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A WEAK POINCARÉ–SOBOLEV INEQUALITY

FOR FUNCTIONS IN MORREY SPACES

MODESTE ESSOH AND IBRAHIM FOFANA

(Communicated by Vladimir Dmitrievič Stepanov)

Abstract. We prove a weak Poincaré-Sobolev type inequality for a function belonging to Morrey
spaces with respect to a Hausdorff content.

1. Introduction

Poincaré Inequality allows one to obtain estimations on a function using estima-
tions on its derivates. Such estimations are of great importance in the modern, direct
methods of the calculus of variations (see [14]).

In [1, 3] Adams has established Poincaré inequalities in term of Lebesgue norms
with respect to a Hausdorff content. In this paper, we control a weak Morrey norm with
respect to a Hausdorff content of a function f by classical Morrey norm of its gradient.

The statement of this result needs some notations and definitions.
The Lebesgue measure of a set E is denoted by |E| . Q(x,r) stands for the cube

centered at x ∈ R
n with side length r and sides parallel to the cordinate axes. Given a

locally integrable function f , we denote by fQ(x,r) its mean value over Q(x,r) defined

by: fQ(x,r) =
1

|Q(x,r)|
∫

Q(x,r)
f (y)dy .

If E ⊂ R
n and 0 < δ � n , the Hausdorff content of E of order δ is defined by

Hδ (E) = inf
∞

∑
j=1

l(Qj)δ , (1.1)

where the infimum is taken over all coverings of E by countable families of cubes
Qj . Throughout this paper, only cubes with sides parallel to the cordinate axes are
considered and l(Q) denotes the side length of the cube Q .

Note that, Hn(E) = |E| and if in the relation (1.1) we take the infimum only
on coverings of E by dyadic cubes, we get the dyadic Hausdorff content of order δ ,
Hδ
�(E) . It is well known (see [1]) that

Property P1: there exists two constants A > 0 and B > 0 such that for any E ⊂
R

n , Hδ (E) � AHδ
�(E) � BHδ (E) ;
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Property P2: If (Ei) is a increasing sequence of arbitrary sets, then lim
i→+∞

Hδ
�(Ei)=

Hδ
�(∪

i
Ei) .

Let 1 � p < +∞ , 0 � λ � n and 0 < δ � n . We denote by Lp,λ
∗ (Hδ ) the weak

Morrey type space with respect to the Hausdorff content Hδ , that is the space of all
functions f such as

‖ f‖
Lp,λ∗ (Hδ )

:= sup
Q

t>0

tHδ ({x ∈ Q, | f (x)| > t}) 1
p l(Q)−

λ
p < ∞,

where the supremum is taken over all t > 0 and cubes Q of R
n . The classical Morrey

spaces Lp,λ (dx) are the spaces of all locally integrable functions f satisfying

‖ f‖Lp,λ (dx) := sup
Q

(
1

l(Q)λ

∫
Q
| f (y)|pdy

) 1
p

< ∞

where the supremum is taken over all cubes Q of R
n .

Notice that Lp,0
∗ (Hδ ) is the weak Lebesgue space Lp

∗(Hδ ) with respect to the
Hausdorff content Hδ (see [2]).

We recall that the Sobolev space W 1,1
loc is defined by

W 1,1
loc =

{
f ∈ L1

loc : Dj f ∈ L1
loc j ∈ {1, 2 ..., n},}

where L1
loc is the set of all locally Lebesgue integrable functions.

We can now state our main result.

THEOREM 1.1. Suppose that 0 � β < 1 < α � n � δ +β , δ � n and λ (n−β )=
δ (n−α) . Then there exists a constant C > 0 such that for any function f belonging
to W 1,1

loc and satisfying

limsup
r→0

fQ(x,r) = f (x) , x ∈ R
n

and
lim
r→∞

| fQ(x,r)| = 0 , x ∈ R
n

we have
‖ f‖

L
δ

n−β
α−β
α−1 ,λ

∗ (Hδ )

� C‖∇ f‖L1,n−α (dx).

As an immediate consequence we have the following weak Sobolev inequality.

