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ON A BETA FUNCTION INEQUALITY

PÉTER IVÁDY

(Communicated by N. Elezović)

Abstract. In this paper we present a beta function inequality on (0, 1] × (0, 1] , which improves
an inequality of H. Alzer. Moreover several new inequalities for the gamma and psi functions on
(0, 1] are provided. Some elementary inequalities of two real variables are proved.

1. Introduction

For x > 0 the classical gamma function Γ and the Ψ function or digamma function
are defined as

Γ(x) =
∞∫

0

tx−1e−tdt and Ψ(x) =
Γ′ (x)
Γ(x)

.

The derivatives Ψ′ , Ψ′′ , Ψ′′′, . . . are known as polygamma functions.
Closely related to the gamma function is the beta function which is the real func-

tion of two variables defined by

B(x,y) =
1∫

0

tx−1 (1− t)y−1 dt, x > 0,y > 0.

A well known equation connecting the beta and the gamma functions is

B(x,y) =
Γ(x)Γ(y)
Γ(x+ y)

. (1.1)

For a proof of (1.1) see, for example, [9] where a good reference for these functions
is also given. While in the recent past, several articles have appeared providing various
inequalities for gamma and polygamma functions see [2, 3, 6, 7, 11, 12, 15] and the
references therein, only few inequalities concerning the beta function can be found in
the literature [4, 5, 10, 11, 15]. Among the various kinds of inequalities concerning

Mathematics subject classification (2010): 26D07, 33B15.
Keywords and phrases: beta function, gamma function, psi function, inequalities, convex functions,

Jensen’s inequality.

c© � � , Zagreb
Paper JMI-06-33

333

http://dx.doi.org/10.7153/jmi-06-33


334 P. IVÁDY

the beta function we will select a special one which will be considered in detail on
(0,1]× (0,1] .

S. Dragomir at al. [11, p. 114, Theorem 3] established the relation

B(x,y) � 1
xy

for 0 < x,y � 1.

Recently H. Alzer [5, p. 738, Theorem 3.1] obtained the following improved results for
all x,y ∈ (0,1]

1
xy

(
1−α

1− x
1+ x

1− y
1+ y

)
� B(x,y) � 1

xy

(
1−β

1− x
1+ x

1− y
1+ y

)
, (1.2)

with the best possible constants α = 2
/
3π2−4 = 2.57973 . . . and β = 1 respectively.

The aim of this paper is to show that the right side of (1.2) can be strengthened. In
addition, a different lower bound forB(x,y) for all x,y ∈ (0,1] is also given. More
precisely, we show that the following sequence of inequalities holds for all real numbers
x,y ∈ (0,1]

Γ(x)Γ(y)
Γ2

( x+y
2

) � 1
xy

x2 + y2

2
� 1

xy
(x+ y− xy) (1.3)

and
1
xy

(x+ y− xy) � B(x,y) � 1
xy

x+ y
1+ xy

� 1
xy

(
1− 1− x

1+ x
1− y
1+ y

)
. (1.4)

Inequalities for the ratio

T (x,y) =
Γ(x)Γ(y)
Γ2

( x+y
2

) , (1.5)

are sometimes called “Gurland type” [13].
We recall Jensen’s inequality for a real valued convex function f as follows [15,

p. 15] :
f (λx+(1−λ)y) � λ f (x)+ (1−λ) f (y) , λ ∈ [0,1] (1.6)

for x,y ∈ (a,b) . For a concave function the opposite inequality holds. Furthermore, a
positive function f on a given (a,b) interval is logarithmically convex (or log-convex)
if x �→ log f (x) is convex on (a,b). Since x �→ logΓ(x+1) is strictly log-convex on
(0,∞) , we find for all x,y > 0(x �= y) :

1 <
(x+ y)2

4xy
<

Γ(x)Γ(y)
Γ2

( x+y
2

) . (1.7)

In view of (1.7) we could consider (1.3) as one of its counterparts for x,y ∈ (0,1] . It
seems curious that the second inequality of (1.4) is a simple consequence of Jensen’s
inequality for convex functions, while it is surprising that the first inequality in (1.4)
needs the most preparations.



