Since (1) is unchanged when x is replaced by 1/x, it is enough to prove it for
x> 1. We use an assortment of different methods on different parts of the domain.
The inequality (indeed, a rather stronger one) is obtained quite easily for all x > 2. For
2 < x <2, we use convexity of I'(x) and T'(1/x) to derive linear bounds for the two
sides of (1), which then only need to be compared at the end points; we do this on two
shorter intervals. Only a few specific values of T'(x) are needed, to no great degree of
accuracy.

The most interesting part of the problem is for x close to 1. Both sides of (1) have
derivative O at 1, so there is no longer any chance of deducing the result from linear
upper and lower bounds. However, after substituting 1+ x for x, a lower bound for
the right-hand side of the form 2 +c¢(x> — x®) can still (as before) be derived from the
tangent to T'(x) at 3. To estimate the left-hand side, we now use the power series for
I'(1+x). We apply the exact values of the first three coefficients, together with a bound
for the remaining ones, to establish (1) for 1 < x < 45_1 .

2. Proofof (1) for x > 2

Note that T'(1/x) < x for x > 1. For x > 2, we prove (1) with T'(1/x) replaced
by x.
Case x > 3. Since T'(x) > T'(3) =2 for x > 3, we have

r (1 —|—x—|—%) —Tx)>T(14+x)—T(x)=(x—-1I'x) =2x—1)>x

LEMMA 1. Let a >0, and let P,(x) =T(1+x+a) —T(x) —x. Then P,(x) is
increasing for x > 2.

Proof. Since T”(x) is increasing for all x > 0, sois I'(x+a) —'(x). Also, I'(x)
is increasing for x > 2. The statement follows, since

Py(x) = (x+a)l(x+a) = T'(x) -

=x(I(x+a)—T(x)
=x(T'(x+a)—T(x)

r( +a)+xl(x) —T(x) —x

J+al(x+a
)+al(x+a)+ (T(x)—1)(x—1)—1. O

Case 2 3 < x < 3. Then F(l +x+1)>T(1+x+1 ) Our inequality follows by
Lemma 1 provided that P; 3(23 1) > 0. We verify this:

P5(23) =51(3)-T(3) - ] ~4.012—-1.191 -2.333=0.488 > 0.

Case 2 <x< 2% . We now have % > % on the interval, so we verify

Py7(2) =HT(¥)-1-2~3.074-3>0.
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3. Proofof (1) for 3 <x<2

LEMMA 2. T'(1/x) is a convex function of x for x > 0.

Proof. Let 0 < x; < xp, and write y; = 1/x; (j = 1,2). Choose a, b so that
I'(14+y;) =ayj+b for j=1,2. Since I is convex, I'(1+y) <ay+b for y, <y <yi.
Also, since T'(1+y) =yI'(y), we have T'(y) < a+b/y for y, <y < yy, with equality
at y; and y;. So T'(1/x) < a+ bx for x; < x < xp, with equality at x; and x;, so that
a+ bx is the linear function agreeing with I'(1/x) at these points. a

(In general, if a function f is convex and increasing, then f(1/x) is convex, but
this is not true for decreasing f.)

Note. Let G(x) =T(x)+T'(1/x). It is shown in [2, Lemma 2] that G(x) is de-
creasing on (0,1]. This follows at once from our Lemma 2, since G(x) is convex and
G'(1) = 0. Of course, the inequality G(x) > 2 (for all x) follows.

LEMMA 3. Forall x>0,

_1)2
r<1+x+1) S04l
X X

Proof. By convexity of the gamma function,
T(3+y)>T3)+y'3)=2+(3-27)y
for all y > 0. The statement follows, since

1 —1)2
Lpxplog B2 D7
X X

Proof of (1) for 3 < x < 2. We consider the intervals [3,3] and [3,2] separately.
Write T'(x) + T'(1/x) = G(x). By Lemma 2, G(x) is convex. Using Lemma 3, we
define a linear function F(x) that is a lower bound for T'(1 +x+ 1/x) on the interval
in question. The statement then follows on verification that F(x) > G(x) at the end
points.

Let i(x) = (x—1)?/x. Then /(x) = 1 —1/x*. Hence
h(x0) + (x — x0)h' (x0) for any x,xo > 0. For the interval [2,
that 2(x) > h;(x) on the interval, where

hi(x) = 55+ 55 (x—2).

Our linear lower bound is Fy (x) =2+ (3 —27y)h;(x). Note that (%) = & The values
are

h(x) is convex, and h(x) >
3], take xg = 3. We find

Fi(3)=2.092, G(3)=T(3)+TI(3)~0.906+1.164 =2.070.
Fi(3)~2258, G(3)=T(3)+T(3)~0.886+1.354=2.240.