COROLLARY 1.2. Suppose that 1 < α � n. Then there exists a constant C > 0
such that for any function f belonging to W 1,1 we have

‖ f‖
L

α
α−1 ,n−α
∗ (dx)

� C‖∇ f‖L1,n−α (dx). (1.2)
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Inequality (1.2) generalizes the inequality

‖ f‖
L

n
n−1∗ (dx)

� C‖∇ f‖L1(dx), (1.3)

which is a weak form of the Sobolev classical inequality

‖ f‖
L

n
n−1 (dx)

� C‖∇ f‖L1(dx), (1.4)

(see [8]).
The remainder of this paper is organized as follows: in section 2 we establish a

boundedness property for the Riez potential in Morrey type spaces. In section 3, we
prove technical lemmas used in the proof of the principal result. In section 4, we prove
Theorem 1.1 and Corollary 1.2 .

2. Weak Inequality For Riesz Potential

Let f be a locally integrable function on R
n . The Riesz potential of f of order α

(0 � α < n) is defined by

Iα f (x) =
∫

Rn

f (y)
|x− y|α−n dy, x ∈ R

n.

It is well known that Iα is related to the fractional maximal operator Mα defined by

Mα f (x) = sup
Q	x

1

|Q|1− α
n

∫
Q
| f (y)|dy, x ∈ R

n

where the supremum is taken over all cubes Q containing x .
The theory of boundedness of fractional maximal operator and Riesz potential

from one Morrey-type space constructed on the base of Lebesgue measure to another
one is well studied. See [3], [4], [5] and [6].

In this section, boundedness property for the Riesz potential (Theorem 2.4) in
Morrey-type space constructed on the base of Hausdorff content is obtained. This result
is interesting in the sense that there exists a set E ⊂R

n such that |E|= 0 and Hδ (E)> 0
for δ < n .

An instance of this relation is the following form of Welland’s inequality.

LEMMA 2.1. Assume 0 � β < γ < α � n. Then there exists a constant C > 0 ,
such that, for any positive function f , we have:

Iγ f (x) � C
(
Mβ f (x)

) α−γ
α−β (Mα f (x))

γ−β
α−β , x ∈ R

n.

The proof is the same as that of inequality (2.3) in [13].
Now, we recall a boundedness property for the fractional maximal operator in

Morrey type spaces (see [7]).
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PROPOSITION 2.2. Assume that 0 � β < n, 0 � λ � n, 0 < δ � n, δ � λ ,
δ � n−β and μ = λ

δ (n−β ). Then there exists a constant C > 0 , such that for any
locally integrable function f , we have

‖Mβ f‖
L

δ
n−β ,λ
∗ (Hδ )

� C‖ f‖L1,μ (dx).

From the above results, we shall deduce a norm estimate for the Riez potential.
Before this, we establish the following lemma which will be useful in the of proof of
our result.

LEMMA 2.3. Let p,q > 0 , 0 � λ � n and 0 < δ � n. Then for any locally
integrable function f , we have

‖ f p‖
Lq,λ
∗ (Hδ )

= ‖ f‖p

Lpq,λ∗ (Hδ )
.

Proof. We have

‖ f p‖
Lq,λ
∗ (Hδ )

= sup
Q

t>0

t
(
Hδ {x ∈ Q, | f (x)|p > t}

) 1
q
l(Q)

−λ
q

= sup
Q

t>0

t
(
Hδ
{

x ∈ Q, | f (x)| > t
1
p

}) 1
q
l(Q)

−λ
q

= sup
Q

u>0

up
(
Hδ {x ∈ Q, | f (x)| > u}

) 1
q
l(Q)

−λ
q

=

⎛
⎜⎝sup

Q
u>0

u
(
Hδ {x ∈ Q, | f (x)| > u}

) 1
pq

l(Q)
−λ
pq

⎞
⎟⎠

p

= ‖ f‖p

Lpq,λ
∗ (Hδ )

. �

THEOREM 2.4. If 0 � β < γ < α � n � δ +β , δ � n and λ (n−β ) = δ (n−α) ,
then there exists a constant C > 0 such that for any function f ∈ L1,n−α(dx) , we have

‖Iγ f‖
L

δ
n−β

α−β
α−γ ,λ

∗ (Hδ )

� C‖ f‖L1,n−α (dx).