ON A BETA FUNCTION INEQUALITY 335

2. Lemmas

In order to establish the main theorem of this paper we need some lemmas, which
we present in this section. The lemmas deal with some useful formulas and inequalities
concerning the Ψ function and its derivative Ψ′ . Furthermore, we present a simple
inequality involving the Γ function. In the first lemma we collect some useful formulas
which can be found in [1, Chapter 6].

LEMMA 2.1. For all x we have

Γ(x+1) = xΓ(x) . (2.1)

Further we have

Ψ(x) = −γ − 1
x

+ x
∞

∑
k=1

1
k (x+ k)

, (x �= 0,−1,−2, ...)

Ψ(m) (x) = (−1)m+1 m!
∞

∑
k=0

1

(x+ k)m+1 , (2.2)

(x �= 0,−1,−2, ... m = 1,2, ...)

Ψ(n) (x+1) = Ψ(n) (x)+ (−1)n n!
xn+1 , n � 0 (2.3)

Ψ
(
1
/
2
)

= −γ −2log2, Ψ(1) = −γ, Ψ(2) = 1− γ (2.4)

Ψ′ (1) =
π2

6
, Ψ′ (2) =

π2

6
−1 (2.5)

where γ = lim
n→∞

(
1+ 1

2 + 1
3 + ...+ 1

n − logn
)
= 0.57721 . . . is the Euler-Mascheroni con-

stant.

The next result is due to H. Alzer [7, p. 3643, Lemma 6].

LEMMA 2.2. Let

Φt (x) =
Ψ′ (x)−Ψ′ (x+ t)
[Ψ(x+ t)−Ψ(x)]2

.

If 0 < t < 1, then Φt is strictly increasing on (0,∞) . And, if t > 1, then Φt is strictly
decreasing on (0,∞) .

LEMMA 2.3. For all x,y ∈ (0,1] we have

−x [Ψ(x+ y)−Ψ(x)]2 + x
[
Ψ′ (x+ y)−Ψ′ (x)

]
+2 [Ψ(x+ y)−Ψ(x)] � 0. (2.6)
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Proof. We write (2.6) in the form

1+
Ψ′ (x)−Ψ′ (x+ y)

[Ψ(x+ y)−Ψ(x)]2
� 2

x [Ψ(x+ y)−Ψ(x)]
. (2.7)

According to Lemma 2.2 and using (2.3) we can write

Ψ′ (x)−Ψ′ (x+ y)
[Ψ(x+ y)−Ψ(x)]2

� Ψ′ (x)−Ψ′ (x+1)
[Ψ(x+1)−Ψ(x)]2

= 1.

In order to prove (2.7) it is sufficient to show that

Ψ(x+ y)−Ψ(x) <
1
x
,

holds, which is clearly the case in view of (2.3) and since Ψ is monoton increas-
ing. �

LEMMA 2.4. For 0 < t � 1, we have

2t− t2

t2
� Γ2 (t)

Γ(2t)
. (2.8)

Proof. Let us define the auxiliary function h by

h(t) :=
2t− t2

t2
− Γ2 (t)

Γ(2t)
.

We show that h has a maximum at t = 1. Since h(1) = 0, we conclude h(t) � 0, which
is equivalent to (2.8). Building the first two derivatives we obtain

h′ (t) = −2
Γ(2t)+ t2Γ2 (t)(Ψ(t)−Ψ(2t))

t2Γ(2t)
,

and

h′′ (t) =
4Γ(2t)−2t3Γ2 (t)h1 (t)

t3Γ(2t)
,

where
h1 (t) = 2Ψ2 (t)−4Ψ(t)Ψ(2t)+2Ψ2 (2t)+ Ψ′ (t)−2Ψ′ (2t) .

