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INEQUALITIES FOR UNITARILY INVARIANT NORMS
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(Communicated by Jerry J. Koliha)

Abstract. This paper aims to discuss some inequalities for unitarily invariant norms. We obtain
several inequalities for unitarily invariant norms.

1. Introduction

Let Mm,n be the space of m× n complex matrices and Mn = Mn,n . Suppose that
the eigenvalues of A are λ1 (A) , · · · ,λn (A) and |λ1 (A)|� · · ·� |λn (A)| . Let A,B∈Mn

be positive semidefinite, the order relation A � B means, as usual, that A−B is positive
semidefinite. Let ‖·‖ denote any unitarily invariant norm on Mn . So, ‖UAV‖ = ‖A‖
for all A ∈ Mn and for all unitary matrices U,V ∈ Mn . For k = 1, · · · ,n , the Ky Fan
k-norm ‖·‖(k) is defined as

‖A‖(k) =
k

∑
j=1

s j (A).

For 1 � p < ∞ , the Schatten p-norm ‖·‖p is defined as

‖A‖p =

(
n

∑
j=1

sp
j (A)

)1/p

= (tr |A|p)1/p ,

where tr is the usual trace functional and s1 (A) � · · · � sn (A) are the singular values of
A , that is, the eigenvalues of the positive semidefinite matrix |A| = (AA∗)1/2 , arranged
in decreasing order and repeated according to multiplicity. It is known that these norms
are unitarily invariant, and it is evident that each unitarily invariant norm is a symmetric
gauge function of singular values [5]. For more information on unitarily invariant norms
the reader is referred to [5]. For A = [ai j] ∈ Mn , the norm

‖A‖2 =

(
n

∑
j=1

s2
j (A)

)1/2

=
(
tr |A|2

)1/2
=

(
n

∑
i, j=1

∣∣ai j
∣∣2)1/2

is also called the Hilbert-Schmidt norm or Frobenius norm. Obviously, the Hilbert-
Schmidt norm or Frobenius norm is in the class of Schatten norms.
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2. Two inequalities for the Hilbert-Schmidt norm

Bhatia and Davis proved in [1] that if A,B,X ∈ Mn such that A and B are positive
semidefinite and if 0 � v � 1, then

2
∥∥∥A1/2XB1/2

∥∥∥�
∥∥AvXB1−v +A1−vXBv

∥∥� ‖AX +XB‖ .

Recently, Kittaneh and Manasrah [2] obtained an improvement of the Heinz inequality
for the Hilbert-Schmidt norm which is stated as follows:∥∥AvXB1−v +A1−vXBv

∥∥
2 +2r0

(
(‖AX‖2)

1/2 − (‖XB‖2)
1/2
)2

� ‖AX +XB‖2 ,

where r0 = min{v,1− v} .
Meanwhile, Kittaneh and Manasrah [2] obtained another improvement of the Heinz

inequality for the Hilbert-Schmidt norm which is stated as follows:∥∥AvXB1−v +A1−vXBv
∥∥2

2 +2r0‖AX −XB‖2
2 � ‖AX +XB‖2

2 ,

where r0 = min{v,1− v} .
In this section, we present two upper bounds for ‖AX +XB‖2

2 . To do this, we need
the following lemmas.

LEMMA 2.1. If a,b,s ∈ R and s �= 0 , then

(s+1)2

s2 +1
(a+b)2 � (a+ sb)2 +

(
a+

b
s

)2

. (2.1)

Proof. Let

K =
(
s2 +1

){
(a+ sb)2 +

(
a+

b
s

)2
}
− (s+1)2 (a+b)2 .

Then, we have

K = (s−1)2 a2 +2
(
s3 − s2−1+ 1

s

)
ab+

(
s2 − 1

s

)2
b2

=
{
(s−1)a+

(
s2− 1

s

)
b
}2 � 0.

This completes the proof. �

LEMMA 2.2. If a,b,s,t ∈ R, then

1
2

(s+ t)2 (a+b)2 � (sa+ tb)2 +(ta+ sb)2 . (2.2)

Proof. Let

K = 2(sa+ tb)2 +2(ta+ sb)2− (s+ t)2 (a+b)2 .

Then, we have
K = (s− t)2 (a−b)2 � 0.

This completes the proof. �
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THEOREM 2.1. Let A,B,X ∈ Mn such that A and B are positive semidefinite. If
s ∈ R and s �= 0,−1 , then

‖AX +XB‖2
2 � s2 +1

(s+1)2

{
‖AX + sXB‖2

2 +
∥∥∥∥AX +

1
s
XB

∥∥∥∥
2

2

}
.

