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Abstract. In this paper, we first introduce a new weight–Aλ3
r (λ1,λ2,Ω) -weight, and then prove

the two-weight Caccioppoli-type estimates and the two-weight weak reverse Hölder inequalities
for A -harmonic tensors, which can be regarded as generalizations of the classical results.

1. Introduction

The purpose of this paper is to establish the two-weight Caccioppoli-type estimates
and the two-weight weak reverse Hölder inequalities for A -harmonic tensors. A -
harmonic tensors are interesting and important generalizations of p -harmonic tensors.
In the meantime, p -harmonic tensors are extensions of conjugate harmonic functions
and p -harmonic functions, p >1. In recent years there have been remarkable advances
made in the field of A -harmonic tensors. Many interesting results of A -harmonic
tensors and their applications in fields such as potential theory, quasiregular mappings
and the theory of elasticity have been found; see [1∼3, 6∼12]. For many purposes,
we need to know the integrability of A -harmonic tensors and estimate the integrals for
A -harmonic tensors. The integral inequalities we will discuss in this paper can be used
to study the integrability of A -harmonic tensors and estimate the integrals for them.

Throughout this paper we always assume Ω is a connected open subset of Rn .
We use e1 ,e2 , . . . ,en to denote the standard unit basis of Rn . Let

∧l =
∧l( Rn ) be the

linear space of l -vectors, spanned by the exterior products eI = ei1 ∧ ei2 ∧ ·· · ∧ eil ,
corresponding to all ordered l -tuples I = (i1, i2, · · · , il),1 � i1 < i2 < · · · < il � n , l =
0,1, · · · ,n . The Grassman algebra

∧
= ⊕∧l is a graded algebra with respect to the

exterior products. For α = ∑α IeI ∈ ∧ and β = ∑β IeI ∈ ∧ , the inner product in
∧

is given by 〈α,β 〉 = ∑α Iβ I with summation over all l -tuples I = (i1, i2, · · · , il) and
all integers l = 0,1, · · · ,n . We define the Hodge star operator ∗ :

∧→ ∧
by the rule

∗1 = e1∧e2∧·· ·∧en and α ∧∗β = β ∧∗α = 〈α,β 〉(∗1) for all α,β ∈∧ . The norm of
α ∈ ∧ is given by the formula |α|2 = 〈α,α〉 = ∗(α ∧∗α) ∈ ∧0 = R. The Hodge star
is an isometric isomorphism on

∧
with ∗ :

∧l → ∧n−l and ∗ ∗ (−1)l(n−l) :
∧l → ∧l .
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Let 1 � p < ∞ . We denote the weighted Lp -norm of a measurable function f over E
by

‖ f‖p,E,wα =
(∫

E
| f (x)|pwαdx

)1/p

.

As we know, l -forms ω on Ω is a Schwartz distribution on Ω with values in∧l(Rn) . D′(Ω,
∧l) is used to denote the space of all differential l -forms. We write

Lp(Ω,
∧l) for the l -forms ω(x) = ∑I ωI(x)dxI = ∑ωi1i2···il (x)dxi1 ∧ dxi2 ∧ ·· · ∧ dxil

with ωI ∈ Lp(Ω,R) for all ordered l -tuples I . Thus Lp(Ω,
∧l) is a Banach space with

norm

‖ω‖p,Ω =
(∫

Ω
|ω(x)|pdx

)1/p

=
(∫

Ω
(∑ |ωI(x)|2)p/2dx

)1/p

.

Similarly, W 1,p(Ω,
∧l) are those differential l -forms on Ω whose coefficients are in

W 1,p(Ω,R) . The notations W 1,p
loc (Ω,R) and W 1,p

loc (Ω,
∧l) are self-explanatory. We de-

note the exterior derivative by d : D′(Ω,∧l) → D′(Ω,∧l+1) for l = 0,1, · · · ,n . Its for-
mal adjoint operator d∗ : D′(Ω,

∧l+1) → D′(Ω,
∧l) is given by d∗ = (−1)nl+1 ∗ d∗ on

D′(Ω,
∧l+1) , l = 0,1, · · · ,n .