Using (2.4) in conjunction with (2.5) we obtain h′ (1) = 0 and h′′ (1) = π2
/
3− 4 =

−0.7101 . . . < 0. This means that h(t) has a local maximum at t = 1 and the lemma
follows. A deeper analysis shows that h(t) is strictly increasing on (0,1] and strictly
decreasing on (1,2] , but we did not really have to use this fact. �

LEMMA 2.5. For all x,y ∈ (0,1] ,we have

Ψ′ (x+1)−Ψ′ (x+ y+1) � y2

(1+ xy)2 .
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Proof. Using (2.2) we obtain

Ψ′ (x+1)−Ψ′ (x+ y+1) =
y2 +2xy+2x+2y+1

x2 (x+ y+1)2

+
∞

∑
k=1

y2 +2xy+2x+2y+1+2k (1+ y)

(x+ k)2 (x+ y+ k+1)2

>
y2 +2xy+2x+2y+1

x2 (x+ y+1)2 >
y2

(1+ xy)2 . �

We also need the following lemma which can be found in [3, p. 382, Theorem 7].

LEMMA 2.6. Let x > 0 and s ∈ (0,1) be real numbers. Then we have

1− s
x+ s+1

+
1− s

(x+1)(x+ s)
< Ψ(x+1)−Ψ(x+ s) . (2.9)

LEMMA 2.7. Let 0 < x < y � 1 be real numbers. Then we have

2x
x2 + y2 < Ψ(x+1)−Ψ

(
x+ y

2

)
.

Proof. Applying (2.9) where s = (y− x)
/
2 > 0 we obtain after a straightforward

computation

x3 +4x2 +4−2y2 +2y+6x+2xy− xy2

(x+1) (x+ y) (x+ y+2)
< Ψ(x+1)−Ψ

(
x+ y

2

)
.

On the other hand some computations yield

x3 +4x2 +4−2y2 +2y+6x+2xy− xy2

(x+1)(x+ y)(x+ y+2)
− 2x

x2 + y2

=
(x− y) p(x,y)

(x+1) (x+ y)(x+ y+2)(x2 + y2)
> 0,

where

p(x,y) := x4 +2x3 + x3y+ x2y2 + xy3−2y2−6xy−4y < 0

for 0 < x < y � 1. Thus the proof of the lemma is complete. �
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3. Main result

Now we give the main results of this paper.

THEOREM. For all real numbers x,y ∈ (0,1], we have

T (x,y) � 1
xy

x2 + y2

2
, (3.1)

and
1
xy

(x+ y− xy) � B(x,y) � 1
xy

x+ y
1+ xy

(3.2)

with equality if and only if x = y = 1.

Proof. We begin by proving (3.1) . Let function f be defined by

f (x,y) := log
Γ(x+1)Γ(y+1)

Γ2
( x+y

2

) − log

[
x2 + y2

2

]
,

where we use the notation of (1.5) and the recursion formula (2.1) . Because of sym-
metry we may suppose 0 < x � y � 1. Partial differentiation yields

∂ f (x,y)
∂x

=
[

Ψ(x+1)−Ψ
(

x+ y
2

)]
− 2x

x2 + y2 .

Applying Lemma 2.7 gives ∂ f (x,y)
/

∂x > 0, which implies

f (x,y) � f (y,y) = 0.

But f (x,y) � 0 is equivalent to (3.1).
To prove the first inequality of (3.2) let 0 < x � y � 1. We wish to investigate the

monotonity property of the function g defined by

g(x,y) :=
1
xy

(x+ y− xy)−B(x,y) .

Differentiation gives

∂g(x,y)
∂x

= − 1
x2 −B(x,y) [Ψ(x)−Ψ(x+ y)] .

We next claim that ∂g(x,y)
/

∂x � 0, thus g(x,y) is increasing in x i.e. g(x,y) �
g(y,y) . Making use of Lemma 2.4 yields g(x,y) � 0 and the proof of the left side of
(3.2) is complete. The request ∂g(x,y)

/
∂x � 0 leads to the inequality

1
x2 � B(x,y) [Ψ(x+ y)−Ψ(x)] .