For the interval [%72}, take xg = %, giving
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with corresponding F»(x). Clearly, F>(3) > F(3). Also, 1 (2) = ‘9—‘, and we find

F(2)~2.820, G(2)=T(2)+TI(})=~2.772.

4. The power series for I'(1 +x)

We write the power series for T'(1 +x) in the form Y~ ,(—1)"a,x", since (as we
now show) the coefficients alternate in sign. Note that ap =T'(1) = 1. Now

r<">(x)=/°° P e (logt)" di,
0

hence

an = S po0 gy = i/Ne_t(—logt)”dt.

n!Jo
The following bound is not optimal, but it is adequate for our purposes.

LEMMA 4. With this notation, we have 0 < a,, < m for n > 4, where m < %

Proof. We have

1 1 oo
/ e“(—logt)"dt</ (—logz)”dz:/ We " du=n).
0 0 0

At the same time, this integral is greater than e~ !n!. Also, since logt < 2 fore>1,

= o ! n!
~(logt)"dt / 12 d F(E 1) n—1)= -1 _ <&
/1 ¢ (logt)"dr < | e <P+ <Te-D=0 <1

for n > 4. The statement follows. O

Note. Using the series expansion for ¢, one finds that

1*’(—lo O)'dt=1- ! + !
S T MR TEL

il
One can deduce that lim,_.a, =1 and a, < 1 for all n. The authors are grateful to
Pascal Sebah for these observations, and for the calculated values of a,, for n < 20.

Meanwhile, explicit values for the first few coefficients can be derived more pleas-
antly as follows. We use the power series (convergent for |x| < 1)

_ 2‘(_1);7+1cnxn7

n=0

I'(1+4x)
I'(1+x)

where ¢o =y and ¢, = {(n+1) for n > 1 [6, p. 12]. Now equating coefficients in the
identity

i( D™+ Dap1x" = (i 1"l )(i(—l)"a,gd’)
n=0 n=0 n=0
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we see that
(n+1)ay11 = cpao+cp—1a1+ - - -+ coay
for all n > 1. In particular, a; = co =7,
ar = % (crap+com) = 3 (£(2)+7)
az = %(Cgao-i-clal-i-Coag) = %(2@( +38(2 J/+J/3 ~0.9075.

~0.9891,

5. Proof of (1) for 1 <x < %

We now substitute 1+ x for x, so that (1) becomes

R 1

< 1. We continue to use Lemma 3. In the new notation,

We have to prove (2) for 0 <x < .

this says
2

1 X
r{2 — | 22+(3-2 .
( +x+1—|—x) * Y)1—|—x

For 0 <x < I, wehave 1/(1+x) > 1—x,hence

F<2+x+%+x> >2+(3-2y)(x* —x%). (3)

LEMMA 5. For 0<x< g,

D(1+x) < 1—yx+ax®+b3x’, 4)

where by = —az + 14—5m ~ —0.619.
Proof. Since the terms of the power series alternate in sign,

T(14x) <1—yx4amx® —azx® +m(x* + x5+,

and for 0 <x < %,

4 6 —
SR g A e

LEMMA 6. For 0<y< £,

T(1—y) <14 yy+an’ +c3y’, (5)

where c3 = a3+ %m ~ 1.178.

Proof. We have T(1 —y) =1+ 7yy+ X7 5a,y", and for 0 <y < %,

4

agy* +asy’ + -+ émly—_y = my

my3. O

FST

31i <
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LEMMA 7. For 0<x< 1,

1
r<—> <1ty dod 4+ dad, ©)
1+x
where
dr=ay— 45—")/, dy=c3— %a2%—0.246.
Proof. Note that
L X
l4+x 1+x

We apply Lemma 6, with y = x/(1 + x), using the following estimates derived from
convexity of 1/(1+x) and 1/(1+x)%: for 0 <x < 1,

We obtain

1
r (m) < 14yx(1— %x)—kazxz(l - ;—gx) +e3x°

=1+t (=7 + (- RBar)x’. O
Proof of (2) for 0 < x < 1. By (3), (4), (6), for 0 <x < g,

1 1
r (2—|—x—|——) —T(l+x)—-T (—) > Apx® + Azx3,

1+x 1+x
where
Ay =3—8y—2a,~0.329,
Az =—(3-2y)—bs—d3~ —1.845+0.619+0.246 = —0.980.
Clearly, A2+ A3 >0 for 0 < x < ‘l‘. O

Remark. The power series shows clearly that we cannot replace I'[1/(1 + x)] by
I'(1 —x) in (2), illustrating the closeness of our inequality. Indeed, for small x > 0, we
have the slightly stronger reverse inequality T'(1 +x) +T'(1 —x) > T'(3 4 x?), since

T(14x)+T(1 —x) =2+ 2ax* + 0(x*),
FB+x%) =243 -2y +0(xY),

and 3 -2y < 2a.
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