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A NEW NONLINEAR INTEGRAL INEQUALITY

OF WENDROFF TYPE WITH CONTINUOUS AND

WEAKLY SINGULAR KERNEL AND ITS APPLICATION
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(Communicated by K.-L. Tseng)

Abstract. The main objective of this paper is to establish some new explicit bounds for nonlinear
integral inequalities of Wendroff type with continuous and weakly singular kernel, which gener-
alized some known inequalities for functions in two variables and can be furnished a handy tool
for the study of qualitative as well as quantitative properties of solutions of nonlinear differential
equations. Some applications are also given to illustrate the usefulness of our results.

1. Introduction

It is well known that singular integral inequalities plays a very important role in
the qualitative theory of partial differential, integral and integro-differential equations.
During the past few years, many papers [1]-[6] and [16] have appeared in the litera-
ture which deal with integral inequalities in more than independent variable which are
motivated by certain applications in the theory of hyperbolic partial differential and
integral equations. Usually, the integrals concerning this type inequalities have regu-
lar or continuous kernels, but some problems of theory and practicality require us to
solve integral inequalities with singular kernels. For example, D. Henry [7] used this
type integral inequalities to prove a global existence and an exponential decay result
for a parabolic Cauchy problem. Medved [9] presented a new method to solve Henry’s
type inequalities and their Bihari version. Some works can be found, for example, in
[8, 12, 13, 17, 18] and some references therein. Recently,Q.-H. Ma and J. Pečarić [13]
studied the inequality

up(t) � a(t)+b(t)
t∫

0

(tα − sα)β−1sγ−1 f (s)uq(s)ds, t ∈ R+.

Cheung et al. [17] investigated the inequality in two variables

up(x,y) � a(x,y)+b(x,y)
x∫

0

y∫
0

(xα − sα)β−1sγ−1(yα − tα)β−1tγ−1 f (s,t)uq(s,t)dtds,

(x,y) ∈ D.
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H. Wang and K. Zheng [18] discussed the following inequality

u(x,y) � a(x,y)+
x∫

0

y∫
0

(xα − sα)β−1sγ−1(yα − tα)β−1tγ−1 f (x,y,s,t)w(u(s,t))dtds.

In this paper, motivated mainly by the work of Ma et al. [13, 15], Cheung et al. [14, 17],
H. Wang and K. Zheng [18] and by applying Medved’s method of disingularization of
weakly singular inequalities we discuss more general form of nonlinear weakly singular
integral inequalities of Wendroff type for functions in two variables

ur(x,y)� a(x,y)+b(x,y)
x∫

0

y∫
0

(xα1−sα1)β−1sγ1−1(yα2−tα2)β−1tγ2−1 f (s,t)ω (u(s,t))dtds.

Our paper is organized as follows. In Section 2 we prepare some tools needed to prove
our theorems. Section 3 contains the statements and proofs of our main results and
in Section 4 we give an application to partial integral equation with weakly singular
kernel.

2. Preliminaries

Throughout the paper, R denotes the set of real numbers and R+ = [0,∞). Let
C(M,S) denotes the class of all continuous functions from the set M to the set S. The
partial derivatives of a function z(x,y) for x,y ∈ R with respect to x, y and xy are
denoted by D1z(x,y), D2z(x,y) and D1D2z(x,y) = D2D1z(x,y) respectively .We need
the following definitions and lemmas in the discussion of our main results.

DEFINITION 2.1. The function ω(u) is said to be subadditive and submultiplica-
tive, if

ω(u+ v) � ω(u)+ ω(v) and ω(uv) � ω(u)ω(v), for u,v � 0. (1)

DEFINITION 2.2. Let q > 0 be a real number and 0 < T � ∞. We say that a
function ω : R+ → R satisfies a condition (q) if

e−qt [ω(u)]q � R(t)ω(e−qtuq), for all u ∈ R+, t ∈ [0,T ), (q)

where R(t) is a continuous nonnegative function.
Examples:
1. ω(u) = um, m > 0 satisfies the condition (q) with R(t) = e(m−1)qt ,
2. ω(u)= u+aum, where 0 � a � 1, m � 1 satisfies the condition (q) with R(t)=

2q−1eqmt .

LEMMA 2.1. (see [11]) Assume that r � 1, a � 0. Then

a
1
r � 1

r
K

1−r
r a+

r−1
r

K
1
r , (2)

for any K > 0.
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DEFINITION 2.3. (see [14]) Let [x,y,z] be an ordered parameter group of non-
negative real numbers. The group is said to belong to the first class distribution and

denoted by [x,y,z] ∈ I if conditions x ∈ (0,1], y ∈ ( 1
2 ,1) and z � 3

2
− y are satisfied, it

is said to belong to the second-class distribution and denoted by [x,y,z] ∈ II if condi-

tions x ∈ (0,1], y ∈ (0, 1
2 ] and z >

1−2y2

1− y2 are satisfied.