Taking
g1 (x,y) := −2logx− logB(x,y)− log [Ψ(x+ y)−Ψ(x)] ,
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and building the derivative we get after some computations and simplifications

∂g1 (x,y)
∂x

=
−2 [Ψ(x+ y)−Ψ(x)]
x [Ψ(x+ y)−Ψ(x)]

+
x [Ψ(x+ y)−Ψ(x)]2 + x [Ψ′ (x)−Ψ′ (x+ y)]

x [Ψ(x+ y)−Ψ(x)]
.

Applying Lemma 2.3 it is clear that ∂g1 (x,y)
/

∂x < 0, therefore g1 (x,y) is strictly
decreasing in x. Since lim

x→0
g1 (x,y) = 0, we infer g1 (x,y) � 0, i.e. ∂g(x,y)

/
∂x � 0.

We now proceed to prove the right-hand side of (3.2). Let x ∈ (0,1] and fix y
where 0 < y � 1. Denote by g2 the function

g2 (x) := log(1+ xy)+ log [Γ(x+1)]+ log [Γ(y+1)]− log [Γ(x+ y+1)] .

If g2 (x) is a convex function on [0,1] , then from Jensen’s inequality for convex func-
tions (3.2) immediately follows. First we find g2 (0) = 0 and g2 (1) = 0. For checking
the convexity of g2 it is sufficient to verify that g′′2 (x) > 0. Indeed the second derivative
of g2 and Lemma 2.5 lead to

g′′2 (x) = − y2

(1+ xy)2 + Ψ′ (x+1)−Ψ′ (x+ y+1) > 0.

On account of Jensen’s inequality (1.6) for the convex function g2 we have by a = 0
and b = 1

g2 (λa+(1−λ)b) � λg2 (a)+ (1−λ)g2 (b) , λ ∈ [0,1] .

This clearly forces g2 (x) � 0, hence the proof of the theorem is complete. �

4. Concluding remarks

First we establish the connection between (3.1) and (3.2) as announced in (1.3)
and (1.4). Moreover we show that the right side of (3.2) improves the right side of
(1.2).

COROLLARY 4.1. For all real numbers x,y ∈ (0,1) , we have

x2 + y2

2
<

x+ y
2

< 1−
√

(1− x)(1− y) < x+ y− xy.

The proof is trivial, we omit details.

COROLLARY 4.2. For all real numbers x,y ∈ [0,1], we have

x+ y
1+ xy

�
(√

x+
√

y−√
xy

)2 � 1− (1− x)(1− y)
(1+ x)(1+ y)

. (4.1)

Equality holds in (4.1) if and only if x = y = 0 or x = y = 1.
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Proof. We begin with the verification of the first part of (4.1). Let a,b ∈ [0,1] . It
now follows that

a2 +b2

1+a2b2 − (a+b−ab)2 =
(1−a) (b−1)ab

1+a2b2 p(a,b) � 0,

where
p(a,b) := 2+a2b2−ab−a2b−ab2.

We show that p(a,b) � 0. Clearly,

p(a,b) � 1+a2b2−a2b−ab2 � 1−b− (1−b)a2b = (1−b)
(
1−a2b

)
� 0.

Substituting a =
√

x and b =
√

y, gives the desired result.
To establish the second part of (4.1) let us write

(a+b−ab)2− 2
(
a2 +b2

)
(1+a2)(1+b2)

=
(1−a)(1−b)

(1+a2)(1+b2)
q(a,b) � 0,

where

q(a,b) := −
[
(a−b)2 +(1−a)a2b+(1−b)ab2 +(1−a)a2b3

]

−(
a3 +b3 +a2b2 +a3b2) .

The substitutions a =
√

x and b =
√

y establish (4.1) and the corollary follows. �

Finally, we mention that neither the left side of (3.1), Γ(x)Γ(y)/Γ2 ((x+ y)/2)
nor the right side (1/xy)

((
x2 + y2

)
/2

)
are comparable with the left side of (1.2) ,

1
/
xy

(
1−α(1− x)

/
(1+ x)(1− y)

/
(1+ y)

)
on the whole (0,1) interval. The same is

also true for the left side of (3.2) , 1/(xy(x+ y− xy)) and the left side of (1.2) .
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