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SOME NEW INEQUALITIES FOR AN INTERIOR POINT OF A TRIANGLE

JIAN LIU

(Communicated by S. Segura Gomis)

Abstract. In this paper we establish three new inequalities involving an arbitrary point of a tri-
angle. Some related conjectures and problems are put forward.

1. Introduction

Let P be an arbitrary point in the plane of triangle ABC and let D , E , F be the
feet of the perpendiculars from P to BC , CA , AB , respectively. In [1], the author gave
the following identity:

�S�PBC ·PA2 +�S�PCA ·PB2 +�S�PAB ·PC2 = 4R2�S�DEF , (1.1)

where R is the circumradius of �ABC and �S�PBC , �S�PCA , �S�PAB , �S�DEF denote
directed areas of �PBC , �PCA , �PAB , �DEF . The directed area of a triangle is
defined as follows: Given a triangle XYZ , if the orientation around the vertexes X ,
Y , Z in sequence is counterclockwise, then its directed area �S�XYZ is positive and
�S�XYZ = S�XYZ . If that one is clockwise, then the directed area �S�XYZ is negative and
�S�XYZ = −S�XYZ.

In particular, when P lies inside triangle ABC , identity (1.1) becomes

SaR
2
1 +SbR

2
2 +ScR

2
3 = 4R2Sp, (1.2)

where R1 = PA , R2 = PB , R3 = PC and Sa , Sb , Sc denote the areas of the �PBC ,
�PCA , �PAB respectively, and Sp is the area of the pedal triangle DEF .

It is well known that the following inequality holds between the area S of the
triangle ABC and the area Sp of the pedal triangle DEF :

Sp � 1
4
S, (1.3)

with equality if and only if P is the circumcenter of the triangle ABC (see Figure 1).
Therefore, it follows from (1.2) that (see Figure 2)

SaR
2
1 +SbR

2
2 +ScR

2
3 � SR2. (1.4)

This inequality inspires the author to find the similar conclusion:
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THEOREM 1.1. Let P be an arbitrary interior point of the triangle ABC. Then

SaR
3
1 +SbR

3
2 +ScR

3
3 � SR3, (1.5)

with equality if and only if P is the circumcenter of the triangle ABC.

If P coincides with the centroid of �ABC , then Sa = Sb = Sc = 1
3S , R1 = 2

3ma ,
R2 = 2

3mb , R3 = 2
3mc (ma , mb , mc are the three medians of �ABC ) and it follows

from (1.5) that

m3
a +m3

b +m3
c � 81

8
R3, (1.6)

which was conjectured by Ji Chen in [2].
At the same time when inequality (1.5) has been proven, we obtain the following

two interesting geometric inequalities:

THEOREM 1.2. Let P be an arbitrary point of triangle ABC with circumradius
R and inradius r . Let rp be the inradius of the pedal triangle of P with respect to
triangle ABC. Then

1
2rp

� 1
R

+
1
2r

, (1.7)

with equality if and only if triangle ABC is equilateral and P is its center.

THEOREM 1.3. Let P be an arbitrary interior point of �ABC and let D, E , F
denote the feet of the perpendiculars from P to BC, CA, AB respectively. Let rp be the
inradius of the pedal triangle DEF and let PA = R1 , PB = R2 , PC = R3 , PD = r1 ,
PE = r2 , PF = r3 . Then

R1 +R2 +R3 � r1 + r2 + r3 +6rp, (1.8)

with equality if and only if �ABC is equilateral and P is its center.

In this note we will prove the above three theorems and propose some related
conjectures and problems.
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2. Some lemmas

To prove our theorems, we need several lemmas.

LEMMA 2.1. Let P be an arbitrary point with barycentric coordinates (x,y,z) in
the plane of the triangle ABC. Then

(x+ y+ z)2PA2 = (x+ y+ z)(yc2 + zb2)− (yza2 + zxb2 + xyc2), (2.1)

where a, b , c are the lengths of the edges BC, CA, AB respectively.

