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Abstract. In the article, we extend bounds for the roots of polynomials with complex coeffi-
cients obtained by Ricǎ Zamfir [R. Zamfir, Refining Some Inequalities, Journal of Inequali-
ties in Pure and Applied Mathematics, no. 3, Article 77, vol. 9, 2008 available online at
http://jipam.vu.edu.au/v1n2/011 99.html]

1. Introduction

In the paper [7] Zamfir improved two well known bounds [1], [6] for the roots of
polynomials with complex coefficients.

THEOREM 1.1. [6] If f (x) = anxn + an−1xn−1 + ... + a1x + a0 ∈ C[X ], an �= 0
and z is an arbitrary root of f , then:

| z |2� 1+
∣∣∣∣a0

an

∣∣∣∣
2

+
∣∣∣∣a1−a0

an

∣∣∣∣
2

+ ...+
∣∣∣∣an−an−1

an

∣∣∣∣
2

. (1)

THEOREM 1.2. [1. p. 151] If f is polynomial like in Theorem 1.1 and p ∈
{1,2, ...,n}, then at least p roots of f are within in the disk:

| z |� 1+

(
p−1

∑
j=0

∣∣∣∣a j

an

∣∣∣∣
2
) 1

2

. (2)

In [7] Zamfir established refinements of the inequalities (1) and (2).

THEOREM 1.3. [7] If f (x) = anxn +an−1xn−1+ ...+a1x+a0 ∈C[X ], let b0 = a0,
b1 = a1−a0, ... bn = an−an−1. Then, for any root z of f , we have:

| z |2� 1+
n

∑
j=0

∣∣∣∣b j

an

∣∣∣∣
2

− (ℜ(b0b1 +b1b2 + ...+bn−1bn−bnan))2

(| b0 |2 + | b1 |2 +...+ | bn |2) | an |2 . (3)
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THEOREM 1.4. [7] If f (x) = anxn + an−1xn−1 + ...+ a1x+ a0 ∈ C[X ], and p ∈
{1,2, ...,n}, then at least p roots of f are within in the disk:

| z |� 1+

(
p−1

∑
j=0

∣∣∣∣a j

an

∣∣∣∣
2

− (ℜ(a0a1 +a1a2 + ...+ap−1ap))2

(| a0 |2 + | a1 |2 +...+ | ap |2) | an |2
) 1

2

. (4)

REMARK 1.1. [7] If ℜ(b0b1 +b1b2 + ...+bn−1bn −bnan) �= 0, then inequality
(3) is better than inequality (1).

We note, that Theorem 1.3 contains a typographical error. The correct version of The-
orem 1.3 is:

THEOREM 1.3. If f (x) = anxn + an−1xn−1 + ... + a1x + a0 ∈ C[X ], let b0 = a0,
b1 = a1−a0, ... bn = an−an−1. Then, for any root z of f , we have

| z |2� 1+
n

∑
j=0

∣∣∣∣b j

an

∣∣∣∣
2

− (ℜ(b0b1 +b1b2 + ...+bn−1bn−bnan))2

(| b0 |2 + | b1 |2 +...+ | bn |2 + | an |2) | an |2 . (5)

In this paper, we establish refinements of (1), (2) in the case ℜ(b0b1 +b1b2 + ...+
bn−1bn−bnan) = 0 with the exception of ai = a j, i, j ∈ {0,1, ...,n}. We also establish
a new refinement of (1), (5). We use the same method of proofs as in [7]. This method
was used among others by L. Panaitopol, D. Stefǎnescu [5] and R. Zamfir [7].

2. The main results

In this section, we present Theorems 2.1, 2.2, which establish refinements of in-
equalities (1), (2), Theorem 2.3 which is a refinement of (1), (5), and Lemma 2.1.

THEOREM 2.1. If f (x) = anxn + an−1xn−1 + ... + a1x + a0 ∈ C[X ], let b0 = a0,
b1 = a1−a0, ... bn = an−an−1, an �= 0, and k ∈ {1,2, ...,n}. Then, for any root z of
f , we have

| z |2� 1+
n

∑
j=0

∣∣∣∣b j

an

∣∣∣∣
2

− (ℜ(b0bk +b1bk+1 + ...+bn−kbn−bn−k+1an))2

(| b0 |2 + | b1 |2 +...+ | bn |2 + | an |2) | an |2 . (6)

REMARK 2.1. We note, that Theorem 1.3 is a special case of Theorem 2.1. If
ℜ(b0b1+b1b2+ ...+bn−1bn−bnan)= 0 and ℜ(b0bk +b1bk+1+ ...+bn−kbn−bn−k+1an) �=
0 for some k ∈ {2, ...,n} then inequality (6) is better than inequalities (1), (5).

