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INEQUALITIES INVOLVING MULTIVARIATE CONVEX FUNCTIONS IV

EDWARD NEUMAN

(Communicated by Peter R. Mercer)

Abstract. This paper deals with the inequalities involving logarithmically convex functions of
several variables. The results here provide generalizations of inequalities for univariate functions
obtained by Dragomir and Dragomir and Mond.

1. Introduction

Convex functions of one or several variables play an important role in many areas
of pure and applied mathematics (see, e.g., [11]). In this paper we shall establish several
new inequalities involving logarithmically convex functions of several variables.

Let I = [a,b] be a proper subinterval of the number line. A function g : I → R is
said to be convex if g[(1−λ )x+ λy)] � (1−λ )g(x)+ λg(y) holds for all x,y ∈ I and
0 � λ � 1. An important inequality for univariate convex functions has been obtained
by Hermite and Hadamard. It reads as follows

g

(
x+ y

2

)
� 1

x− y

∫ x

y
g(t)dt � g(x)+g(y)

2
(1.1)

(see, e.g., [11, p. 137]). Many generalizations and refinements of this result have been
obtained in recent years. The interested reader is referred to the monograph [5].

In order to present one of these results let us introduce more notation. By

En =
{
u = (u0, . . . ,un) : ui � 0 (0 � i � n), u0 + . . .+un = 1

}
,

n � 1, we will denote the Euclidean simplex. In what follows we will always choose
u0 = 1− (u1 + . . .+un) . Further, let μ stand for a probability measure on En . In what
follows the weights wi (0 � i � n ) of the measure μ are the natural weights. They are
defined as follows

wi =
∫

En

ui dμ(u). (1.2)

Clearly all the weights wi are nonnegative and w0 + . . .+wn = 1.
An important subfamily of the class of convex functions, called the logarithmi-

cally convex (log-convex) functions, have been found of interest in the mathematical
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statistics, [11], theory of special functions [1], and theory of means [10], to name a few
areas. Recall that a function g : I → (0,∞) is log-convex if

g[(1−λ )x+ λy] � [g(x)]1−λ [g(y)]λ

holds for all x,y ∈ I and 0 � λ � 1. Since the log-convex functions are also convex,
they satisfy the Hermite-Hadamard inequality (1.1).

Some refinements of the inequality (1.1) have been obtained by S. Dragomir and B.
Mond in [4]. They have proven that any log-convex function g satisfies the inequalities

g

(
a+b

2

)
� exp

[
1

b−a

∫ b

a
ln[g(x)]dx

]

� 1
b−a

∫ b

a

√
g(x)g(a+b− x)dx

� 1
b−a

∫ b

a
g(x)dx � L[g(a),g(b)] � g(a)+g(b)

2
,

(1.3)

where L(p,q) = p−q
ln p−lnq ( p �= q ) and L(p, p) = p is the logarithmic mean of p > 0 and

q > 0.
Another refinement of the first inequality in (1.1) appears in [3, Theorem 1]. Let

A = (a+b)/2. If the function g is log-convex and differentiable on Int(I) , then

1
b−a

∫ b

a
g(x)dx/g(A)

� L

(
exp

[
g′(A)
g(A)

(
b−a

2

)]
,exp

[
−g′(A)

g(A)

(
b−a

2

)])
� 1.

(1.4)

This paper is the fourth in the series of papers devoted to the study of inequalities
for the multivariate convex functions (see [9], [6], and [8]). The goal of the present
paper is to obtain generalizations of the inequalities (1.3) and (1.4) for the log-convex
functions of several variables. Notation and definitions are introduced in Section 2. The
main results of this paper are presented in Section 3.

2. Notation and Definitions

Let U be an open subset of R
k (k � 1) and let x0, . . . ,xn ∈U (n � k ). Further, let

X = [x0, . . . ,xn] be a k by (n+1) matrix whose columns are the vectors x0, . . . ,xn and
let σ = conv(X) denote the convex hull of the columns of X , i.e.,

σ =

{
x ∈ R

k : x =
n

∑
i=0

uix
i, (u0, . . . ,un) ∈ En

}
.