There has been remarkable work in the study of the A -harmonic equation

d∗A (x,dω) = 0, (1.1)

where A : Ω×∧l(Rn) → ∧l(Rn) satisfies the following conditions:

|A (x,ξ )| � a|ξ |p−1 and 〈A (x,ξ ),ξ 〉 � |ξ |p

for almost every x ∈ Ω and ξ ∈∧l(Rn) . Here a > 0 is a constant and 1 < p < ∞ is a
fixed exponent associated with (1.1). A solution to (1.1) is an element of the Sobolev
space W 1,p

loc (Ω,
∧l−1) such that ∫

Ω
〈A (x,dω),dϕ〉 = 0

for all ϕ ∈W 1,p
loc (Ω,

∧l−1) with compact support.

DEFINITION 1.1. We call u an A -harmonic tensor in Ω if u satisfies the A -
harmonic equation (1.1) in Ω .

A differential l -form u ∈ D′(Ω,
∧l) is called a closed form if du = 0 in Ω . Simi-

larly, a differential (l +1)-form v ∈ D′(Ω,
∧l+1) is called a coclosed form if d∗v = 0.

A differential form u is called a p -harmonic tensor if

d∗(|du|p−2du) = 0 and d∗u = 0,

where 1 < p < ∞ . The equation

A (x,du) = d∗v (1.2)

is called the conjugate A -harmonic equation. For example, du = d∗v is an analogue
of a Cauchy-Riemann system in Rn . Clearly, the A -harmonic equation is not affected
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by adding a closed form to u and coclosed form to v . Therefore, any type of estimates
between u and v must be modulo such forms. Suppose that u is a solution to (1.1) in
Ω . Then, at least locally in a ball B , there exists a form v ∈W 1,q(B,

∧l+1), 1
p + 1

q = 1,
such that (1.2) holds.

DEFINITION 1.2. When u and v satisfy (1.2) in Ω , and A −1 exists in Ω , we
call u and v conjugate A -harmonic tensors in Ω .

DEFINITION 1.3. We call u a p -harmonic function if u satisfies the p -harmonic
equation

div(∇u|∇u|p−2) = 0

with p > 1. Its conjugate in the plane is a q -harmonic function v , 1
p + 1

q = 1, which
satisfies

∇u|∇u|p−2 =
(

∂v
∂y

,−∂v
∂x

)
.

Note that if p = q = 2, we get the usual conjugate harmonic functions.
We write R = R1 . Balls are denoted by B and σB is the ball with the same center

as B and with diam(σB) = σdiam(B) . The n -dimensional Lebesgue measure of a set
E ⊆ Rn is denoted by |E| . We call w a weight if w ∈ L1

loc(R
n) and w > 0 a.e.. Also

in general dμ = wdx where w is a weight. We can find the following result in [7]:
Let Q ⊂ Rn be a cube or a ball. To each y ∈ Q there corresponds a linear operator
Ky : C∞(Q,

∧l) →C∞(Q,
∧l−1) defined by

(Kyω)(x;ξ1,ξ2, · · · ,ξl−1) =
∫ 1

0
tl−1ω(tx+ y− ty;x− y,ξ1, · · · ,ξl−1)dt

and the decomposition

ω = d(Ky)+Ky(dω).

We define another linear operator TQ :C∞(Q,
∧l)→C∞(Q,

∧l−1) by averaging Ky

over all points y in Q

TQω =
∫

Q
ϕ(y)Kyωdy,

where ϕ ∈ C∞
0 (Q) is normalized by

∫
Q ϕ(y)dy = 1. We define the l -form ωQ ∈

D′(Q,
∧l) by

ωQ = |Q|−1
∫

Q
ω(y)dy, if l = 0, and ωQ = d(TQω), if l = 1,2, · · · ,n,

for all ω ∈ Lp(Q,
∧l),1 � p < ∞.
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2. Local Aλ3
r (λ1,λ2,Ω)-weighted Caccioppoli-type estimates