THEOREM 2.2. If f (x) = anxn +an−1xn−1 + ...+a1x+a0 ∈C[X ], am = 0, m > n
and p ∈ {1,2, ...,n} such that k + 1 � p for some k ∈ {2, ...,n− 1}. Then at least p
roots of f are within in the disk:

| z |� 1+

(
p−1

∑
j=0

∣∣∣∣a j

an

∣∣∣∣
2

− (ℜ(a0ak +a1ak+1 + ...+ap−1ap−1+k))2

(| a0 |2 + | a1 |2 +...+ | ap−1+k |2) | an |2
) 1

2

. (7)
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REMARK 2.2. If ℜ(a0a1+a1a2 + ...+ap−1ap)= 0 and ℜ(a0ak +a1ak+1 + ...+
ap−1ap−1+k) �= 0 then inequality (7) is better than inequalities (2), (4).

THEOREM 2.3. If f (x)= anxn+an−1xn−1+ ...+a1x+a0 ∈C[X ], let Bk = ℜ(b0bk

+ b1bk+1 + ... + bn−kbn − bn−k+1an), k ∈ {1, ...,n}, A = |b0|2 + |b1|2 + ... + |bn|2.
Then, for any root z of f , we have

| z |2� 1+
1

|an|2
(
(A+ |an|2)(α2

0 + α2
1 )+2α0B2 +2α1B1 +2α0α1B1 +A

)
, (8)

where

α0 =
B2

1−B2(A+ |an|2)
(A+ |an|2)2 −B2

1

, α1 =
B1B2 −B1(A+ |an|2)

(A+ |an|2)2−B2
1

.

REMARK 2.3. Inequality (8) is better than inequalities (1), (5). It follows from
Remark 3.1.

LEMMA 2.1. If Bk = ℜ(b0bk+b1bk+1+ ...+bn−kbn−bn−k+1an)= 0, k∈{1, ...,n}.
Then ai = a j, i, j ∈ {0,1, ...,n}.

3. Proofs of main results

Proof of Theorem 2.1. Similarly as in [7] we consider the polynomial Fk(x) =
(xk −α) f (x), where α is a real number. We get

Fk(x) = anx
n+k + ...+an−k+1x

n+1 +(an−k−αan)xn + ...+(a0−αak)xk

−αak−1x
k−1 − ...−αa0.

By applying (1) to Fk, we have for any root z of Fk

| z |2� 1+
k−1

∑
i=0

∣∣∣∣αbi

an

∣∣∣∣
2

+
n−k

∑
i=0

∣∣∣∣bi−αbi+k

an

∣∣∣∣
2

+
∣∣∣∣bn−k+1 + αan

an

∣∣∣∣
2

+
n

∑
i=n−k+2

∣∣∣∣ bi

an

∣∣∣∣
2

.

Using the formula | x− y |2=| x |2 + | y |2 −2ℜ(xy) we obtain that | bi −αbi+ j |2=
| bi |2 +α2 | bi+ j |2 −2αℜ(bibi+ j). From this we have for any root z of f

| z |2� 1+
1

| an |2
(
(A+ | an |2)α2−2Bkα +A

)
where A, Bk is the same as in Theorem 2.3. The minimal value A− Bk

A+|an|2 of the

function g(α) = (A+ | an |2)α2 −2Bkα +A is obtained for α = Bk
A+|an|2 . The proof is

complete. �

Proof of Theorem 2.2. Similarly as in [7] we put Fk(x) = (xk−α) f (x), k � p−1.
The coefficients of Fk are cm = αam for m ∈ {0, ...,k− 1}, cm = am−k −αam for
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m ∈ {k, ...,n}, cm = am−k for m ∈ {n+1, ...,n+ k}. By applying (2) to Fk, at least p
roots of Fk are within the disk

| z |� 1+

(
p−1

∑
i=0

∣∣∣∣ ci

an

∣∣∣∣
2
) 1

2

.

Denote Am =| a0 |2 +...+ | am |2, Bk,m = ℜ(a0ak + ...+am−kam). Then

p−1

∑
i=0

∣∣∣∣ ci

an

∣∣∣∣
2

=
1

| an |2
(

α2
p−1

∑
i=0

| ai |2 −2αℜ
( p−k−1

∑
i=0

aiai+k

)
+

p−1−k

∑
i=0

| ai |2
)

=
1

| an |2
(
Ap−1α2 −2Bk,p−1α +Ap−1−k

)
= h(α).