Proof. We have

Mα f (x) = sup
Q	x

1

|Q|1− α
n

∫
Q
| f (y)|dy � ‖ f‖L1,n−α (dx), x ∈ R

n.

It follows from Lemma 2.1 that

Iγ | f |(x) � C1‖ f‖
γ−β
α−β
L1,n−α (dx)

(
Mβ f (x)

) α−γ
α−β , x ∈ R

n.
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So

‖Iγ | f |‖
L

δ
n−β

α−β
α−γ ,λ

∗ (Hδ )

� C1‖ f‖
γ−β
α−β
L1,n−α (dx)‖

(
Mβ f

) α−γ
α−β ‖

L
δ

n−β
α−β
α−γ ,λ

∗ (Hδ )

.

Hence, by Lemma 2.3 we have

‖Iγ | f |‖
L

δ
n−β

α−β
α−γ ,λ

∗ (Hδ )

� C1‖ f‖
γ−β
α−β
L1,n−α (dx)‖Mβ f‖

α−γ
α−β

L
δ

n−β ,λ
∗ (Hδ )

.

It is clear that the assumptions of Proposition 2.2 hold: δ � n−β , λ
δ = n−α

n−β < 1 and
λ
δ (n−β ) = n−α . So by virtue of Proposition 2.2 we have

‖Mβ f‖
L

δ
n−β ,λ
∗ (Hδ )

� C2‖ f‖L1,n−α (dx).

Therefore,

‖Iγ | f |‖
L

δ
n−β

α−β
α−γ ,λ

∗ (Hδ )

� C2C1‖ f‖
γ−β
α−β + α−γ

α−β
L1,n−α (dx) = C‖ f‖L1,n−α (dx) < ∞.

The claim follows. �

3. Technical lemmas

The propositions of this section have been inspired by Chapter 4 in [10]. For a
locally integrable function f we set

A( f ) = sup
x∈Rn

t>0
r>0

tHδ ({y ∈ Q(x,r), | f − fQ(x,r)|(y) > t
}) 1

p l(Q(x,r))−
λ
p .

LEMMA 3.1. Assume that 0 < δ � n, 0 � λ � δ , 1 � p and 0 < σ < ρ < +∞ .
Then for any locally integrable function f and for all x ∈ R

n , we have

| fQ(x,ρ) − fQ(x,σ)| � 2
ρ

λ
p + σ

λ
p

σ
δ
p

A( f ).

Proof. We have

| fQ(x,ρ) − fQ(x,σ)|χQ(x,σ) � | fQ(x,ρ) − f |χQ(x,ρ) + | f − fQ(x,σ)|χQ(x,σ).

For t > 0, we have{
y : | fQ(x,ρ) − fQ(x,σ)|χQ(x,σ)(y) > 2t

} ⊂ {
y : | fQ(x,ρ) − f |χQ(x,ρ)(y) > t

}
∪{y : | f − fQ(x,σ)|χQ(x,σ)(y) > t

}
.
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As
1
p

� 1, we obtain for any t > 0

tHδ ({y : | fQ(x,ρ) − fQ(x,σ)|χQ(x,σ)(y) > 2t
}) 1

p

� tHδ ({y : | fQ(x,ρ) − f |χQ(x,ρ)(y) > t
}) 1

p

+tHδ ({y : | f − fQ(x,σ)|χQ(x,σ)(y) > t
}) 1

p

� ρ
λ
p tHδ ({y : | fQ(x,ρ) − f |χQ(x,ρ)(y) > t

}) 1
p ρ

−λ
p

+σ
λ
p tHδ ({y : | f − fQ(x,σ)|χQ(x,σ)(y) > t

}) 1
p σ

−λ
p .

From above inequality, we obtain for any u > 1

| fQ(x,ρ) − fQ(x,σ)|
2u

Hδ (Q(x,r)) | 1
p �

(
ρ

λ
p + σ

λ
p

)
A( f ).

The claim follows. �

LEMMA 3.2. Assume that 0 < δ � n, 1 � p and 0 � λ � δ . Then for any locally
integrable function f , all non negative integer k and all x ∈ R

n , we have

| fQ(x,ρ) − fQ(x,2−kρ)| � 2
p+δ−λ

p

(
1+2

λ
p

) 2k δ−λ
p −1

2
δ−λ

p −1
ρ− δ−λ

p A( f ).

