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Abstract. We prove the inequality Γ(x)+Γ(1/x) � Γ(1+ x+1/x) .

1. Introduction

It has long been known that Γ(x) + Γ(1/x) � 2; a quick proof is by convex-
ity of Γ(x) and Γ(1/x) . Gautschi [3] generalized this statement by showing that the
harmonic mean of Γ(x) and Γ(1/x) is not less than 1, which of course implies also
that Γ(x)Γ(1/x) � 1. Since then, inequalities concerning Γ(1/x) have been investi-
gated in many further articles. Alzer [1] extended Gautschi’s result to the power means
Mr[Γ(x),Γ(1/x)] . Kershaw and Laforgia [5] showed that [Γ(1+ 1/x)]x is decreasing,
while x[Γ(1 + 1/x)]x is increasing. Giordano and Laforgia [4] extended Gautschi’s
product inequality by proving that

1
2 Γ
(

1+ x+
1
x

)
� Γ(x)Γ

(
1
x

)
� Γ

(
1+ x+

1
x

)
.

In connection with these results, Donald Kershaw, in private communication, for-
mulated the following conjecture: for all x > 0,

Γ(x)+ Γ
(

1
x

)
� Γ

(
1+ x+

1
x

)
, (1)

with equality only at x = 1. In a recent article [2], Alzer obtained the following result
in this direction (alongside a further generalization of Gautschi’s result on harmonic
means): Γ(x) + Γ(1/x) � bΓ(x + 1/x) , where b ≈ 2.098. Since x + 1/x � 2, this
implies a version of (1) with an intervening factor b/2 (which, of course, fails to re-
produce equality at 1). The methods of [2] rely on a considerable number of specific
values of the gamma function and higher derivatives.

Here we will prove that Kershaw’s conjecture is true, without any extra factor.
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Since (1) is unchanged when x is replaced by 1/x , it is enough to prove it for
x > 1. We use an assortment of different methods on different parts of the domain.
The inequality (indeed, a rather stronger one) is obtained quite easily for all x � 2. For
5
4 � x � 2, we use convexity of Γ(x) and Γ(1/x) to derive linear bounds for the two
sides of (1), which then only need to be compared at the end points; we do this on two
shorter intervals. Only a few specific values of Γ(x) are needed, to no great degree of
accuracy.

The most interesting part of the problem is for x close to 1. Both sides of (1) have
derivative 0 at 1, so there is no longer any chance of deducing the result from linear
upper and lower bounds. However, after substituting 1+ x for x , a lower bound for
the right-hand side of the form 2+ c(x2 − x3) can still (as before) be derived from the
tangent to Γ(x) at 3. To estimate the left-hand side, we now use the power series for
Γ(1+x) . We apply the exact values of the first three coefficients, together with a bound
for the remaining ones, to establish (1) for 1 < x � 5

4 .

2. Proof of (1) for x � 2

Note that Γ(1/x) < x for x > 1. For x � 2, we prove (1) with Γ(1/x) replaced
by x .

Case x � 3. Since Γ(x) > Γ(3) = 2 for x > 3, we have

Γ
(

1+ x+
1
x

)
−Γ(x) > Γ(1+ x)−Γ(x) = (x−1)Γ(x) � 2(x−1) > x.

LEMMA 1. Let a > 0 , and let Pa(x) = Γ(1 + x + a)−Γ(x)− x . Then Pa(x) is
increasing for x � 2 .

Proof. Since Γ′(x) is increasing for all x > 0, so is Γ(x+ a)−Γ(x) . Also, Γ(x)
is increasing for x � 2. The statement follows, since

Pa(x) = (x+a)Γ(x+a)−Γ(x)− x

= x(Γ(x+a)−Γ(x))+aΓ(x+a)+ xΓ(x)−Γ(x)− x

= x(Γ(x+a)−Γ(x))+aΓ(x+a)+ (Γ(x)−1)(x−1)−1. �

Case 21
3 � x � 3. Then Γ(1+ x+ 1

x ) � Γ(1+ x+ 1
3 ) . Our inequality follows by

Lemma 1 provided that P1/3(21
3 ) > 0. We verify this:

P1/3(21
3) = 8

3 Γ( 8
3)−Γ( 7

3)− 7
3 ≈ 4.012−1.191−2.333= 0.488 > 0.

Case 2 � x � 21
3 . We now have 1

x � 3
7 on the interval, so we verify

P3/7(2) = 17
7 Γ( 17

7 )−1−2≈ 3.074−3 > 0.
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3. Proof of (1) for 5
4 � x � 2

LEMMA 2. Γ(1/x) is a convex function of x for x > 0 .