It is evident that h is minimal for α = Bk,p−1
Ap−1

and the minimal value is:

1
| an |2

(
Ap−1−k −

B2
k,p−1

Ap−1

)
.

Since | Bk,p−1 |� Ap−1 we deduce that at least p− k roots of f are within the same
disk. It implies that at least p roots of f are within the disk

| z |� 1+

(
p−1

∑
k=0

| ak |2 −
B2

k,p−1+k

| an |2 Ap−1+k

) 1
2

.

The proof is complete. �

Proof of Theorem 2.3. We put Fm(x) = (xm + αm−1xm−1 + ... + α1x + α0) f (x),

1 < m � n. The coefficients of Fm are c j =
m
∑
i=0

αia j−i for j ∈ {0, ...,m + n}, where

an+k = 0, αm+k = 0 for k � 1, ak = 0, αk = 0 for k < 0, αm = 1. By applying (1) to
Fm we get that if z is a root of Fm then

| z |2� 1+
∣∣∣∣ c0

cm+n

∣∣∣∣
2

+
m+n

∑
j=1

∣∣∣∣c j − c j−1

cm+n

∣∣∣∣
2

.

From

ck − ck−1 =
m

∑
i=0

αiak−i−
m

∑
i=0

αiak−i−1 =
m

∑
i=0

αibk−i

and by using mathematical induction we obtain

| z |2� 1+
1

| an |2
(

(A+ | an |2)
m−1

∑
i=0

α2
i +2

m−1

∑
i=0

αiBm−i +2
m−2

∑
i=0

m−1

∑
j=1,i< j

αiα jB j−i +A

)
.
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For m = 2 we have

| z |2� 1+
1

| an |2
(
(A+ | an |2)(α2

0 + α2
1 )+2α0B2 +2α1B1 +2α0α1B1 +A

)
.

Denote

g(α0,α1) = (A+ | an |2)(α2
0 + α2

1 )+2α0B2 +2α1B1 +2α0α1B1 +A.

The minimal value of the function g(α0,α1) is obtained for

α0 =
B2

1−B2(A+ | an |2)
(A+ | an |2)2 −B2

1

, α1 =
B1(B2− (A+ | an |2))

(A+ | an |2)2 −B2
1

.

It follows from (A+ | an |2)2 > B2
1. This inequality we obtain from

B1 = A+ | an |2 −1
2

(
n−1

∑
i=0

| bi −bi+1 |2 + | b0 |2 + | an +bn |2 + | an |2
)

,

and from

A+ | an |2 +B1 = 2(A+ | an |2)− 1
2

(
n−1

∑
i=0

| bi−bi+1 |2 + | b0 |2 + | an +bn |2 + | an |2
)

=
1
2
(| b0 |2 + | an |2)+

n−1

∑
i=0

| bi |2 −1
2
| bi−bi+1 |2 + | bi+1 |2

+ | an |2 −1
2
| an +bn |2 + | bn |2> 0.

The proof is complete. �

REMARK 3.1. If we put α0 = 0, α1 = −B1
A+|an|2 then

g(α0,α1) = A− B2
1

A+ | an |2 .

It implies (8) is better than (5)

Proof of Lemma 2.1. Using mathematical induction we prove the following for-
mula:

n

∑
j=1

Bj = −1
2

(
n−1

∑
i=0

| ai−ai+1 |2 + | an−a0 |2
)

. (9)

If n = 1 then

B1 = ℜ(a0(a1 − a0)− (a1−a0)a1) = − | a0−a1 |2 .
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Suppose (9) is fulfilled for all i, i � k < n. For j ∈ {1, ...,k} we have

Bj = ℜ(b0b j)+ ℜ(b1b j+1)+ ...+ ℜ(bk+1− jbk+1)−ℜ(bk− j+2ak+1)

= ℜ(b0b j)+ ...+ ℜ(bk− jbk)−ℜ(bk+1− jak)+ ℜ(bk− j+1ak)

+ℜ(bk+1− j bk+1)−ℜ(bk+2− jak+1).

Bk+1 = ℜ(b0bk+1)−ℜ(b1ak+1).

It implies

k+1

∑
j=1

Bj = −1
2

(
k−1

∑
i=0

| ai−ai+1 |2 + | ak −a0 |2
)

+
k

∑
j=1

(
ℜ(bk+1− j ak)+ ℜ(bk+1− jbk+1)−ℜ(bk+2− jak+1)

)

+ℜ(b0bk+1)−ℜ(b1ak+1).