DEFINITION 2.1. We say the weight (w1(x),w2(x)) satisfies the Aλ3
r (λ1,λ2,Ω)

condition for some r > 1 and λ1,λ2,λ3 > 0, write (w1(x),w2(x)) ∈ Aλ3
r (λ1,λ2,Ω) , if

w1(x) > 0,w2(x) > 0, a.e., and

sup
B

(
1
|B|
∫

B
wλ1

1 dx

)(
1
|B|
∫

B

(
1
w2

)λ2/(r−1)

dx

)λ3(r−1)

< ∞

for any ball B ⊂ Ω .
If we choose w1 = w2 = w and λ1 = λ2 = λ3 = 1, we will get the Ar -weight, see

[4] and [5] for the basic properties of Ar -weights.
Choosing w1 = w2 = w , λ1 = λ and λ2 = λ3 = 1, we will get the Ar(λ ,Ω)-

weights which are introduced in [2].
Choosing w1 = w2 = w , λ1 = λ2 = 1 and λ3 = λ , we will obtain the Aλ

r (Ω)-
weights which are introduced in [13].

In this paper we will need the following generalized Hölder’s inequality.

LEMMA 2.1. Let 0 < α < ∞,0 < β < ∞ and s−1 = α−1 + β−1 . If f and g are
measurable functions on Rn , then

‖ f g‖s,Ω � ‖ f‖α ,Ω · ‖g‖β ,Ω

for any Ω ⊂ Rn .

In [9], C. A. Nolder obtains the following local Caccioppoli-type estimate.

THEOREM A. Let u be an A -harmonic tensor in Ω and let σ > 1 . Then there
exists a constant C, independent of u and du, such that

‖du‖s,B � Cdiam(B)−1‖u− c‖s,σB

for all balls or cubes B with σB ⊂ Ω and all closed forms c. Here 1 < s < ∞ .

The following weak reverse Hölder inequality appears in [9].

THEOREM B. Let u be an A -harmonic tensor in Ω , σ > 1 and 0 < s,t < ∞ .
Then there exists a constant C, independent of u , such that

‖u‖s,B � C|B|(t−s)/st‖u‖t,σB

for all balls or cubes B with σB ⊂ Ω.

We now generalize Theorem A into the following local weighted Caccioppoli-type
estimate for A -harmonic tensors.
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THEOREM 2.1. Let u ∈ D′(Ω,
∧l), l = 0,1, · · · ,n, be an A -harmonic tensor in

a domain Ω ⊂ Rn and ρ > 1 . Assume that 1 < s < ∞ is a fixed exponent associ-

ated with the A -harmonic equation and (w1,w2) ∈ Aλ3
r (λ1,λ2,Ω) for some r > 1 and

λ1,λ2,λ3 > 0 . Then there exists a constant C, independent of u and du, such that

‖du‖
s,B,w

αλ1
1

� Cdiam(B)−1‖u− c‖
s,ρB,w

αλ2λ3
2

(2.1)

for all balls B with ρB⊂Ω , all closed forms c and any real number α with 0 < α < 1 .

Note that (2.1) can be written as

(∫
B
|du|swαλ1

1 dx

)1/s

� Cdiam(B)−1
(∫

ρB
|u− c|swαλ2λ3

2 dx

)1/s

.

Proof. Choose k = s/(1−α) , then s < k and 1/s = 1/k+(k−s)/sk , by Hölder’s
inequality and Theorem A we have

‖du‖
s,B,w

αλ1
1

=
(∫

B
|du|swαλ1

1 dx

)1/s

=
(∫

B
(|du|wαλ1/s

1 )sdx

)1/s

�
(∫

B
|du|kdx

)1/k

·
(∫

B
(wαλ1/s

1 )sk/(k−s)dx

)(k−s)/sk

= ‖du‖k,B ·
(∫

B
wλ1

1 dx

)(k−s)/sk

� C1diam(B)−1‖u− c‖k,σB ·
(∫

B
wλ1

1 dx

)(k−s)/sk

(2.2)

for all balls B with σB⊂Ω , all closed forms c and any real number α with 0 < α < 1.
Since c is a closed form and u is an A -harmonic tensor, then u− c is still an A -
harmonic tensor. Taking m = s/(1+ αλ3(r− 1)) , we find m < s . Apply Theorem B
yields