The above formulae is well known (see e.g. [3] P278 ).

LEMMA 2.2. For any point P inside triangle ABC, we have

cr2 +br3 � aR1. (2.2)

If AO (O is the circumcenter of �ABC) cuts BC at X , then the equality if and only if
P lies on the segment AX .

Analogously to (2.2) we also have two inequalities. Lemma 2.2 is a simple impor-
tant proposition and it has various proofs, see [4]–[10]. Next, we give a crucial lemma
which is substantially equivalent to Lemma 2.2 .

LEMMA 2.3. For any point P inside triangle ABC, we have

R1 � R2
1

2R
+

2RSp

S
, (2.3)

with equality as in (2.2).

Proof. Note that Sa = 1
2ar1 , Sb = 1

2br2 , Sc = 1
2cr3 , Sa + Sb + Sc = S , applying

Lemma 2.1 and 2.2 we have

(Sa +Sb +Sc)2R2
1 = (Sa +Sb +Sc)(Sbc

2 +Scb
2)− (SbSca

2 +ScSab
2 +SaSbc

2)

=
1
2
(br2c

2 + cr3b
2)S− 1

4
(bcr2r3a

2 + car3r1b
2 +abr1r2c

2)

=
1
2
bc(br2 + cr3)S− 1

4
abc(ar2r3 +br3r1 + cr1r2)

� 1
2
abcR1S− 1

2
abcR(r2r3 sinA+ r3r1 sinB+ r1r2 sinC)

=
1
2
abcR1S−abcR(S�PEF +S�PFD +S�PDE)

=
1
2
abc(R1S−2RSp).
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Then make use of Sa +Sb +Sc = S and abc = 4SR , we get

R1S−2RSp � SR2
1

2R
,

this yields inequality (2.3). Clearly, the condition of the equality in (2.3) is the same as
(2.2). �

LEMMA 2.4. For any point P inside triangle ABC, we have

SaR1 +SbR2 +ScR3 � 4RSp, (2.4)

with equality if and only if P is the circumcenter of the triangle ABC.

Proof. Since the area of the quadrilateral is less than or equal to the half product
of two diagonals, so we have

Sb +Sc � 1
2
aR1, Sc +Sa � 1

2
bR2, Sa +Sb � 1

2
cR3, (2.5)

with equalities if and only if PA ⊥ BC , PB ⊥CA , PC ⊥ AB respectively. Adding up
these inequalities and using identity Sa +Sb +Sc = S , we obtain

aR1 +bR2 + cR3 � 4S. (2.6)

Equality holds if and only if P is the orthocenter of �ABC .
Applying inequality (2.6) to the pedal triangle �DEF (see Figure 1), we get

EF · r1 +FD · r2 +DE · r3 � 4Sp,

Observe that EF = aR1
2R , ar1 = 2Sa , etc., then inequality (2.4) follows at once. Accord-

ing to the equality condition of (2.6), we conclude easily that the equality in (2.4) holds
if and only if P is the circumcenter of the triangle ABC . �

REMARK 2.1. Inequality (2.4) can also be proven easily by using Lemma 2.2 and
the identity (1.2).

LEMMA 2.5. Suppose that P is any point in the plane of the triangle ABC. Then

aR2
1 +bR2

2 + cR2
3 � abc, (2.7)

with equality holds if and only if P is the incenter of �ABC.

Inequality (2.7) is given first by M. K. Lamkin (see [3]). The author [11] general-
ized its equivalent form:

R2
1 sinA+R2

2 sinB+R2
3 sinC � 2S (2.8)
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to the polygon. I proved the following result: For any polygon A1A2 · · ·An and an
arbitrary point P

n

∑
i=1

PA2
i sinAi � 2F, (2.9)

where F is the area of the polygon. Later, the author further generalized inequality
(2.9) into the case involving two arbitrary points P , Q (see [12]):

n

∑
i=1

PAi ·QAi sinAi � 2F. (2.10)

LEMMA 2.6. For any point P inside triangle ABC, we have

R2
1 +R2

2 +R2
3

r1 + r2 + r3
� 2R, (2.11)

with equality if and only if �ABC is equilateral and P is its center.