From

k

∑
j=1

ℜ(bk+1− j ak)+ ℜ(bk+1− jbk+1)−ℜ(bk+2− jak+1)

=
k

∑
j=1

ℜ(bk+1− j ak+1)−ℜ(bk+2− jak+1)

= ℜ(b1ak+1)−ℜ(bk+1ak+1)

we get

k+1

∑
j=1

Bj = −1
2

(
k−1

∑
i=0

| ai −ai+1 |2 + | ak −a0 |2
)

+ ℜ(b0bk+1)−ℜ(bk+1ak+1)

= −1
2

k−1

∑
i=0

| ai−ai+1 |2 −1
2
| ak |2 −1

2
| a0 |2 +ℜ(a0ak)+ ℜ(a0ak+1)−ℜ(a0ak)

−ℜ(ak+1ak+1)+ ℜ(akak+1)

= −1
2

(
k

∑
i=0

| ai−ai+1 |2 + | ak+1−a0 |2
)

.

The proof is complete. �

4. Conjecture and examples

We denote

gm(x0, ...,xm−1) = (A+ | an |2)
m−1

∑
i=0

x2
i +2

m−1

∑
i=0

xiBm−i +2
m−2

∑
i=0

m−1

∑
j=1,i< j

xix jB j−i +A, (10)
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Dm = det(d) where d is the matrix

di, j =

⎧⎪⎨
⎪⎩

2(A+ | an |2) for i = j, i, j ∈ {0, ...,m−1},
2Bj−i for i < j, i, j ∈ {0, ...,m−1},
d j,i for i, j ∈ {0, ...,m−1},

(11)

m ∈ {3, ...,n}. We conjecture that Dm > 0 and all main minors of Dm are positive.
This implies if α0,m, ...,αm−1,m are solutions of the equations:

xi(A+ | an |2)+
i−1

∑
j=0

x jBi− j +
m−1

∑
j=i+1

x jB j−i = −Bm−i, i ∈ {0, ...,m−1} (12)

then if z is a root of f we have

| z |2� 1+
1

| an |2 gm(α0,m, ...,αm−1,m)

and gl(α0,l , ...,αl−1,l) � gm(α0,m, ...,αm−1,m), 2 � l < m. So, if the conjecture holds
then we obtain a new refinements of (2).

Next, we recompute all examples in Zamfir’s paper [7] and compare our new
bounds (6), (8) for moduli of polynomial zeros to correct Zamfir’s bound (5) and also
to Cauchy’s bound.

Cauchy’s bound is given by

| z |< 1+max

{∣∣∣∣a0

an

∣∣∣∣−1,

∣∣∣∣a1

an

∣∣∣∣ , ...,
∣∣∣∣an−1

an

∣∣∣∣
}

.

We use the following notations:
zbe – Zamfir’s bound with typographical error,
zbc – correct Zamfir’s bound,
cb – Cauchy’s bound,
mb2 , mb3 ,...,mbk – our new bounds (Theorem 6),
nb – our new bound (Theorem 8).

EXAMPLE 4.1. Let f (z) = 20z4−2z3 +2z2− z+1. Using the mathematical pro-
gram MATLAB we find the roots of f :

z1,2 = −0.2717±0.4173ı, z3,4 = −0.3217±0.3133ı.

The parameters for calculation are:

b0 = 1, b1 = −2, b2 = 3, b3 = −4, b4 = 22, A = 514,

B1 = −548, B2 = 157, B3 = −108, B4 = 62,

α0 = 0.2930, α1 = 0.7753.
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The bounds are:

zbe = 0.907, zbc = 1.2098, mb2 = 1.4892, mb3 = 1.5010, mb4 = 1.5081,

nb = 1.1567, cb = 1.1000.

We obtained, that Cauchy’s bound is the best. The corrected Zamfir’s bound is better
than all other bounds mbk k = 2,3,4. Our new bound is better than Cauchy’s bound.

EXAMPLE 4.2. Let f (z) = 6z4 + 35z3 + 31z2 + 35z + 6. Similarly, we find the
roots of f :

z1,2 = −0.3029±0.9530ı, z3 = −5.0287, z4 = −0.1989.

The parameters for calculation are:

b0 = 6, b1 = 29, b2 = −4, b3 = 4, b4 = −29, A = 1750,

B1 = 100, B2 = 184, B3 = −793, B4 = −348,

α0 = −0.1002, α1 = −0.0504.

The bounds are:

zbe = 7.032, zbc = 7.0325, mb2 = 7.0060, mb3 = 6.3111, mb4 = 6.9085,

nb = 6.9971, cb = 6.8333.