Proof. Since every positive semidefinite matrix is unitarily diagonalizable, it fol-
lows that there exist unitary matrices U,V ∈Mn such that A =UΛ1U∗ and B=VΛ2V ∗ ,
where

Λ1 = diag(λ1, · · · ,λn) ,Λ2 = diag(μ1, · · · ,μn) ,λi,μi � 0, i = 1, · · · ,n.

Let
Y = U∗XV = [yi j] .

Then
AX +XB = U [(λi + μ j)yi j]V ∗,

AX + sXB = U [(λi + sμ j)yi j]V ∗,

and

AX +
1
s
XB = U

[(
λi +

1
s

μ j

)
yi j

]
V ∗.

By the inequality (2.1), we have

‖AX +XB‖2
2 =

n
∑

i, j=1
(λi + μ j)2 ∣∣yi j

∣∣2
� s2 +1

(s+1)2

{
n

∑
i, j=1

(λi + sμ j)
2 ∣∣yi j

∣∣2 +
n

∑
i, j=1

(
λi +

1
s

μ j

)2 ∣∣yi j
∣∣2}

=
s2 +1

(s+1)2

{
‖AX + sXB‖2

2 +
∥∥∥∥AX +

1
s
XB

∥∥∥∥
2

2

}

This completes the proof. �

THEOREM 2.2. Let A,B,X ∈ Mn such that A and B are positive semidefinite. If
s,t ∈ R and s+ t �= 0 , then

‖AX +XB‖2
2 � 2

(s+ t)2

{
‖sAX + tXB‖2

2 +‖tAX + sXB‖2
2

}
.

Proof. Let U,V and Y have the same meaning as in the proof of Theorem 2.1.
Then

sAX + tXB = U [(sλi + tμ j)yi j]V ∗, tAX + sXB = U [(tλi + sμ j)yi j]V ∗.
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By the inequality (2.2), we have

‖AX +XB‖2
2 =

n
∑

i, j=1
(λi + μ j)

2 ∣∣yi j
∣∣2

� 2

(s+ t)2

{
n

∑
i, j=1

(sλi + tμ j)
2 ∣∣yi j

∣∣2 +
n

∑
i, j=1

(tλi + sμ j)
2 ∣∣yi j

∣∣2}

=
2

(s+ t)2

{
‖sAX + tXB‖2

2 +‖tAX + sXB‖2
2

}
.

This completes the proof. �

3. Two inequalities for unitarily invariant norms

Bhatia and Kittaneh proved in [3] that if A,B ∈ Mn are positive semidefinite, then∥∥∥A3/2B1/2 +A1/2B3/2
∥∥∥� 1

2

∥∥∥(A+B)2
∥∥∥ . (3.1)

By the matrix arithmetic-geometric mean inequality [5, p. 263], we have∥∥∥A1/2B1/2
∥∥∥� 1

2
‖A+B‖ . (3.2)

It follows from the triangle inequality, (3.1) and (3.2) that∥∥∥A3/2B1/2 +A1/2B3/2 +A1/2B1/2
∥∥∥� 1

2

∥∥∥(A+B)2
∥∥∥+

1
2
‖A+B‖ . (3.3)

THEOREM 3.1. Let A,B ∈ Mn be positive semidefinite. Then∥∥∥A3/2B1/2 +A1/2B3/2 +A1/2B1/2
∥∥∥� 1

2

∥∥∥(A+B)2 +A+B
∥∥∥ .

Proof. Let X ∈ M2n be defined by

X =
[

A1/2 0
B1/2 0

]
.

Then

XX∗ =
[

A A1/2B1/2

B1/2A1/2 B

]
� 0,X∗X =

[
A+B 0

0 0

]
� 0.

Meanwhile, we have

(XX∗)2 =
[ ∗ A3/2B1/2 +A1/2B3/2

B1/2A3/2 +B3/2A1/2 ∗
]

and

(X∗X)2 =
[

(A+B)2 0
0 0

]
.
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So

XX∗+(XX∗)2 =
[ ∗ A3/2B1/2 +A1/2B3/2 +A1/2B1/2

B1/2A3/2 +B3/2A1/2 +B1/2A1/2 ∗
]

� 0.

Then, by Theorem 1 of [4], we have

s j

(
A3/2B1/2 +A1/2B3/2 +A1/2B1/2

)
� 1

2
λ j

(
XX∗ +(XX∗)2

)
. (3.4)

Note that there exists unitary matrix U such that XX∗ = UX∗XU∗ . So, we have

XX∗+(XX∗)2 = U
(
X∗X +(X∗X)2

)
U∗

and hence XX∗ +(XX∗)2 is unitarily equivalent to X∗X +(X∗X)2 . By (3.4), we have

s j

(
A3/2B1/2 +A1/2B3/2 +A1/2B1/2

)
� 1

2
s j

(
(A+B)2 +A+B

)
.