LEMMA 2.2. (see [15], page 296) Let α,β ,γ and p be positive constants. Then

t∫
0

(tα − sα)p(β−1)sp(γ−1)ds =
tθ

α
B

[
p(γ −1)+1

α
, p(β −1)+1

]
, t ∈ R+, (3)

where B [ξ ,η ] =
1∫
0

sξ−1(1− s)η−1ds, (ξ ,η ∈ C, ℜξ > 0,ℜη > 0) is the well-known

beta function and θ = p [α(β −1)+ γ −1]+1.

LEMMA 2.3. (see [14]) Suppose that the positive constants α,β ,γ, p1 and p2

satisfy

(a) if [α,β ,γ] ∈ I, p1 =
1
β

;

(b) if [α,β ,γ] ∈ II, p2 =
1+4β
1+3β

, then

B

[
pi(γ −1)+1

α
, pi(β −1)+1

]
∈ (0,+∞), (4)

θi = pi [α(β −1)+ γ−1]+1 � 0

are valid for i = 1,2.

3. The results

LEMMA 3.1. Let u(x,y), a(x,y), b(x,y) and f (x,y) be nonnegative continuous
functions defined for x,y ∈ R+, and ω(u) be a nonnegative, nondecreasing continuous
function for u ∈ R+ with ω(u) > 0 for u > 0. Assume that a(x,y) and b(x,y) are
nondecreasing in each variable x,y ∈ R+ . If

u(x,y) � a(x,y)+b(x,y)
x∫

0

y∫
0

f (s,t)ω(u(s,t))dtds, (5)

for all x,y ∈ R+ , then

u(x,y) � G−1

⎡
⎣G(a(x,y))+b(x,y)

x∫
0

y∫
0

f (s,t)dtds,

⎤
⎦ (6)
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for all 0 � x � x1, 0 � y � y1, where

G(r) =
r∫

r0

ds
ω(s)

, r � r0 > 0, (7)

G−1 is the inverse function of G, and x1, y1 ∈ R+ are chosen so that G(a(x,y))+

b(x,y)
x∫
0

y∫
0

f (s, t)dtds ∈ Dom(G−1).

Proof. Fixing any numbers x1 and y1 with 0 < x1 � x1 and 0 < y1 � y1, from
(5) we have

u(x,y) � a(x1,y1)+b(x1,y1)
x∫

0

y∫
0

f (s, t)ω(u(s,t))dtds, (8)

for 0 � x � x1, 0 � y � y1.
Defining r1(x,y) as the right hand-side of (8), then

r1(0,y) = r1(x,0) = a(x1,y1),
u(x,y) � r1(x,y),

(9)

r1(x,y) is nondecreasing in y ∈ [0,y1] and

D1r1(x,y) = b(x1,y1)
y∫

0

f (x,t)ω(u(x,t))dt

� b(x1,y1)
y∫

0

f (x,t)ω(r1(x,t))dt

� b(x1,y1)ω(r1(x,y))
y∫

0

f (x,t)dt.

(10)

Dividing both sides of (10) by ω(r1(x,y)), we obtain

D1r1(x,y)
ω(r1(x,y))

� b(x1,y1)
y∫

0

f (x, t)dt. (11)

From (7) and (11), we get

D1G(r1(x,y)) � b(x1,y1)
y∫

0

f (x, t)dt. (12)

Now setting x = s in (12), and then integrating with respect to s from 0 to x, we
have

G(r1(x,y)) � G(r1(0,y))+b(x1,y1)
x∫

0

y∫
0

f (s,t)dtds.
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Noting
G(r1(0,y)) = G(a(x1,y1)),

we have

G(r1(x,y)) � G(a(x1,y1))+b(x1,y1)
x∫

0

y∫
0

f (s,t)dtds.

Taking x = x1, y = y1 in (9) and the last inequality, we obtain

u(x1,y1) � r1(x1,y1),

G(r1(x1,y1)) � G(a(x1,y1))+b(x1,y1)
x1∫
0

y1∫
0

f (s,t)dtds.
(13)

Since 0 < x1 � x1, 0 < y1 � y1 are arbitrary, from (13) we get

u(x,y) � r1(x,y), (14)

G(r1(x,y)) � G(a(x,y))+b(x,y)
x∫

0

y∫
0

f (s, t)dtds,

or

r1(x,y) � G−1

⎡
⎣G(a(x,y))+b(x,y)

x∫
0

y∫
0

f (s,t)dtds

⎤
⎦ , (15)

for all 0 < x � x1, 0 < y � y1. Hence by (14) and (15), we have

u(x,y) � G−1

⎡
⎣G(a(x,y))+b(x,y)

x∫
0

y∫
0

f (s,t)dtds

⎤
⎦ , (16)

for all 0 < x � x1, 0 < y � y1. By (5), (16) holds also when x = 0, y = 0. �

THEOREM 3.2. Let ψ(x,y), p(x,y) and q(x,y) be nonnegative continuous func-
tions defined for x,y ∈ R+. Let k(x,y,s,t) and its partial derivatives D1k(x,y,s,t),
D2k(x,y,s, t) and D1D2k(x,y,s,t) be nonnegative continuous functions for 0 � s � x <
∞, 0 � t � y < ∞, and ω(u) be defined as in Lemma 3.1 and moreover we assume that
it is subadditive and submultiplicative.