We obtained, that Cauchy’s bound is the best. All other bounds mbk k = 2,3,4 are
better than the corrected Zamfir’s bound.

EXAMPLE 4.3. Let f (z) = 7z5−20z3 + z+1. Similarly, we find the roots of f :

z1,2 = −0.2025±0.2815ı, z3 = 0.4235, z4 = −1.6842, z5 = 1.6658.

The parameters for calculation are:

b0 = 1, b1 = 0, b2 = −1, b3 = −20, b4 = 20, b5 = 7,A = 851,

B1 = −289, B2 = −301, B3 = 113, B4 = 27, B5 = 7,

α0 = 0.4879, α1 = 0.4778.

The bounds are:

zbe = 4.048, zbc = 4.0587, mb2 = 4.0389, mb3 = 4.2518,

mb4 = 4.2838, mb5 = 4.2856, nb = 3.5430, cb = 3.8571.

We obtained, that our new bound (Theorem 8) is the best. Cauchy’s bound is better
than all other bounds mbk k = 1,2,3,4,5.
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EXAMPLE 4.4. Let f (z) = 10z5 + z4 +100z3 +10z2 +90z+1. Similarly, we find
the roots of f :

z1,2 = 0.0055±3.0002ı, z3,4 = −0.05±0.9981ı, z5 = −0.0111.

The parameters for calculation are:

b0 = 1, b1 = 89, b2 = −80, b3 = 90, b4 = −99, b5 = 9, A = 32304,

B1 = −24122, B2 = 17650, B3 = −10341, B4 = 1502, B5 = −881,

α0 = 0.0212, α1 = 0.7602.

The bounds are:

zbe = 11.9965, zbc = 12.0197, mb2 = 15.0965, mb3 = 17.0599,

mb4 = 17.9818, mb5 = 17.9945, nb = 12.0170, cb = 11.

We obtained, that Cauchy’s bound is the best. Zamfir’s bound is better than all other
bounds mbk k = 2,3,4,5.

EXAMPLE 4.5. Let f (z) = z5 +7z4 +55z3 +112z2 + z+1. Similarly, we find the
roots of f :

z1,2 = −2.2170±6.2199ı, z3,4 = −0.0023±0.0946ı, z5 = −2.5615.

The parameters for calculation are:

b0 = 1, b1 = 0, b2 = 111, b3 = −57, b4 = −48, b5 = −6,

A = 17911, B1 = −3297, B2 = −4827, B3 = −666, B4 = −159, B5 = −6,

α0 = 0.3140, α1 = 0.2419.

The bounds are:

zbe = 131.5488, zbc = 131.5490, mb2 = 128.8844, mb3 = 133.7432,

mb4 = 133.8304, mb5 = 133.8357, nb = 124.8955, cb = 113.

We obtained, that Cauchy’s bound is the best. mb2 is better than Zamfir’s bound which
is better than other bounds mbk k = 3,4,5.

EXAMPLE 4.6. Let f (z) = z3 − z2−2z−1.5. Similarly, we find the roots of f :

z1 = −0.6056+0.5582ı, z2 = −0.6056−0.5582ı, z3 = 2.2112.

The parameters for calculation are:

b0 = −1.5, b1 = −0.5, b2 = 1, b3 = 2, A = 7.5, B1 = 0.25,

B2 = −3.5, B3 = −2.5, α0 = 0.4130, α1 = −0.0416.
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The bounds are:

zbe = 2.9140, zbc = 2.9142, mb2 = 2.6568, mb3 = 2.7865,

nb = 2.6541, cb = 3.

We obtained, that all new bounds are better than Cauchy’s bound.

EXAMPLE 4.7. Let f (z) = −4z5−10z4 + z3 +30z2 +40z+3. Similarly, we find
the roots of f :

z1,2 = −1.1294±1.1890ı, z3 = 1.7910, z4 = −1.9526, z5 = −0.0797.

The parameters for calculation are:

b0 = 3, b1 = 37, b2 = −10, b3 = −20, b4 = −11, b5 = 6, A = 2476,

B1 = 308, B2 = −1211, B3 = −670, B4 = 149, B5 = 166,

α0 = 0.5090, α1 = −0.1865.

The bounds are:

zbe = 12.3837, zbc = 12.3847, mb2 = 10.9073, mb3 = 12.0205,

mb4 = 12.4577, mb5 = 12.4523, nb = 10.6599, cb = 11.

We obtained, that our new bound and mb2 bound are better than Cauchy’s and Zamfir’s
bounds.
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