Proof. Let m be a non negative integer. By Lemma 3.1, we have

| fQ(x,2−mρ)− fQ(x,2−m−1ρ)| � 2
(
1+2

λ
p

)
2m δ−λ

p 2
δ−λ

p ρ− δ−λ
p A( f ).

Since for any non negative integer k we have

| fQ(x,ρ) − fQ(x,2−kρ)| �
k−1

∑
m=0

| fQ(x,2−mρ)− fQ(x,2−m−1ρ)|,

it follows that

| fQ(x,ρ) − fQ(x,2−kρ)| � 2
(
1+2

λ
p

)
2

δ−λ
p ρ− δ−λ

p

(
k−1

∑
m=0

2m δ−λ
p

)
A( f )

� 2
p+δ−λ

p

(
1+2

λ
p

) 2k δ−λ
p −1

2
δ−λ

p −1
ρ− δ−λ

p A( f ). �

LEMMA 3.3. Suppose that 1 � p, 0 < ρ < σ < +∞ , 0 � λ � δ , 0 < δ � n and
k is the unique integer satisfying 2−k−1σ � ρ < 2−kσ . Then for any locally integrable
function f and all x ∈ R

n , we have

| fQ(x,ρ)| � | fQ(x,σ)|+2
(
1+2

λ
p

)(
1+2

δ−λ
p

1−2−k δ−λ
p

2
δ−λ

p −1

)
ρ− δ−λ

p A( f ).
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Proof. We have

| fQ(x,ρ)| � | fQ(x,σ)|+ | fQ(x,2−kσ)− fQ(x,σ)|+ | fQ(x,2−kσ) − fQ(x,ρ)|.
By Lemma 3.1,

| fQ(x,2−kσ)− fQ(x,ρ)| � 2

((
2−kσρ−1

) λ
p
+1

)
ρ− δ−λ

p A( f )

� 2
(
1+2

λ
p

)
ρ− δ−λ

p A( f ). (3.1)

Lemma 3.2 yields

| fQ(x,2−kσ) − fQ(x,σ)| � 2
p+δ−λ

p

(
1+2

λ
p

) 2k δ−λ
p −1

2
δ−λ

p −1
σ− δ−λ

p A( f )

� 2
p+δ−λ

p

(
1+2

λ
p

) 1−2−k δ−λ
p

2
δ−λ

p −1
ρ− δ−λ

p A( f ). (3.2)

We deduce from (3.1) and (3.2) the claim. �

LEMMA 3.4. Suppose that 1 � p, 0 < δ � n and 0 � λ � δ . Then there exists a
constant C > 0 such that for any locally integrable function f satisfying

lim
r→+∞

| f |Q(x,r) = 0, x ∈ R
n

we have
‖ f‖

Lp,λ∗ (Hδ )
� CA( f ).

Proof. Let (t,ρ ,x) be any element of (0,+∞)× (0,+∞)×R
n .

As
| f χQ(x,ρ)| � |( f − fQ(x,ρ)

)
χQ(x,ρ)|+ | fQ(x,ρ)χQ(x,ρ)|.

Hence for any t > 0, we have

tHδ ({y : | f χQ(x,ρ)|(y) > 2t
}) 1

p � ρ
λ
p tHδ ({y : | f − fQ(x,ρ)|χQ(x,ρ)(y) > t

}) 1
p ρ− λ

p

+tHδ ({y : | fQ(x,ρ)|χQ(x,ρ)(y) > t
}) 1

p .

So,

tHδ ({y, | f χQ(x,ρ)|(y) > 2t
}) 1

p ρ− λ
p � A( f )+ ρ

δ−λ
p | fQ(x,ρ)|.