Inequality (2.11) was first posed by the author, and it was first proved by Xiao-
Guang Chu and Zhen-Gang Xiao [13]. Xue-Zhi Yang gave a simple proof in his book
[14,P15 ]. We introduce a brief sketch of his proof as follows:

Applying the Cosine Law, one gets easily

4S2R2
1 = b2c2(r2

2 + r3
3)+bcr2r3(b2 + c2−a2). (2.12)

Then we use abc = 4SR and the identity:

ar1 +br2 + cr3 = 2S, (2.13)

we obtain

4S2 (∑R2
1 −2R∑r1

)
= ∑

[
b2c2(r2

2 + r3
3)+bcr2r3(b2 + c2−a2)

]−abc∑ar1 ∑r1.

(2.14)

where ∑ denotes cyclic sums. From this we can obtain the identity:

4S2 (∑R2
1−2R∑r1

)
= ∑bcr2r3(b− c)2 +

1
2 ∑a [c(r3 + r1)−b(r1 + r2)]

2 , (2.15)

which implies inequality (2.11).

3. The proofs of the Theorems

3.1. The proof of Theorem 1.1

Proof. We multiply both sides of inequality (2.3) by SaR1 , then

SaR3
1

2R
+

2RSpSaR1

S
� SaR

2
1.
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Analogously, we have

SbR3
2

2R
+

2RSpSbR2

S
� SbR

2
2,

ScR3
3

2R
+

2RSpScR3

S
� ScR

2
3.

By adding up three inequalities and then using identity (1.2) one has

SaR3
1 +SbR3

2 +ScR3
3

2R
+

2RSp

S
(SaR1 +SbR2 +ScR3) � 4R2Sp.

So, it follows from Lemma 2.4 that

SaR3
1 +SbR3

2 +ScR3
3

2R
+

8R2S2
p

S
� 4R2Sp,

Namely

SaR
3
1 +SbR

3
2 +ScR

3
3 � 8R3

(
Sp−

2S2
p

S

)

= SR3− (S−4Sp)2R3

S
� SR3.

This completes the proof of (1.5). According to the conditions of equality (2.3) and
(1.3), we conclude that the equality in (1.5) occurs if and only if P is the circumcenter
of the triangle ABC . �

REMARK 3.1. By applying the inequality of Theorem 1.1 and the weighted power
mean inequality, we can get the following generalization of inequality (1.5):

SaR
k
1 +SbR

k
2 +ScR

k
3 � SRk, (3.1)

where 0 < k � 3. In addition, by using Radon inequality, we can prove that if k < 0
then (3.1) holds inversely.

3.2. The proof of Theorem 1.2

Proof. From Lemma 2.3 and Lemma 2.5, we have

aR1 +bR2 + cR3 � 1
2R

(aR2
1 +bR2

2 + cR2
3)+

2RSp

S
(a+b+ c)

� abc
2R

+
2RSp

S
(a+b+ c).

Since abc = 4SR,a+b+ c= 2s , it follows that

aR1 +bR2 + cR3 � 2S+
4R
r

Sp. (3.2)
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Equality occurs if and only if the point P coincide with the circumcenter and the incen-
ter of �ABC . This means that �ABC is equilateral and P is its center.

From (3.2) we have

aR1 +bR2 + cR3

8RSp
� S

4RSp
+

1
2r

.