‖u− c‖k,σB � C2|B|(m−k)/mk · ‖u− c‖m,σ2B

= C2|B|(m−k)/mk · ‖u− c‖m,ρB
(2.3)

where ρ = σ2 . Substituting (2.3) into (2.2), we have

‖du‖
s,B,w

αλ1
1

� C3diam(B)−1|B|(m−k)/mk · ‖u− c‖m,ρB ·
(∫

B
wλ1

1 dx

)(k−s)/sk

. (2.4)
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Since 1/m = 1/s+(s−m)/sm , by Hölder’s inequality again, we obtain

‖u− c‖m,ρB =
(∫

ρB
|u− c|mdx

)1/m

=
(∫

ρB
(|u− c|wαλ2λ3/s

2 ·w−αλ2λ3/s
2 )mdx

)1/m

�
(∫

ρB
|u− c|swαλ2λ3

2 dx

)1/s

·
⎛
⎝∫

ρB

((
1
w2

)αλ2λ3/s
)sm/(s−m)

dx

⎞
⎠

(s−m)/sm

= ‖u− c‖
s,ρB,w

αλ2λ3
2

·
(∫

ρB

(
1
w2

)λ2/(r−1)

dx

)(s−m)/sm

(2.5)

for all balls B with ρB ⊂ Ω and all closed forms c .
Combining (2.4) and (2.5), we obtain

‖du‖
s,B,w

αλ1
1

� C3diam(B)−1|B|(m−k)/mk · ‖u− c‖
s,ρB,w

αλ2λ3
2

·
(∫

B wλ1
1 dx

)(k−s)/sk ·
(∫

ρB

(
1
w2

)λ2/(r−1)
dx

)(s−m)/sm

.
(2.6)

Since (w1,w2) ∈ Aλ3
r (λ1,λ2,Ω) , we then have

(∫
B
wλ1

1 dx

)(k−s)/sk

·
(∫

ρB

(
1
w2

)λ2/(r−1)

dx

)(s−m)/sm

�
(∫

ρB
wλ1

1 dx

)(k−s)/sk

·
(∫

ρB

(
1
w2

)λ2/(r−1)

dx

)(s−m)/sm

=

⎛
⎝(∫

ρB
wλ1

1 dx

)
·
(∫

ρB

(
1
w2

)λ2/(r−1)

dx

)k(s−m)/m(k−s)
⎞
⎠

(k−s)/sk

=
(
|ρB|1+k(s−m)/m(k−s)

(
1

|ρB|
∫

ρB
wλ1

1 dx

)

·
(

1
|ρB|

∫
ρB

(
1
w2

)λ2/(r−1)

dx

)λ3(r−1)
⎞
⎠

(k−s)/sk

� C4|B|(k−m)/mk.

(2.7)

Substituting (2.7) into (2.6), we find that

‖du‖
s,B,w

αλ1
1

� Cdiam(B)−1‖u− c‖
s,ρB,w

αλ2λ3
2

for all balls B with ρB⊂Ω , all closed forms c and any real number α with 0 < α < 1.
This ends the proof of Theorem 2.1. �
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Note that the parameters α,λ1,λ2 and λ3 in Theorem 2.1 are any real numbers
with 0 < α < 1 and λ1,λ2,λ3 > 0. Therefore, we will have different versions of
the weighted Caccioppoli-type estimates by choosing α,λ1,λ2 and λ3 to be different
values. The following special cases of Theorem 2.1 will be useful in case one meets
special weights.

If we choose α = 1/r in Theorem 2.1, we have the following result.

COROLLARY 2.1. Let u ∈ D′(Ω,
∧l), l = 0,1, · · · ,n, be an A -harmonic tensor

in a domain Ω ⊂ Rn and ρ > 1 . Assume that 1 < s < ∞ is a fixed exponent associ-

ated with the A -harmonic equation and (w1,w2) ∈ Aλ3
r (λ1,λ2,Ω) for some r > 1 and

λ1,λ2,λ3 > 0 . Then there exists a constant C, independent of u and du, such that

‖du‖
s,B,w

λ1/r
1

� Cdiam(B)−1‖u− c‖
s,ρB,w

λ2λ3/r
2

for all balls B with ρB ⊂ Ω and all closed forms c.

