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SOME NEW INEQUALITIES FOR AN INTERIOR POINT OF A TRIANGLE

JIAN L1U

(Communicated by S. Segura Gomis)

Abstract. In this paper we establish three new inequalities involving an arbitrary point of a tri-
angle. Some related conjectures and problems are put forward.

1. Introduction

Let P be an arbitrary point in the plane of triangle ABC and let D, E, F be the
feet of the perpendiculars from P to BC, CA, AB, respectively. In [1], the author gave
the following identity:

Snppc- PA? +Sppca-PB*+Sapap- PC* = 4R*S i, (LD

where R is the circumradius of AABC and §APBC, §APCA, §APAB, §ADEF denote
directed areas of APBC, APCA, APAB, ADEF . The directed area of a triangle is
defined as follows: Given a triangle XYZ, if the orientation around the vertexes X,
Y, Z in sequence is counterclockwise, then its directed area S Axyz 1S positive and

§AXYZ = Saxyz. If that one is clockwise, then the directed area §AXYZ is negative and
Saxyz = —Saxrz-
In particular, when P lies inside triangle ABC, identity (1.1) becomes
SaR} + SpR3 + SR} = 4R%S, (1.2)

where Ry = PA, R, = PB, R3; = PC and S,, S;, S. denote the areas of the APBC,
APCA, APAB respectively, and S, is the area of the pedal triangle DEF .
It is well known that the following inequality holds between the area S of the
triangle ABC and the area S, of the pedal triangle DEF':
1

5p< 45, (13)

with equality if and only if P is the circumcenter of the triangle ABC (see Figure 1).
Therefore, it follows from (1.2) that (see Figure 2)

SuR} + SyR3 4 S.R3 < SR>. (1.4)
This inequality inspires the author to find the similar conclusion:

Mathematics subject classification (2010): 51M16.
Keywords and phrases: triangle, interior point, Erdos-Mordell inequality, Euler inequality, conjecture.

© depay, Zagreb 195

Paper IMI-06-20


http://dx.doi.org/10.7153/jmi-06-20

196 JIAN LIU

B D ¢ B c
Figure 1 Figure 2

THEOREM 1.1. Let P be an arbitrary interior point of the triangle ABC. Then
S.R3 + SpR3 + S.R3 < SR?, (1.5)
with equality if and only if P is the circumcenter of the triangle ABC.

If P coincides with the centroid of AABC, then S, =S, =S, = %S , R = %ma,
Ry, = %mb, R; = %mc (mgy, my, m. are the three medians of AABC) and it follows
from (1.5) that

81
mz+mi+m3<§R3, (1.6)
which was conjectured by Ji Chen in [2].
At the same time when inequality (1.5) has been proven, we obtain the following
two interesting geometric inequalities:

THEOREM 1.2. Let P be an arbitrary point of triangle ABC with circumradius
R and inradius r. Let r, be the inradius of the pedal triangle of P with respect to
triangle ABC. Then
1 1 1
— >4 1.7
2r, _ R o (.7
with equality if and only if triangle ABC is equilateral and P is its center.

THEOREM 1.3. Let P be an arbitrary interior point of NABC and let D, E, F
denote the feet of the perpendiculars from P to BC, CA, AB respectively. Let r), be the
inradius of the pedal triangle DEF and let PA =Ry, PB=R;, PC=R3, PD=ry,
PE =ry,, PF =r3. Then

Ri+Ry+R3Zr1+r+r3+06r,, (1.8)
with equality if and only if NABC is equilateral and P is its center.

In this note we will prove the above three theorems and propose some related
conjectures and problems.
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2. Some lemmas

To prove our theorems, we need several lemmas.

LEMMA 2.1. Let P be an arbitrary point with barycentric coordinates (x,y,z) in
the plane of the triangle ABC. Then

(x+y+2)*PA? = (x +y+2) (v + 2b%) — (yza® + zxb® 4 xyc?), 2.1)
where a, b, c are the lengths of the edges BC, CA, AB respectively.

The above formulae is well known (see e.g. [3] P»73).

LEMMA 2.2. For any point P inside triangle ABC, we have
crp+bry < aR;. (2.2)

If AO (O is the circumcenter of NABC ) cuts BC at X, then the equality if and only if
P lies on the segment AX .

Analogously to (2.2) we also have two inequalities. Lemma 2.2 is a simple impor-
tant proposition and it has various proofs, see [4]-[10]. Next, we give a crucial lemma
which is substantially equivalent to Lemma 2.2 .

LEMMA 2.3. For any point P inside triangle ABC, we have

R >R%+2RS,,
I/ZR S )

(2.3)
with equality as in (2.2).

Proof. Note that S, = Jary, S = $bry, Sc = Scr3, Sa+Sp+Sc =S, applying
Lemma 2.1 and 2.2 we have

(Sa+Sp+8:)*R? = (Su+Sp+ Se) (Spc? + Scb*) — (SpSca® 4 SeSab® + SuSpc?)