Proof. Let 0 < x1 < x2 , and write y j = 1/x j ( j = 1,2). Choose a , b so that
Γ(1+y j) = ay j +b for j = 1,2. Since Γ is convex, Γ(1+y) � ay+b for y2 � y � y1 .
Also, since Γ(1+ y) = yΓ(y) , we have Γ(y) � a+b/y for y2 � y � y1 , with equality
at y1 and y2 . So Γ(1/x) � a+bx for x1 � x � x2 , with equality at x1 and x2 , so that
a+bx is the linear function agreeing with Γ(1/x) at these points. �

(In general, if a function f is convex and increasing, then f (1/x) is convex, but
this is not true for decreasing f .)

Note. Let G(x) = Γ(x)+ Γ(1/x) . It is shown in [2, Lemma 2] that G(x) is de-
creasing on (0,1] . This follows at once from our Lemma 2, since G(x) is convex and
G′(1) = 0. Of course, the inequality G(x) � 2 (for all x ) follows.

LEMMA 3. For all x > 0 ,

Γ
(

1+ x+
1
x

)
� 2+(3−2γ)

(x−1)2

x
.

Proof. By convexity of the gamma function,

Γ(3+ y) � Γ(3)+ yΓ′(3) = 2+(3−2γ)y

for all y > 0. The statement follows, since

1+ x+
1
x

= 3+
(x−1)2

x
. �

Proof of (1) for 5
4 � x � 2. We consider the intervals [ 5

4 , 3
2 ] and [ 3

2 ,2] separately.
Write Γ(x) + Γ(1/x) = G(x) . By Lemma 2, G(x) is convex. Using Lemma 3, we
define a linear function F(x) that is a lower bound for Γ(1+ x+ 1/x) on the interval
in question. The statement then follows on verification that F(x) > G(x) at the end
points.

Let h(x) = (x−1)2/x . Then h′(x) = 1−1/x2 . Hence h(x) is convex, and h(x) �
h(x0)+ (x− x0)h′(x0) for any x,x0 > 0. For the interval [ 5

4 , 3
2 ] , take x0 = 5

4 . We find
that h(x) � h1(x) on the interval, where

h1(x) = 1
20 + 9

25

(
x− 5

4

)
.

Our linear lower bound is F1(x) = 2+(3−2γ)h1(x) . Note that h1( 3
2 ) = 7

50 . The values
are

F1( 5
4 ) ≈ 2.092, G( 5

4 ) = Γ( 5
4 )+ Γ( 4

5 ) ≈ 0.906+1.164= 2.070.

F1( 3
2 ) ≈ 2.258, G( 3

2 ) = Γ( 3
2 )+ Γ( 2

3 ) ≈ 0.886+1.354= 2.240.

For the interval [ 3
2 ,2] , take x0 = 3

2 , giving

h2(x) = 1
6 + 5

9

(
x− 3

2

)
,
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with corresponding F2(x) . Clearly, F2( 3
2 ) > F1( 3

2 ) . Also, h2(2) = 4
9 , and we find

F2(2) ≈ 2.820, G(2) = Γ(2)+ Γ( 1
2 ) ≈ 2.772.

4. The power series for Γ(1+ x)

We write the power series for Γ(1+ x) in the form ∑∞
n=0(−1)nanxn , since (as we

now show) the coefficients alternate in sign. Note that a0 = Γ(1) = 1. Now

Γ(n)(x) =
∫ ∞

0
tx−1e−t(log t)n dt,

hence

an =
(−1)n

n!
Γ(n)(1) =

1
n!

∫ ∞

0
e−t(− logt)n dt.

The following bound is not optimal, but it is adequate for our purposes.

LEMMA 4. With this notation, we have 0 < an � m for n � 4 , where m � 13
12 .

Proof. We have

∫ 1

0
e−t(− log t)n dt <

∫ 1

0
(− logt)n dt =

∫ ∞

0
une−u du = n!.

At the same time, this integral is greater than e−1n! . Also, since logt < t1/2 for t > 1,∫ ∞

1
e−t(log t)ndt <

∫ ∞

1
e−t tn/2 dt < Γ

(n
2

+1
)

< Γ(n−1) =
n!

n(n−1)
� n!

12

for n � 4. The statement follows. �

Note. Using the series expansion for e−t , one finds that

1
n!

∫ 1

0
e−t(− logt)n dt = 1− 1

2!2n +
1

3!3n −·· · .

One can deduce that limn→∞ an = 1 and an < 1 for all n . The authors are grateful to
Pascal Sebah for these observations, and for the calculated values of an for n � 20.