Choosing α = 1/s in theorem 2.4, we have the following result.

COROLLARY 2.2. Let u ∈ D′(Ω,
∧l), l = 0,1, · · · ,n, be an A -harmonic tensor

in a domain Ω ⊂ Rn and ρ > 1 . Assume that 1 < s < ∞ is a fixed exponent associ-

ated with the A -harmonic equation and (w1,w2) ∈ Aλ3
r (λ1,λ2,Ω) for some r > 1 and

λ1,λ2,λ3 > 0 . Then there exists a constant C, independent of u and du, such that

‖du‖
s,B,w

λ1/s
1

� Cdiam(B)−1‖u− c‖
s,ρB,w

λ2λ3/s
2

for all balls B with ρB ⊂ Ω and all closed forms c.

If we choose λ1 = 1 in Theorem 2.1, we have the following result.

COROLLARY 2.3. Let u∈D′(Ω,
∧l), l = 0,1, · · · ,n, be an A -harmonic tensor in

a domain Ω⊂Rn and ρ > 1 . Assume that 1 < s < ∞ is a fixed exponent associated with

the A -harmonic equation and (w1,w2) ∈ Aλ3
r (λ2,Ω) for some r > 1 and λ2,λ3 > 0 .

Then there exists a constant C, independent of u and du, such that

‖du‖s,B,wα
1

� Cdiam(B)−1‖u− c‖
s,ρB,w

αλ2λ3
2

for all balls B with ρB⊂Ω , all closed forms c and any real number α with 0 < α < 1 .

If we choose λ2 = 1 in Theorem 2.1, we have the following result.

COROLLARY 2.4. Let u∈D′(Ω,
∧l), l = 0,1, · · · ,n, be an A -harmonic tensor in

a domain Ω⊂Rn and ρ > 1 . Assume that 1 < s < ∞ is a fixed exponent associated with

the A -harmonic equation and (w1,w2) ∈ Aλ3
r (λ1,Ω) for some r > 1 and λ1,λ3 > 0 .

Then there exists a constant C, independent of u and du, such that

‖du‖
s,B,w

αλ1
1

� Cdiam(B)−1‖u− c‖
s,ρB,w

αλ3
2

for all balls B with ρB⊂Ω , all closed forms c and any real number α with 0 < α < 1 .

Choosing λ3 = 1 in Theorem 2.1, we have the following result.
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COROLLARY 2.5. Let u∈D′(Ω,
∧l), l = 0,1, · · · ,n, be an A -harmonic tensor in

a domain Ω⊂Rn and ρ > 1 . Assume that 1 < s < ∞ is a fixed exponent associated with
the A -harmonic equation and (w1,w2)∈Ar(λ1,λ2,Ω) for some r > 1 and λ1,λ2 > 0 .
Then there exists a constant C, independent of u and du, such that

‖du‖
s,B,w

αλ1
1

� Cdiam(B)−1‖u− c‖
s,ρB,w

αλ2
2

for all balls B with ρB⊂Ω , all closed forms c and any real number α with 0 < α < 1 .

3. Aλ3
r (λ1,λ2,Ω)-weighted weak reverse Hölder inequality

We now generalize Theorem B into the following weighted form.

THEOREM 3.1. Let u ∈ D′(Ω,
∧l), l = 0,1, · · · ,n, be an A -harmonic tensor in a

domain Ω ⊂ Rn and σ > 1 . Assume that 1 < s,t < ∞ and (w1,w2) ∈ Aλ3
r (λ1,λ2,Ω)

for some r > 1 and λ1,λ2,λ3 > 0 . Then there exists a constant C , independent of u ,
such that (∫

B
|u|swαλ1

1 dx

)1/s

� C|B|(t−s)/st
(∫

σB
|u|twαtλ2λ3/s

2 dx

)1/t

(3.1)

for all balls B with ρB ⊂ Ω and any real number α with 0 < α < 1 .