Let σ > ρ and k the unique integer satisfying 2−k−1σ � ρ < 2−kσ . By Lemma 3.3,

tHδ ({y : | f χQ(x,ρ)|(y) > 2t
}) 1

p ρ− λ
p

� A( f )+ ρ
δ−λ

p | f χQ(x,σ)|+ ρ
δ−λ

p ·2
(
1+2

λ
p

)(
1+2

δ−λ
p

1−2−k δ−λ
p

2
δ−λ

p −1

)
ρ− δ−λ

p A( f ).
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As lim
k→+∞

2−k δ−λ
p = 0 = lim

σ→+∞
| f χQ(x,σ)| , we get

tHδ ({y, | f χQ(x,ρ)|(y) > 2t
}) 1

p ρ− λ
p �

(
1+2

(
1+2

λ
p

)(
1+

2
δ−λ

p

2
δ−λ

p −1

))
A( f ).

The claim follows. �

4. Proofs of Theorem 1.1 and Corollary 1.2

We recall that:
– a point x ∈ R

n is called Lebesgue point of an locally integrable function f if

lim
r→0

|Q(x,r)|−1
∫

Q(x,r)
| f (y)− f (x)|dy = 0.

– a function f belongs C k , (k = 0,1, . . . ,∞) when f is k -times continuously
differentiable.

Now, we establish the following particular case of Theorem 1.1.

PROPOSITION 4.1. Suppose that 0 � β < 1 < α � n � δ +β , δ � n and λ (n−
β ) = δ (n−α). Then there exists a constant C > 0 such that for any function f be-
longing to C1 and satisfying

lim
r→+∞

| fQ(x,r)| = 0,

for all x ∈ R
n , we have

‖ f‖
L

δ
n−β

α−β
α−1 ,λ

∗ (Hδ )

� C‖∇ f‖L1,n−α (dx).

Proof. Let f satisfying the assumptions of the proposition.
It is well known (see Lemma 7.16 in [9]) that there exists a real number C1 de-

pending only on n such that for all cubes Q and x ∈ Q we have

| f (x)− fQ| � C1I1(|∇ f |χQ)(x).

Using lemma 3.4 and the above inequality we obtain

‖ f‖
L

δ
n−β

α−β
α−1 ,λ

∗ (Hδ )

� C2 sup
Q

tHδ ({x ∈ Q, | f − fQ|(x) > t}) α−1
α−β

n−β
δ l(Q)−

λ
δ (n−β ) α−1

α−β

� C1C2 sup
Q

tHδ ({x ∈ Q, I1 (|∇ f |) (y) > t}) α−1
α−β

n−β
δ l(Q)−

λ
δ (n−β ) α−1

α−β

= C1C2‖I1 (|∇ f |)‖
L

δ
n−β

α−β
α−1 ,λ

∗ (Hδ )

.

It follows from Theorem 2.4 that

‖ f‖
L

δ
n−β

α−β
α−1 ,λ

∗ (Hδ )

� C‖∇ f‖L1,n−α (dx). �

Let us recall the following proposition used in the proof of Theorem 1.1.
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PROPOSITION 4.2. (see Theorem 7.8 in [11]) Let f in W 1,1
loc . Then there exists a

constant C such that

∫
Q
| f − fQ|dy � Cl(Q)

∫
Q
|∇ f |dy,

for any cube Q of R
n .

Proof of Theorem 1.1. Let f satisfying the assumptions of the theorem.

We can assume that ‖∇ f‖L1,n−α (dx) < +∞ otherwise the claim of Theorem 1.1 is
trivial.

a) Let ϕ be a non negative element of C ∞ with support suppϕ is included in the

unit ball B(0,1) and such that
∫

Rn
ϕ(x)dx = 1.

For any real number ε > 0, we write fε = f ∗ϕε with

ϕε(x) = ε−nϕ(ε−1x).

Then fε ∈ C∞ and for all x ∈ R
n and ρ > 0, we have

|Q(x,ρ)|−1
∫

Q(x,ρ)
| fε |(y)dy � |Q(x,ρ)|−1

∫
Q(x,ρ)

∫
suppϕε

| fε (y− z)|ϕε(z)dzdy

�
∫

suppϕε

(
|Q(x,ρ)|−1

∫
Q(x,ρ)−z

| f (y)|dy

)
ϕε(z)dz

�
(

ρε
ρ

)n ∫
Rn

(
|Q(x,ρε)|−1

∫
Q(x,ρε )

| f (y)|dy

)
ϕε (z)dz

�
(

ρε
ρ

)n

|Q(x,ρε)|−1
∫

Q(x,ρε )
| f (y)|dy,

where ρε = ρ +2ε.