By Fan’s dominance principle [5, p. 93], we have∥∥∥A3/2B1/2 +A1/2B3/2 +A1/2B1/2
∥∥∥� 1

2

∥∥∥(A+B)2 +A+B
∥∥∥ .

This completes the proof. �

Obviously, Theorem 3.1 is a refinement of the inequality (3.3).

THEOREM 3.2. Let A,B ∈ Mn . Then

‖A(A∗A+B∗B)B∗‖ � 1
2

∥∥∥(AA∗+BB∗)2
∥∥∥ .

Proof. Let X ∈ M2n be defined by

X =
[

A 0
B 0

]
.

Then

XX∗ =
[

AA∗ AB∗
BA∗ BB∗

]
,X∗X =

[
AA∗+BB∗ 0

0 0

]
.

Meanwhile, we have

(XX∗)2 =
[ ∗ A(A∗A+B∗B)B∗

B(A∗A+B∗B)A∗ ∗
]

� 0.

Then, by Theorem 1 of [4], we have

s j (A(A∗A+B∗B)B∗) � 1
2

λ j (XX∗)2 . (3.5)
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Since (XX∗)2 is unitarily equivalent to (X∗X)2 , (3.5) is the same as follows:

s j (A(A∗A+B∗B)B∗) � 1
2
s j (AA∗ +BB∗)2 .

By Fan’s dominance principle [5, p. 93], we have

‖A(A∗A+B∗B)B∗‖ � 1
2

∥∥∥(AA∗+BB∗)2
∥∥∥ .

This completes the proof. �
If A,B∈Mn are positive semidefinite, then by Theorem 3.2, we have the inequality

(3.1).

4. Hölder type inequalities for unitarily invariant norms

Throughout this section we assume that p,q > 0 and 1
/
p+1

/
q = 1. The classical

Young’s inequality for a,b � 0,

ab � ap

p
+

bq

q
,

was refined by Kittaneh and Manasrah [2] as follows:

ab+
1
s0

(
ap/2−bq/2

)2
� ap

p
+

bq

q
, (4.1)

where s0 = max{p,q} .
Hölder’s inequality for A,B ∈ Mn and any unitarily invariant norm is given by

‖AB‖ � ‖|A|p‖1/p ‖|B|q‖1/q

(see [5, p. 95]).
Let A,B,X ∈ Mn with A,B positive semidefinite. The following more general

Hölder type inequality valid for any r > 0 was proved in [6, Theorem 3]:

‖|AXB|r‖ � ‖|ApX |r‖1/p ‖|XBq|r‖1/q . (4.2)

It was shown in [7] that under these assumptions on A,B,X ,

‖AXB‖ � 1
p
‖ApX‖+

1
q
‖XBq‖ .

Kittaneh and Manasrah [2] improved this inequality to

‖AXB‖+
1
s0

(
‖ApX‖1/2 −‖XBq‖1/2

)2
� 1

p
‖ApX‖+

1
q
‖XBq‖ , (4.3)

where s0 = max{p,q} .
In view of the inequalities (4.1) and (4.2), we can generalize the inequality (4.3).
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THEOREM 4.1. Let A,B,X ∈ Mn such that A and B are positive semidefinite. If
p,q,r > 0 and 1

/
p+1

/
q = 1 , then for every unitarily invariant norm

‖|AXB|r‖+
1
s0

(
‖|ApX |r‖1/2−‖|XBq|r‖1/2

)2
� 1

p
‖|ApX |r‖+

1
q
‖|XBq|r‖ ,

where s0 = max{p,q} .

Proof. It follows from (4.1) and (4.2) that

‖|AXB|r‖ +
1
s0

(
‖|ApX |r‖1/2 −‖|XBq|r‖1/2

)2

� ‖|ApX |r‖1/p ‖|XBq|r‖1/q +
1
s0

(
‖|ApX |r‖1/2 −‖|XBq|r‖1/2

)2

� 1
p
‖|ApX |r‖+

1
q
‖|XBq|r‖ .

This completes the proof. �

COROLLARY 4.1. Let A,B ∈ Mn . If p,q > 0 and 1
/
p+1

/
q = 1 , then for every

unitarily invariant norm

‖AB‖+
1
s0

(
‖|A|p‖1/2−‖|B|q‖1/2

)2
� 1

p
‖|A|p‖+

1
q
‖|B|q‖ , (4.4)

where s0 = max{p,q} .

For all A,B,C,D ∈ Mn and every unitarily invariant norm, Hiai and Zhan [8] ob-
tained the following inequality

2|1/p−1/2| ‖C∗A+D∗B‖ � ‖|A|p + |B|p‖1/p ‖|C|q + |D|q‖1/q

They also showed that, for r � 1,

21/r−1 ‖C∗A+D∗B‖r � ‖|A|p + |B|p‖1/p
r ‖|C|q + |D|q‖1/q

r

Here, we give some similar inequalities.