Note that (3.1) can be written as the following symmetric version

(
1
|B|
∫

B
|u|swαλ1

1 dx

)1/s

� C

(
1
|B|
∫

σB
|u|twαtλ2λ3/s

2 dx

)1/t

.

The proof of Theorem 3.1 is similar to that of Theorem 2.1. For completion of the
paper, we prove Theorem 3.1 as follows.

Proof. Choose k = s/(1−α) , then s < k and 1/s = 1/k +(k− s)/sk , applying
the Hölder’s inequality yields

(∫
B
|u|swαλ1

1 dx

)1/s

=
(∫

B
(|u|wαλ1/s

1 )sdx

)1/s

� ‖u‖k,B

(∫
B
(wαλ1/s

1 )sk/(k−s)dx

)(k−s)/sk

= ‖u‖k,B

(∫
B
wλ1

1 dx

)(k−s)/sk

(3.2)

for all balls B with σB ⊂ Ω . Next choose m = st/(s+ αtλ3(r− 1)) then m < t . By
Theorem B, we obtain

‖u‖k,B � C1|B|(m−k)/mk‖u‖m,σB. (3.3)
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Since 1/m = 1/t +(t−m)/mt , by the Hölder inequality again, we obtain

‖u‖m,σB =
(∫

σB
(|u|wαλ2λ3/s

2 ·w−αλ2λ3/s
2 )mdx

)1/m

�
(∫

σB
|u|twαtλ2λ3/s

2 dx

)1/t
⎛
⎝∫

σB

((
1
w2

)αλ2λ3/s
)mt/(t−m)

dx

⎞
⎠

(t−m)/mt

=
(∫

σB
|u|twαtλ2λ3/s

2 dx

)1/t
(∫

σB

(
1
w2

)λ2/(r−1)

dx

)(t−m)/mt

.

(3.4)
Combining (3.2), (3.3) and (3.4), we arrive at the following estimate(∫

B
|u|swαλ1

1 dx

)1/s

� C1|B|(m−k)/mk
(∫

σB
|u|twαtλ2λ3/s

2 dx

)1/t(∫
B
wλ1

1 dx

)(k−s)/sk

·
(∫

σB

(
1
w2

)λ2/(r−1)

dx

)(t−m)/mt

.

(3.5)
Since (w1,w2) ∈ Aλ3

r (λ1,λ2,Ω) , we find that

(∫
B
wλ1

1 dx

)(k−s)/sk
(∫

σB

(
1
w2

)λ2/(r−1)

dx

)(t−m)/mt

�
(∫

σB
wλ1

1 dx

)(k−s)/sk
(∫

σB

(
1
w2

)λ2/(r−1)

dx

)(t−m)/mt

=
(
|σB|1+sk(t−m)/mt(k−s)

(
1

|σB|
∫

σB
wλ1

1 dx

)

·
(

1
|σB|

∫
σB

(
1
w2

)λ2/(r−1)

dx

)λ3(r−1)
⎞
⎠

(k−s)/sk

�C2|B| 1
s − 1

k + 1
m− 1

t .

(3.6)

Finally, substituting (3.6) into (3.5), we obtain

(∫
B
|u|swαλ1

1 dx

)1/s

� C|B|(t−s)/st
(∫

σB
|u|twαtλ2λ3/s

2 dx

)1/t

. �

Similar to Section 2, we also have some corollaries of Theorem 3.1, which will
have special use in case one meets special weights. If we choose α = 1/r in Theorem
3.1, we then have the following result.

COROLLARY 3.1. Let u∈D′(Ω,
∧l), l = 0,1, · · · ,n, be an A -harmonic tensor in

a domain Ω ⊂ Rn and σ > 1 . Assume that 1 < s,t < ∞ and (w1,w2) ∈ Aλ3
r (λ1,λ2,Ω)
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for some r > 1 and λ1,λ2,λ3 > 0 . Then there exists a constant C, independent of u ,
such that (∫

B
|u|swλ1/r

1 dx

)1/s

� C|B|(t−s)/st
(∫

σB
|u|twtλ2λ3/rs

2 dx

)1/t

for all balls B with ρB ⊂ Ω .