Therefore for all x ∈ R
n , lim

ρ→+∞
| fε |Q(x,ρ) = 0.

Thus from Proposition 4.1, we get

‖ fε‖
L

δ
n−β

α−β
α−1 ,λ

∗ (Hδ )

� C1‖∇ fε‖L1,n−α (dx). (4.1)

In addition, for all cubes Q , we have
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∫
Q
|∇ fε |(x)dx =

∫
Q
|∇( f ∗ϕε) |(x)dx

=
∫

Q
|∇ f ∗ϕε |(x)dx

�
∫

Q

∫
Rn

|∇ f (x− y)|ϕε(y)dy(x)dx

=
∫

Rn

(∫
Q
|∇ f (x− y)|dx

)
ϕε(y)dy

=
∫

Rn

(∫
Q−y

|∇ f (z)|dz

)
ϕε(y)dy

� ‖∇ f‖L1,n−α (dx)l(Q)n−α
∫

Rn
ϕε (y)dy

1
l(Q)n−α

∫
Q
|∇ fε |(x)dx � ‖∇ f‖L1,n−α (dx).

Hence

‖∇ fε‖L1,n−α (dx) � ‖∇ f‖L1,n−α (dx).

So, by (4.1) we obtain

‖ fε‖
L

δ
n−β

α−β
α−1 ,λ

∗ (Hδ )

� C1‖∇ f‖L1,n−α (dx). (4.2)

b) Consider σ , ρ with 0 < σ < ρ < +∞ and k the unique integer satisfying
2−k−1ρ � σ < 2kρ .

(i) For all x ∈ R
n , we have

| fQ(x,ρ) − fQ(x,σ)| �
k

∑
i=0

| fQ(x,2−iρ)− fQ(x,2−i−1ρ)|+ | fQ(x,2−kρ)− fQ(x,σ)|.

For all i such that 0 � i � k−1,

| fQ(x,2−iρ)− fQ(x,2−i−1ρ)| =
∣∣∣∣|Q(x,2−i−1ρ)|−1

∫
Q(x,2−i−1ρ)

(
fQ(x,2−iρ)− f (y)

)
dy

∣∣∣∣
� |Q(x,2−i−1ρ)|−1

∫
Q(x,2−i−1ρ)

| fQ(x,2−iρ)− f (y)|dy

� 2−n|Q(x,2−iρ)|−1
∫

Q(x,2−iρ)
| fQ(x,2−iρ)− f (y)|dy

and

| fQ(x,σ) − fQ(x,2−kρ)| =
∣∣∣∣|Q(x,σ)|−1

∫
Q(x,σ)

(
f (y)− fQ(x,2−kρ)

)
dy

∣∣∣∣
� 2n|Q(x,2−kρ)|−1

∫
Q(x,2−kρ)

| f (y)− fQ(x,2−iρ)|dy.
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Therefore,

| fQ(x,ρ) − fQ(x,σ)| � 2n
k

∑
i=0

|Q(x,2−iρ)|−1
∫

Q(x,2−iρ)
| fQ(x,2−iρ)− f (y)|dy.

By Proposition 4.2, we have

| fQ(x,ρ) − fQ(x,σ)| � 2n
k

∑
i=0

|Q(x,2−iρ)| 1
n−1

∫
Q(x,2−iρ)

|∇ f |(y)dy

� 2nC1

k

∑
i=0

|Q(x,2−iρ)| 1
n− β

n Mβ (|∇ f |)(x).

So

| fQ(x,ρ) − fQ(x,σ)| � 2n C1

1−2−1+β Mβ (|∇ f |)(x)ρ1−β . (4.3)

(ii) Now consider N =
{
x ∈ R

n, Mβ (|∇ f |)(x) = +∞
}

, Q a cube of R
n ,

NQ =
{
x ∈ Q, Mβ (|∇ f |)(x) = +∞

}
, η a positive real number and Nη

Q = {x ∈ Q,
Mβ (|∇ f |)(x) > η} .

By Proposition 2.2, we have

ηHδ (Nη
Q)

n−β
δ l(Q)−

λ
δ (n−β ) � C2‖∇ f‖L1,n−α (dx)

Hδ (Nη
Q) � C

δ
n−β
2 l(Q)λ 1

η
δ

n−β
‖∇ f‖

δ
n−β
L1,n−α (dx).