Meanwhile, explicit values for the first few coefficients can be derived more pleas-
antly as follows. We use the power series (convergent for |x| < 1)

Γ′(1+ x)
Γ(1+ x)

=
∞

∑
n=0

(−1)n+1cnx
n,

where c0 = γ and cn = ζ (n+1) for n � 1 [6, p. 12]. Now equating coefficients in the
identity

∞

∑
n=0

(−1)n+1(n+1)an+1x
n =

(
∞

∑
n=0

(−1)n+1cnx
n

)(
∞

∑
n=0

(−1)nanx
n

)
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we see that
(n+1)an+1 = cna0 + cn−1a1 + · · ·+ c0an

for all n � 1. In particular, a1 = c0 = γ ,

a2 = 1
2 (c1a0 + c0a1) = 1

2 (ζ (2)+ γ2) ≈ 0.9891,

a3 = 1
3 (c2a0 + c1a1 + c0a2) = 1

6 (2ζ (3)+3ζ (2)γ + γ3) ≈ 0.9075.

5. Proof of (1) for 1 � x � 5
4

We now substitute 1+ x for x , so that (1) becomes

Γ(1+ x)+ Γ
(

1
1+ x

)
� Γ

(
2+ x+

1
1+ x

)
(2)

We have to prove (2) for 0 � x � 1
4 . We continue to use Lemma 3. In the new notation,

this says

Γ
(

2+ x+
1

1+ x

)
� 2+(3−2γ)

x2

1+ x
.

For 0 < x < 1, we have 1/(1+ x) > 1− x , hence

Γ
(

2+ x+
1

1+ x

)
� 2+(3−2γ)(x2− x3). (3)

LEMMA 5. For 0 � x � 1
4 ,

Γ(1+ x) � 1− γx+a2x
2 +b3x

3, (4)

where b3 = −a3 + 4
15m ≈−0.619 .

Proof. Since the terms of the power series alternate in sign,

Γ(1+ x) � 1− γx+a2x
2−a3x

3 +m(x4 + x6 + · · ·),
and for 0 � x � 1

4 ,

x4 + x6 + · · · = x4

1− x2 = x3 x
1− x2 � 4

15 x3. �

LEMMA 6. For 0 � y � 1
5 ,

Γ(1− y) � 1+ γy+a2y
2 + c3y

3, (5)

where c3 = a3 + 1
4m ≈ 1.178 .

Proof. We have Γ(1− y) = 1+ γy+ ∑∞
n=2 anyn , and for 0 � y � 1

5 ,

a4y
4 +a5y

5 + · · · � m
y4

1− y
= my3 y

1− y
� 1

4 my3. �
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LEMMA 7. For 0 � x � 1
4 ,

Γ
(

1
1+ x

)
� 1+ γx+d2x

2 +d3x
3, (6)

where
d2 = a2− 4

5 γ, d3 = c3− 36
25 a2 ≈−0.246.

Proof. Note that
1

1+ x
= 1− x

1+ x
.

We apply Lemma 6, with y = x/(1+ x) , using the following estimates derived from
convexity of 1/(1+ x) and 1/(1+ x)2 : for 0 � x � 1

4 ,

1
1+ x

� 1− 4
5 x,

1
(1+ x)2 � 1− 36

25 x.

We obtain

Γ
(

1
1+ x

)
� 1+ γx(1− 4

5x)+a2x
2(1− 36

25x)+ c3x
3

= 1+ γx+(a2− 4
5 γ)x2 +(c3− 36

25a2)x3. �

Proof of (2) for 0 � x � 1
4 . By (3), (4), (6), for 0 � x � 1

4 ,

Γ
(

2+ x+
1

1+ x

)
−Γ(1+ x)−Γ

(
1

1+ x

)
� A2x

2 +A3x
3,

where
A2 = 3− 6

5 γ −2a2 ≈ 0.329,

A3 = −(3−2γ)−b3−d3 ≈−1.845+0.619+0.246= −0.980.

Clearly, A2x2 +A3x3 > 0 for 0 � x � 1
4 . �

Remark. The power series shows clearly that we cannot replace Γ[1/(1+ x)] by
Γ(1− x) in (2), illustrating the closeness of our inequality. Indeed, for small x > 0, we
have the slightly stronger reverse inequality Γ(1+ x)+ Γ(1− x)> Γ(3+ x2) , since

Γ(1+ x)+ Γ(1− x)= 2+2a2x
2 +O(x4),

Γ(3+ x2) = 2+(3−2γ)x2 +O(x4),

and 3−2γ < 2a2 .
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