Clearly
n
∑
i=0

uixi = Xu for u = (u0, . . . ,un)∈ En . In what follows we will always assume

that the columns of X span a proper simplex in R
k , i.e., that vol(σ) �= 0. When k = n ,

then vol(σ) = (detA)/n! , where A = [x1 − x0, . . . ,xn − x0] is the n by n matrix.
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The generalized simplex spline Mμ(·|X) can be realized as the kernel of the dis-
tribution ∫

En

f (Xu)dμ(u), f ∈C∞
0 (Rk),

i.e., Mμ(·|X) satisfies

∫
En

f (Xu)dμ(u) =
∫

σ
f (x)Mμ (x|X)dx (2.1)

(see [2]). Here x ∈ R
k , dx = dx1 · · ·dxk . When n = k , then we have

Mμ(x|X) =

⎧⎨
⎩

μ(A−1(x− x0))
n!|vol(σ)| , x ∈ σ

0, otherwise
(2.2)

(see [6, Lemma 3.1]). It is worth mentioning that for n � k , suppMμ(·|X) = σ and∫
σ

Mμ(x|X)dx = 1.

A function f : U → (0,∞) is said to be log-convex if

f [(1−λ )x+ λy] � [ f (x)]1−λ [ f (y)]λ

holds for all x,y ∈ U and 0 � λ � 1. Any log-convex function f also satisfies the
inequality

f (Xu) �
n

∏
i=0

[ f (xi)]ui , (2.3)

where u = (u0, . . . ,un)∈En . This is a consequence of application of Jensen’s inequality
for multivariate functions (see [9]) to the function ln( f ) .

In what follows, the inner product of x,y ∈ R
n+1 will be denoted by x · y , i.e.,

x · y = x0y0 + . . .+ xnyn . Also, we will use the weighted logarithmic mean Lμ(a) of
a = (a0, . . . ,an) , ai > 0, 0 � i � n . Following [7] we define

Lμ(a) =
∫

En

n

∏
i=0

aui
i dμ(u) =

∫
En

exp(u · ln(a))dμ(u), (2.4)

where lna := (lna0, . . . , lnan) . It is known ([7]) that the logarithmic mean interpolates
the inequality of the arithmetic and geometric means, i.e.,

n

∏
i=0

awi
i � Lμ(a) �

n

∑
i=0

wiai, (2.5)

where the wi ’s are defined in (1.2). If μ(u) = n! – the Lebesgue measure on En , then

Lμ(a) = n![lna0, . . . , lnan]et , (2.6)
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where [lna0, . . . , lnan]et stands for the divided difference of order n of exp(t) (see [7,
(4.21)]). If in addition the variables a0, . . . ,an are pairwise distinct, i.e., if ai �= a j for
all i �= j , then (2.6) can be written as

Lμ(a) = n!
n

∑
i=0

[
ai/

n

∏
j=0
j �=i

ln(ai/a j)
]

(2.7)

(see [7, p. 899]).

3. Refinements of the Hermite-Hadamard inequality for the multivariate
log-convex functions

For later use we recall the following result [6, Theorem 4.2]. Let g : σ → R be a
convex function, x0, . . . ,xn ∈U , and let the weights wi (0 � i � n ) be the same as in
(1.2). Then

g

( n

∑
i=0

wix
i
)

�
∫

En

g(Xu)dμ(u) �
n

∑
i=0

wig(xi) (3.1)

It is worth mentioning that if n = 1 and if x0 =: y and x1 =: x , then (3.1) becomes
(1.1).

Our first result reads as follows.

THEOREM 3.1. Let f : σ → (0,∞) (vol(σ) �= 0 ) be a log-convex function. Then

f

( n

∑
i=0

wix
i
)

� exp

(∫
σ
[ln f (x)]Mμ(x|X)dx

)

�
∫

σ
f (x)Mμ(x|X)dx

� Lμ
(
f (x0), . . . , f (xn)

)
�

n

∑
i=0

wi f (xi).

(3.2)

Proof. In order to establish the first inequality in (3.2) we utilize the first inequality
in (3.1) with g replaced by ln f and next employ (2.1) to obtain

ln f

( n

∑
i=0

wix
i
)

�
∫

En

ln f (Xu)dμ(u) =
∫

σ
[ln f (x)]Mμ (x|X)dx.

Application of Jensen’s inequality for integrals to the second member of (3.2) gives

exp

(∫
σ
[ln f (x)]Mμ (x|X)dx

)
�
∫

σ
f (x)Mμ(x|X)dx.

The third inequality in (3.2) can be established as follows. First we apply (2.1) to the
second member of (3.1), with g replaced by f , next we utilize logarithmic convexity
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of f (see (2.3)) followed by application of (2.4) to obtain∫
σ

f (x)Mμ (x|X)dx =
∫

En

f (Xu)dμ(u) �
∫

En

n

∏
i=0

[ f (xi)]ui dμ(u)

= Lμ
(
f (x0), . . . , f (xn)

)
.