1 1
=3 (brgc2 + cr3b2)S ~2 (bcr2r3a2 +carsr b + abrlrzcz)

1 1
= Ebc(brz +cr3)S— Zabc(ar2r3 +bryry +crir)

1 1

< EabchS - EabcR(rzrg sinA + rary sinB+ ryr sinC)
1

= EabchS —abcR(Saper +Saprp +Sappe)

1
= Eabc(RlS —2RS,).
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Then make use of S, + S, +S. =S and abc = 4SR, we get

SR?
RiS—2RS, > 2_R1’

this yields inequality (2.3). Clearly, the condition of the equality in (2.3) is the same as
22). O

LEMMA 2.4. For any point P inside triangle ABC, we have
SaR1+SpRo + SRy > 4RS),, (2.4)

with equality if and only if P is the circumcenter of the triangle ABC.

Proof. Since the area of the quadrilateral is less than or equal to the half product
of two diagonals, so we have

1 1 1
Sp+Se < EaRla Se+8a < EbR27 Sa+8p < ECRTM (25)

with equalities if and only if PA L BC, PB 1. CA, PC 1 AB respectively. Adding up
these inequalities and using identity S, + S, + S, = S, we obtain

aR| + bRy + cR3 > 4. (2.6)

Equality holds if and only if P is the orthocenter of AABC.
Applying inequality (2.6) to the pedal triangle ADEF (see Figure 1), we get

EF -ri+FD-r+DE-r; =4S,

Observe that EF = %, ary =28,, etc., then inequality (2.4) follows at once. Accord-
ing to the equality condition of (2.6), we conclude easily that the equality in (2.4) holds
if and only if P is the circumcenter of the triangle ABC. [

REMARK 2.1. Inequality (2.4) can also be proven easily by using Lemma 2.2 and
the identity (1.2).

LEMMA 2.5. Suppose that P is any point in the plane of the triangle ABC. Then
aR?} 4 bR3 + cR3 > abc, (2.7)
with equality holds if and only if P is the incenter of NABC.

Inequality (2.7) is given first by M. K. Lamkin (see [3]). The author [11] general-
ized its equivalent form:

R3sinA + R3sinB+ R3sinC > 2§ (2.8)
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to the polygon. I proved the following result: For any polygon AjA;---A, and an
arbitrary point P

Y PA}sinA; > 2F, (2.9)
i=1

where F is the area of the polygon. Later, the author further generalized inequality
(2.9) into the case involving two arbitrary points P, O (see [12]):

Y PA;- QA;sinA; > 2F. (2.10)
i=1
LEMMA 2.6. For any point P inside triangle ABC, we have

R?+R3+R2
Q>2R 2.11)
r+nrmn+r

with equality if and only if NABC is equilateral and P is its center.

Inequality (2.11) was first posed by the author, and it was first proved by Xiao-
Guang Chu and Zhen-Gang Xiao [13]. Xue-Zhi Yang gave a simple proof in his book
[14,P;5s]. We introduce a brief sketch of his proof as follows:

Applying the Cosine Law, one gets easily

4S°RT = b2 (r3 +13) + berars (b + 2 — d?). (2.12)

Then we use abc = 4SR and the identity:

ary +bry+cry = 28, (2.13)

we obtain

482 (SR —2RS i) = S [D*A (B + 1) + berars (0 + & —a?)| —abe Yan Y r.
(2.14)

where Y, denotes cyclic sums. From this we can obtain the identity:
452 (YR —2RY 1) = Y berars(b—c)* + = Za crs+r)—b(r+nr)?, 2.15)
which implies inequality (2.11).

3. The proofs of the Theorems

3.1. The proof of Theorem 1.1

Proof. We multiply both sides of inequality (2.3) by S,R;, then

S.R3 | 2RSpSay

< S,R2.
2R s SSR
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Analogously, we have

ScR3  2RS,S.R;
2R S

SyR3 | 2RSpSyRs

< SpR3
2R S Sh 25

< SR,

By adding up three inequalities and then using identity (1.2) one has

SaR3 + SpR3 + ScR3 L 2RS,

R (SaR1 + SpR2 + ScR3) < 4R*S,,.