As NQ ⊂ Nη
Q , we get

Hδ (NQ) � C
δ

n−β
2 l(Q)λ 1

η
δ

n−β
‖∇ f‖

δ
n−β
L1,n−α (dx).

Letting η → ∞ , we obtain Hδ (NQ) = 0.
Since R

n can be written as a countable union of cubes, we get finally

Hδ (N) = 0. (4.4)

(iii) Fix x ∈ R
n \N .

Since by hypothesis limsup
σ→0

fQ(x,σ) = f (x) , inequality (4.3) leads to

| fQ(x,ρ) − f (x)| � 2n C1

1−2−1+β Mβ (|∇ f |)(x)ρ1−β .

In addition, by Proposition 4.2, we have

|Q(x,ρ)|−1
∫

Q(x,ρ)
| f (y)− fQ(x,ρ)|dy � C3ρ−n+1

∫
Q(x,ρ)

|∇ f (y)|dy

� C3Mβ (|∇ f |)(x)ρ1−β .
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So

|Q(x,ρ)|−1
∫

Q(x,ρ)
| f (y)− f (x)|dy � |Q(x,ρ)|−1

∫
Q(x,ρ)

| f (y)− fQ(x,ρ)|dy

+| fQ(x,ρ) − f (x)|

� C4

(
1+

2n

1−2−1+β

)
Mβ (|∇ f |)(x)ρ1−β .

Thus for any x ∈ R
n \N ,

lim
ρ→0

|Q(x,ρ)|−1
∫

Q(x,ρ)
| f (y)− f (x)|dy = 0,

i.e any x ∈ R
n \N is a Lebesgue point for f .

c) Let Q be a cube of R
n and t > 0. We set

G = {y ∈ Q, | f (y)| > t}
Gk =

{
y ∈ Q(x,r), | f 1

k
(y)| > t

}
, k ∈ N

∗

Γ j = ∩
k� j

Gk, j ∈ N
∗.

(i) Let y ∈ G and y /∈ N .
We have | f (y)| > t and lim

η→+∞
f 1

η
(y) = f (y) (since y is a Lebesgue point). So,

there exists j > 0 such that f 1
k
(y) > t for all k � j ; that is y ∈ ∪

j
Γ j .

Therefore
G\N ⊂ ∪

j
Γ j.

(ii) By equality (4.4) and the above inclusion, we have

Hδ (G) = Hδ (G\N) � Hδ (∪
j
Γ j).

Using Properties P1 and P2, we have

Hδ (G) � AHδ
�(∪

j
Γ j) = A lim

j→+∞
Hδ
�(Γ j)

� A lim
k→+∞

Hδ
�(Gk) � AB liminf

k→+∞
Hδ (Gk).

Therefore,

tHδ (G)
n−β

δ
α−1
α−β l(Q)−λ n−β

δ
α−1
α−β � (AB)

n−β
δ

α−1
α−β liminf

k→+∞
Hδ (Gk)

n−β
δ

α−1
α−β l(Q)−λ n−β

δ
α−1
α−β

� (AB)
n−β

δ
α−1
α−β liminf

k→+∞
‖ fε‖

L
δ

n−β
α−β
α−1 ,λ

∗ (Hδ )

.

So by inequality (4.2), we have

Hδ (G)
n−β

δ
α−1
α−β l(Q)−λ n−β

δ
α−1
α−β � (AB)

n−β
δ

α−1
α−β C1‖∇ f‖

L
δ

n−β
α−β
α−1 ,λ

∗ (Hδ )

.
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Thus
‖ f‖

L
δ

n−β
α−β
α−1 ,λ

∗ (Hδ )

� C‖∇ f‖L1,n−α (dx). �

Proof of Corollary 1.2. Since f ∈W 1,1 , then we choose Borel representatives f̃
defined at every point x by

f̃ (x) := limsup
r→0

fQ(x,r).

By the Lebesgue differentiation theorem, [12], f = f̃ a.e.
Applying Theorem 1.1 for β = 0, δ = n and f̃ , we obtain the result because

f = f̃ a.e. �
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