The last inequality in (3.2) follows from the second one in (2.5).
The Hermite-Hadamard inequality for the multivariate convex functions is ob-

tained in [9, Corollary 3.1]. Its refinements for the multivariate log-convex functions
read as follow.

COROLLARY 3.2. Let k = n. If f : σ → (0,∞) is a logarithmically convex func-
tion, then

f

(
x0 + . . .+ xn

n+1

)
� exp

(
1

|vol(σ)|
∫

σ
ln f (x)dx

)

� 1
|vol(σ)|

∫
σ

f (x)dx

� n![ln f (x0), . . . , ln f (xn)]et � 1
n+1

n

∑
i=0

f (xi).

(3.3)

Proof. Let μ(u) = n! (u ∈ En ). Then Mμ(x|X) = 1/|vol(σ)| for x ∈ σ and
Mμ(x|X) = 0 otherwise (see (2.2)). Also, wi = 1/(n + 1) for 0 � i � n . Making
use of (3.2) and (2.6) we obtain the desired inequalities (3.3).

The inequalities (1.3), with the third member being omitted, follow from (3.3) by
letting n = 1, x0 = a and x1 = b (a �= b ).

Before we will state and prove the next result, let us introduce more notation. For
y ∈ σ let c = ∇ ln f (y) stand for the gradient of ln f . Also, let

zi = (xi − y) · c, (3.4)

0 � i � n , let z = (z0, . . . ,zn) , and let exp(z) = (exp(z0), . . . ,exp(zn)) .

We have the following.

THEOREM 3.3. Let f : σ → R be a log-convex function. If f has continuous
partial derivatives of order one on Int (σ) , then∫

σ
f (x)Mμ (x|X)dx � f (y)Lμ(exp(z)) (3.5)

holds for any y ∈ σ .

Proof. The proof presented below bears some resemblance of that of Theorem 3.1
in [8]. Logarithmic convexity of f (·) implies the following inequality

ln f (x)− ln f (y) � (x− y) ·∇ ln f (y)
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which is valid for all x,y ∈ σ . Hence

f (x) � f (y)exp[(x− y) · c].
Letting above x = Xu and next integrating both sides against the probability measure
μ we obtain ∫

En

f (Xu)dμ(u) � f (y)
∫

En

exp[(Xu− y) · c]dμ(u).

Since

(Xu− y) · c =
( n

∑
i=0

uix
i −

n

∑
i=0

uiy

)
· c =

( n

∑
i=0

ui(xi − y)
)
· c

=
n

∑
i=0

uizi = u · z,

the last inequality together with (2.4) implies∫
En

f (Xu)dμ(u) � f (y)
∫

En

exp(u · z)dμ(u) = f (y)Lμ(exp(z)).

This in conjunction with (2.1) gives the assertion.

REMARK 3.4. If y =
n
∑
i=0

wixi , then

Lμ(exp(z)) � 1, (3.6)

where the weights wi (0 � i � n ) are defined in (1.2) and exp(z) is the same as in
Theorem 3.3. Moreover, the number 1 is the largest lower bound in (3.6).

Proof. Application of the first inequality in (2.5) gives

Lμ(exp(z)) � exp(w · z) = exp

( n

∑
i=0

wi(xi − y) · c)
)

= exp

(( n

∑
i=0

wix
i − y

)
· c
)

= exp(0 · c) = 1,

where 0 stands for the origin in R
n+1 . The last statement of Remark 3.4 follows from

Theorem 3.2 of [8].

COROLLARY 3.5. Let k = n. Then under the assumptions of Theorem 3.3, the
following inequality

1
|vol(σ)|

∫
σ

f (x)dx � f (y)(n![z0, . . . ,zn]et) (3.7)

holds for all y ∈ σ .
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Proof. We let μ(u) = n! (u∈ En ) in (3.5) and next utilize (2.2) and (2.6) to obtain
the desired result.

Let us note that the inequalities (1.4) follow from (3.7), (2.6) and (3.4) by letting
n = 1, x0 = a , x1 = b (a �= b ), and y = A = (a+b)/2. Then (3.7) becomes

1
b−a

∫ b

a
f (x)dx � f (A)L(exp(z0),exp(z1)),

where z0 = (a−A)c , z1 = (b−A)c , and c = f ′(A)/ f (A) . Using (3.6) we see that the
right side of the last inequality is always greater than or equal to f (A) .
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