So, it follows from Lemma 2.4 that

SaR} + SpR3 + ScR3 N 8RS

< 4R%S,,
2R S b
Namely
3 3 3 3 2S§
SuR1+ShR2+SCR3 < SR SP—T
_ g SASPR
S
< SR

This completes the proof of (1.5). According to the conditions of equality (2.3) and
(1.3), we conclude that the equality in (1.5) occurs if and only if P is the circumcenter

of the triangle ABC. [J

REMARK 3.1. By applying the inequality of Theorem 1.1 and the weighted power

mean inequality, we can get the following generalization of inequality (1.5):

S.RE + SRS 4 SR < SR,

where 0 < k < 3. In addition, by using Radon inequality, we can prove that if &k < 0

then (3.1) holds inversely.
3.2. The proof of Theorem 1.2
Proof. From Lemma 2.3 and Lemma 2.5, we have

1 2RS
aRy+ bRy + cR3 > ——(aR} +bR5 + cR3) + —L(a+b+c)

2R S
abc 2RS

Z = L .
R + S (a+b+c)

Since abc = 4SR,a+ b+ c = 2s, it follows that

4R
aRy+ bRy +cR3 > 25+ —S§).
r
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Equality occurs if and only if the point P coincide with the circumcenter and the incen-
ter of AABC. This means that AABC is equilateral and P is its center.
From (3.2) we have

aRi+ bR, + cRj < S 1

8RS, ZIRs, 2
As
4RS,
= 7 3.3
P T AR + bRy + Ry (3-3)
we get
! S (3.4)

> .
2rp © 4RS, 2r

Hence, the inequality (1.7) follows immediately from (3.4) and (1.3). [0

3.3. The proof of Theorem 1.3

Proof. First, by adding up the inequality of Lemma 2.3 and its analogues we get

R}+RI+R3 6RS,

Ri+Ry+R3 > .
1 TR2+R;3 R 3 (3.5)
Form inequality (2.6) and identity (24), we know (2.6) is equivalent to
Sp _Tp
L 3.6
S 2R (3.6)

with equality as in (2.6). Therefore, the inequality (1.8) of Theorem 1.3 follows imme-
diately from (3.5), (3.6) and (2.11). Clearly equality holds in (1.8) if and only if AABC
is equilateral and P is its center. [J

REMARK 3.2. From inequality (3.5) and the following identity (we omit its proof)

R}+R3+R} 6RS, b ¢ c a a b
= -4 - -+ - -4+ - v
2R s r1<c+b)+r2<a+c)+r3<b+a)’ -7
we get
b ¢ c a a b
Ri+Ry+Ry>r (=242 +r2<—+—>+r3 242, 3.8)
c b a c¢ b a

Further, we have the following famous Erdos-Mordell inequality (see [5]-[10]):
Ri+Ry+R3 22(r1—|—r2+r3). 3.9)

Recently, the author gave this new proof in [15].
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4. Several conjectures and problems
Euler inequality in the triangle is well known, it states that
R>2r 4.1

From this we consider the stronger inequality of Theorem 1.2. After being checked by
the computer, we pose the following stronger conjecture:
CONJECTURE 1. For any arbitrary interior point P, we have

1 1 1
— = +—. 4.2
2rp © \2Rr 2r (4.2)

From (1.7) and the arithmetic-geometric mean inequality, it is easy to prove:

8r, <R+2r (4.3)

For this inequality, we have the following unsolved problem:

PROBLEM 1. Find the maximum value k such that the inequality
2(k+2)r, <R+kr (4.4)

is valid for arbitrary interior point P of AABC.

REMARK 4.1. From Euler inequality (4.1) we see that the inequality which takes
the maximum value k is the strongest in all inequalities whose type is as (4.4). With
the help of the computer, the author finds the maximum value k is about 7.88---.

Next, we denote the circumradius of the pedal triangle DEF by R, note that
Ry, > 2r),, we first suppose
R, +6r, <R+2r, (4.5)

which is stronger than the inequality (4.3). Further the following with one parameter
conjecture is posed:

CONIJECTURE 2. If real number k satisfies 1.8 < k < 7.8, then the inequality
R, +2kr, <R+ (k—1)r (4.6)
holds for an arbitrary interior point P of AABC.

Also, we can put forward the following problem:

PROBLEM 2. Find the maximum and the minimum value of k such that the in-
equality (4.6) holds for an arbitrary interior point P of NABC.
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When k = 2, inequality (4.6) becomes
R,+4r, <R+r 4.7)

This inequality has not yet been proved. The author thinks it has the following expo-
nential generalization:

3
CONJECTURE 3. If k> 1 is a real number, then the following inequality

RE+ (4rp)f <R 44 (4.8)
holds for an arbitrary interior point P of ANABC.

Another similar difficult conjecture is

1
CONJECTURE 4. If k> 7 is a real number, then the following inequality

4k

11
it >t (4.9)
P

holds for an arbitrary interior point P of ANABC.

It is possible that the inequality similar to (4.9) holds true for Cevian triangles. So
we propose the following dual conjecture:

CONJECTURE 5. Let P be an interior point of NABC. Let LMN denotes the
Cevian triangle of P respect to AABC and let Ry,r, denote its circumradius and

1
inradius respectively. If k > 3 is a real number, then the following inequality holds:

1 1 4k
R_];Jr%)r_ﬁﬁ, (4.10)

Considering the exponential generalization of Theorem 1.3, the following conjec-
ture is brought forward:

CONJECTURE 6. If k is a positive number, then the inequality:

REARE R — (A A+ by =325k - 1)k (4.11)

holds for an arbitrary interior point P of AABC.
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