If we choose α = 1/s in Theorem 3.1, we then have the following result.

COROLLARY 3.2. Let u∈D′(Ω,
∧l), l = 0,1, · · · ,n, be an A -harmonic tensor in

a domain Ω ⊂ Rn and σ > 1 . Assume that 1 < s,t < ∞ and (w1,w2) ∈ Aλ3
r (λ1,λ2,Ω)

for some r > 1 and λ1,λ2,λ3 > 0 . Then there exists a constant C , independent of u ,
such that (∫

B
|u|swλ1/s

1 dx

)1/s

� C|B|(t−s)/st
(∫

σB
|u|twtλ2λ3/s2

2 dx

)1/t

for all balls B with ρB ⊂ Ω .

If we choose α = 1/t in Theorem 3.1, we then have the following version.

COROLLARY 3.3. Let u∈D′(Ω,
∧l), l = 0,1, · · · ,n, be an A -harmonic tensor in

a domain Ω ⊂ Rn and σ > 1 . Assume that 1 < s,t < ∞ and (w1,w2) ∈ Aλ3
r (λ1,λ2,Ω)

for some r > 1 and λ1,λ2,λ3 > 0 . Then there exists a constant C , independent of u ,
such that (∫

B
|u|swλ1/t

1 dx

)1/s

� C|B|(t−s)/st
(∫

σB
|u|twλ2λ3/s

2 dx

)1/t

for all balls B with ρB ⊂ Ω .

If we choose λ1 = 1 in Theorem 3.1, we then have the following result.

COROLLARY 3.4. Let u ∈ D′(Ω,
∧l), l = 0,1, · · · ,n, be an A -harmonic tensor

in a domain Ω ⊂ Rn and σ > 1 . Assume that 1 < s,t < ∞ and (w1,w2) ∈ Aλ3
r (λ2,Ω)

for some r > 1 and λ2,λ3 > 0 . Then there exists a constant C , independent of u , such
that (∫

B
|u|swα

1 dx

)1/s

� C|B|(t−s)/st
(∫

σB
|u|twαtλ2λ3/s

2 dx

)1/t

for all balls B with ρB ⊂ Ω and any real number α with 0 < α < 1 .

If we choose λ2 = 1 in Theorem 3.1, we have the following result.

COROLLARY 3.5. Let u ∈ D′(Ω,
∧l), l = 0,1, · · · ,n, be an A -harmonic tensor

in a domain Ω ⊂ Rn and σ > 1 . Assume that 1 < s,t < ∞ and (w1,w2) ∈ Aλ3
r (λ1,Ω)

for some r > 1 and λ1,λ3 > 0 . Then there exists a constant C , independent of u , such
that (∫

B
|u|swαλ1

1 dx

)1/s

� C|B|(t−s)/st
(∫

σB
|u|twαtλ3/s

2 dx

)1/t

for all balls B with ρB ⊂ Ω and any real number α with 0 < α < 1 .

If we choose λ3 = 1 in Theorem 3.1, we have the following result.
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COROLLARY 3.6. Let u ∈ D′(Ω,
∧l) , l = 0,1, · · · ,n, be an A -harmonic tensor

in a domain Ω ⊂ Rn and σ > 1 . Assume that 1 < s,t < ∞ and (w1,w2)∈ Ar(λ1,λ2,Ω)
for some r > 1, and λ1,λ2 > 0 . Then there exists a constant C , independent of u , such
that (∫

B
|u|swαλ1

1 dx

)1/s

� C|B|(t−s)/st
(∫

σB
|u|twαtλ2/s

2 dx

)1/t

for all balls B with ρB ⊂ Ω and any real number α with 0 < α < 1 .

4. Global weighted inequalities

We need the following properties of the Whitney covers appearing in [6] to prove
the global results.