THEOREM 4.2. Let A,B,C,D ∈ Mn . If p,q > 0 and 1
/
p + 1

/
q = 1 , then for

every unitarily invariant norm

‖AC+BD‖ � a
p

+
b
q
− 1

s0

(√
a−

√
b
)2

,

where

a =
∥∥∥∥(|A|2 + |B|2

)p/2
∥∥∥∥ , b =

∥∥∥(|C|q + |D|q)q/2
∥∥∥ , s0 = max{p,q} .

Proof. Let X ,Y ∈ M2n be defined by



286 LIMIN ZOU AND YOUYI JIANG

X =
[

A B
0 0

]
and Y =

[
C 0
D 0

]
.

Note that

‖AA∗‖ = ‖A∗A‖ and XY =
[

AC+BD 0
0 0

]
.

It follows from (4.4) that

‖AC+BD‖ = ‖XY‖
� 1

p
‖|X |p‖+

1
q
‖|Y |q‖− 1

s0

(
‖|X |p‖1/2−‖|Y |q‖1/2

)2

=
a
p

+
b
q
− 1

s0

(√
a−

√
b
)2

.

This completes the proof. �

REMARK 4.1. For any matrix X and r > 0 , ‖|X∗|r‖ = ‖|X |r‖ [8, p. 161]. So,
we have

‖AC∗+BD∗‖ � a
p

+
b
q
− 1

s0

(√
a−

√
b
)2

,

‖A∗C+B∗D‖ � a
p

+
b
q
− 1

s0

(√
a−

√
b
)2

,

‖A∗C∗ +B∗D∗‖ � a
p

+
b
q
− 1

s0

(√
a−

√
b
)2

.

THEOREM 4.3. Let A,B,C,D ∈ Mn , p,q > 0 and 1
/
p+1

/
q = 1 . Then for each

unitarily invariant norm

‖AC+BD‖ � a1

p
+

a2

q
− 1

s0

(
a2

3 +a2
4

)
,

where,
a1 = ‖|A|p‖+‖|B|p‖ , a2 = ‖|C|q‖+‖|D|q‖ ,

a3 = ‖|A|p‖1/2 −‖|C|q‖1/2 ,a4 = ‖|B|p‖1/2−‖|D|q‖1/2 ,s0 = max{p,q} .

Proof. Note that
‖AC+BD‖ � ‖AC‖+‖BD‖ .

Using (4.4), we have

‖AC‖+‖BD‖ � a1

p
+

a2

q
− 1

s0

(
a2

3 +a2
4

)
.

This completes the proof. �



INEQUALITIES FOR UNITARILY INVARIANT NORMS 287

Acknowledgments

The authors wish to express their heartfelt thanks to the referees for their detailed
and helpful suggestions for revising the manuscript. This research was supported by
Natural Science Foundation Project of Chongqing Science and Technology Commis-
sion (No. CSTC, 2010BB0314) and Scientific Research Project of Chongqing Three
Gorges University (No. 11QN-21).

RE F ER EN C ES

[1] R. BHATIA, C. DAVIS,More matrix forms of the arithmetic-geometric mean inequality, SIAM J. Matrix
Anal. Appl. 14(1993) 132–136.

[2] F. KITTANEH, Y. MANASRAH, Improved Young and Heinz inequalities for matrices, J. Math. Anal.
Appl. 361(2010) 262–269.

[3] R. BHATIA, F. KITTANEH, Notes on matrix arithmetic-geometric mean inequalities, Linear Algebra
Appl. 308(2000) 203–211.

[4] Y. TAO, More results on singular value inequalities of matrices, Linear Algebra Appl. 416(2006) 724–
729.

[5] R. BHATIA, Matrix Analysis, Springer-Verlag, New York, 1997.
[6] R. A. HORN, X. ZHAN, Inequalities for C-S seminorms and Lieb functions, Linear Algebra Appl.

291(2000) 103–113.
[7] H. KOSAKI, Arithmetic-geometric mean and related inequalities for operators, J. Funct. Anal.

156(1998) 429–451.
[8] F. HIAI, X. ZHAN, Inequalities involving unitarily invariant norms and operator monotone functions,

Linear Algebra Appl. 341(2002) 151–169.

(Received September 22, 2011) Limin Zou
School of Mathematics and Statistics
Chongqing Three Gorges University

Chongqing, 404100, P. R. China
e-mail: limin-zou@163.com

Youyi Jiang
School of Mathematics and Statistics
Chongqing Three Gorges University

Chongqing, 404100, P. R. China

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com