As

rp =
4RSp

aR1 +bR2 + cR3
, (3.3)

we get
1

2rp
� S

4RSp
+

1
2r

. (3.4)

Hence, the inequality (1.7) follows immediately from (3.4) and (1.3). �

3.3. The proof of Theorem 1.3

Proof. First, by adding up the inequality of Lemma 2.3 and its analogues we get

R1 +R2 +R3 � R2
1 +R2

2 +R3
3

2R
+

6RSp

S
. (3.5)

Form inequality (2.6) and identity (24), we know (2.6) is equivalent to

Sp

S
� rp

R
, (3.6)

with equality as in (2.6). Therefore, the inequality (1.8) of Theorem 1.3 follows imme-
diately from (3.5), (3.6) and (2.11). Clearly equality holds in (1.8) if and only if �ABC
is equilateral and P is its center. �

REMARK 3.2. From inequality (3.5) and the following identity (we omit its proof)

R2
1 +R2

2 +R2
3

2R
+

6RSp

S
= r1

(
b
c

+
c
b

)
+ r2

( c
a

+
a
c

)
+ r3

(
a
b

+
b
a

)
, (3.7)

we get

R1 +R2 +R3 � r1

(
b
c

+
c
b

)
+ r2

( c
a

+
a
c

)
+ r3

(
a
b

+
b
a

)
. (3.8)

Further, we have the following famous Erdös-Mordell inequality (see [5]–[10]):

R1 +R2 +R3 � 2(r1 + r2 + r3). (3.9)

Recently, the author gave this new proof in [15].
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4. Several conjectures and problems

Euler inequality in the triangle is well known, it states that

R � 2r. (4.1)

From this we consider the stronger inequality of Theorem 1.2. After being checked by
the computer, we pose the following stronger conjecture:

CONJECTURE 1. For any arbitrary interior point P , we have

1
2rp

� 1√
2Rr

+
1
2r

. (4.2)

From (1.7) and the arithmetic-geometric mean inequality, it is easy to prove:

8rp � R+2r. (4.3)

For this inequality, we have the following unsolved problem:

PROBLEM 1. Find the maximum value k such that the inequality

2(k+2)rp � R+ kr (4.4)

is valid for arbitrary interior point P of �ABC.

REMARK 4.1. From Euler inequality (4.1) we see that the inequality which takes
the maximum value k is the strongest in all inequalities whose type is as (4.4). With
the help of the computer, the author finds the maximum value k is about 7.88 · · · .

Next, we denote the circumradius of the pedal triangle DEF by Rp , note that
Rp � 2rp , we first suppose

Rp +6rp � R+2r, (4.5)

which is stronger than the inequality (4.3). Further the following with one parameter
conjecture is posed:

CONJECTURE 2. If real number k satisfies 1.8 � k � 7.8 , then the inequality

Rp +2krp � R+(k−1)r (4.6)

holds for an arbitrary interior point P of �ABC.

Also, we can put forward the following problem:

PROBLEM 2. Find the maximum and the minimum value of k such that the in-
equality (4.6) holds for an arbitrary interior point P of �ABC.
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When k = 2, inequality (4.6) becomes

Rp +4rp � R+ r. (4.7)

This inequality has not yet been proved. The author thinks it has the following expo-
nential generalization:

CONJECTURE 3. If k � 3
4

is a real number, then the following inequality

Rk
p +(4rp)k � Rk + rk (4.8)

holds for an arbitrary interior point P of �ABC.

Another similar difficult conjecture is

CONJECTURE 4. If k � 1
2

is a real number, then the following inequality

1
Rk

p
+

1
rk
p

� 1
rk +

4k

Rk (4.9)

holds for an arbitrary interior point P of �ABC.

It is possible that the inequality similar to (4.9) holds true for Cevian triangles. So
we propose the following dual conjecture:

CONJECTURE 5. Let P be an interior point of �ABC. Let LMN denotes the
Cevian triangle of P respect to �ABC and let Rq,rq denote its circumradius and

inradius respectively. If k � 1
2

is a real number, then the following inequality holds:

1
Rk

q
+

1
rk
q

� 1
rk +

4k

Rk . (4.10)

Considering the exponential generalization of Theorem 1.3, the following conjec-
ture is brought forward:

CONJECTURE 6. If k is a positive number, then the inequality:

Rk
1 +Rk

2 +Rk
3− (rk

1 + rk
2 + rk

3) � 3 ·2k(2k −1)rk
p (4.11)

holds for an arbitrary interior point P of �ABC.
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