LEMMA 4.1. Each Ω has a modified Whitney cover of cubes ν = Qi such that

⋃
i

Qi = Ω,

∑
Q∈ ν

χ√5/4Q � NχΩ

for all x∈Rn and some N > 1 , and if Qi
⋂

Qj �= φ , then there exists a cube R (this cube
does not need to be a member of ν ) in Qi

⋂
Qj such that Qi

⋃
Qj ⊂ NR. Moreover,

if Ω is a δ -John, then there is a distinguished cube Q0 ∈ ν which can be connected
with every cube Q ∈ ν by a chain of cubes Q0,Q1, · · · ,Qk = Q from ν and such that
Q ⊂ σQi , i = 0,1,2, · · · ,k, for some σ = σ(n,δ ) .

We prove the following Aλ3
r (λ1,λ2,Ω)-weighted Caccioppoli-type estimate and

weak reverse Hölder inequality for A -harmonic tensors in a bounded domain Ω .

THEOREM 4.1. Let u ∈ D′(Ω,
∧l), l = 0,1, · · · ,n, be an A -harmonic tensor in

a domain Ω ⊂ Rn which has a finite open cover ν = {B1, · · · ,Bm} , where Bi is an
open ball, i = 1, · · · ,m. Assume that ρ > 1 and 1 < s < ∞ is a fixed exponent associ-

ated with the A -harmonic equation and (w1,w2) ∈ Aλ3
r (λ1,λ2,Ω) for some r > 1 and

λ1,λ2,λ3 > 0 . Then there exists a constant C , independent of u and du, such that

‖du‖
s,Ω,w

αλ1
1

� Cdiam(Ω)−1‖u− c‖
s,Ω,w

αλ2λ3
2

for all closed forms c and any real number α with 0 < α < 1 .

Proof. Let ν = {B1, · · · ,Bm} be an open cover of the bounded domain Ω ⊂ Rn

and di = diam(Bi) > 0, i = 1, · · · ,m . Assume that d = min{d1, · · · ,dm} . Since Ω is
bounded, then there exists a constant C1 such that 1

d � C1
diam(Ω) . By Theorem 2.4 and
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Lemma 4.1, we obtain

‖du‖
s,Ω,w

αλ1
1

=
(∫

Ω
|du|swαλ1

1 dx

)1/s

� ∑
Q∈ ν

(∫
Q
|du|swαλ1

1 dx

)1/s

� ∑
Q∈ ν

C2diam(Q)−1
(∫

ρQ
|u− c|swαλ2λ3

2 dx

)1/s

� C3diam(Ω)−1 ∑
Q∈ ν

(∫
ρQ

|u− c|swαλ2λ3
2 dx

)1/s

� C4diam(Ω)−1

(∫
Ω
|u− c|swαλ2λ3

2 dx

)1/s

.

The proof of Theorem 4.1 has been completed. �

We now generalize Theorem 3.1 into the following global weighted form.

THEOREM 4.2. Let u ∈ D′(Ω,
∧l), l = 0,1, · · · ,n, be an A -harmonic tensor in a

domain Ω ⊂ Rn and σ > 1 . Assume that 1 < s � t < ∞ and (w1,w2) ∈ Aλ3
r (λ1,λ2,Ω)

for some r > 1 , and λ1,λ2,λ3 > 0 . Then there exists a constant C , independent of u ,
such that (∫

Ω
|u|swαλ1

1 dx

)1/s

� C|Ω|(t−s)/st
(∫

Ω
|u|twαtλ2λ3/s

2 dx

)1/t

for any real number α with 0 < α < 1 .

Proof. By Theorem 3.1 and Lemma 4.1, we obtain

(∫
Ω
|u|swαλ1

1 dx

)1/s

� ∑
Q∈ν

(∫
Q
|u|swαλ1

1 dx

)1/s

� ∑
Q∈ν

C1|Q|(t−s)/st
(∫

σQ
|u|twαtλ2λ3/s

2 dx

)1/t

� C1|Ω|(t−s)/st ∑
Q∈ν

(∫
σQ

|u|twαtλ2λ3/s
2 dx

)1/t

� C2|Ω|(t−s)/st
(∫

Ω
|u|twαtλ2λ3/s

2 dx

)1/t

.

This ends the proof of Theorem 4.2. �
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