If

ψr(x,y) � p(x,y)+q(x,y)
x∫

0

y∫
0

k(x,y,s,t)ω(ψ(s,t))dtds, for x,y∈ R+, r � 1, (17)

then

ψ(x,y)�

⎧⎨
⎩p(x,y)+q(x,y)

⎡
⎣G−1

⎛
⎝G

⎛
⎝ x∫

0

y∫
0

A(σ ,τ)dτdσ

⎞
⎠+

x∫
0

y∫
0

B(σ ,τ)dτdσ

⎞
⎠
⎤
⎦
⎫⎬
⎭

1
r

,

(18)
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for 0 � x � x2, 0 � y � y2 where

A(x,y) = k(x,y,x,y)ω( 1
r K

1−r
r )ω (p(x,y))+ k(x,y,x,y)ω( r−1

r K
1
r )

+ω( 1
r K

1−r
r )

y∫
0

D2k(x,y,x,t)ω (p(x,t))dt + ω( r−1
r K

1
r )

y∫
0

D2k(x,y,x,t)dt

+ω( 1
r K

1−r
r )

x∫
0

D1k(x,y,s,y)ω (p(s,y))ds+ ω( r−1
r K

1
r )

x∫
0

D1k(x,y,s,y)ds

+ω( 1
r K

1−r
r )

x∫
0

y∫
0

D1D2k(x,y,s,t)ω (p(s,t))dtds

+ω( r−1
r K

1
r )

x∫
0

y∫
0

D1D2k(x,y,s,t)dtds,

(19)
and

B(x,y) = k(x,y,x,y)ω( 1
r K

1−r
r )ω (q(x,y))

+ω( 1
r K

1−r
r )

y∫
0

D2k(x,y,x,t)ω (q(x, t))dt

+ω( 1
r K

1−r
r )

x∫
0

D1k(x,y,s,y)ω (q(s,y))ds

+ω( 1
r K

1−r
r )

x∫
0

y∫
0

D1D2k(x,y,s, t)ω (q(s,t))dtds,

(20)

G−1 is the inverse function of G defined in (7) and x2,y2 are chosen so that

G

⎛
⎝ x∫

0

y∫
0

A(σ ,τ)dτdσ

⎞
⎠+

x∫
0

y∫
0

B(σ ,τ)dτdσ ∈ Dom(G−1),

for all x,y lying in the subintervals 0 � x � x2, 0 � y � y2 of R+.

Proof. Define a function z(x,y) by

z(x,y) =
x∫

0

y∫
0

k(x,y,s,t)ω(ψ(s,t))dtds. (21)

From (17) and (21) we observe that

ψ(x,y) � (p(x,y)+q(x,y)z(x,y))
1
r . (22)

Applying Lemma 2.1 to the inequality (22), for any K > 0, we obtain

ψ(x,y) � 1
r
K

1−r
r (p(x,y)+q(x,y)z(x,y))+

r−1
r

K
1
r . (23)
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So, from (23) and the hypotheses on ω , we get

ω(ψ(x,y)) � ω
(

1
r
K

1−r
r

)
ω(p(x,y))

+ ω
(

1
r
K

1−r
r

)
ω(q(x,y))ω(z(x,y))+ ω

(
r−1

r
K

1
r

)
. (24)

Differentiating (21) and then using (24), we have

D1D2z(x,y) � k(x,y,x,y)ω( 1
r K

1−r
r )ω(p(x,y))

+k(x,y,x,y)ω( 1
r K

1−r
r )ω(q(x,y))ω(z(x,y))

+k(x,y,x,y)ω( r−1
r K

1
r )

+ω( 1
r K

1−r
r )

y∫
0

D2k(x,y,x,t)ω(p(x, t))dt

+ω( 1
r K

1−r
r )

y∫
0

D2k(x,y,x,t)ω(q(x, t))ω(z(x,t))dt

+ω( r−1
r K

1
r )

y∫
0

D2k(x,y,x,t)dt

+ω( 1
r K

1−r
r )

x∫
0

D1k(x,y,s,y)ω(p(s,y))ds

+ω( 1
r K

1−r
r )

x∫
0

D1k(x,y,s,y)ω(q(s,y))ω(z(s,y))ds

+ω( r−1
r K

1
r )

x∫
0

D1k(x,y,s,y)ds

+ω( 1
r K

1−r
r )

x∫
0

y∫
0

D1D2k(x,y,s,t)ω(p(s,t))dtds

+ω( 1
r K

1−r
r )

x∫
0

y∫
0

D1D2k(x,y,s,t)ω(q(s,t))ω(z(s,t))dtds

+ω( r−1
r K

1
r )

x∫
0

y∫
0

D1D2k(x,y,s,t)dtds.

(25)

From (25) and using the fact that z(x,y) is monotonic nondecreasing in both the
variables x,y, and ω(u) is nondecreasing for u ∈ R+ , we obtain

zxy(x,y) � A(x,y)+B(x,y)ω(z(x,y)), (26)

where A(x,y), B(x,y) are defined by (19) and (20) respectively.
From (26) it is easy to observe that

z(x,y) � C(x,y)+
x∫

0

y∫
0

B(σ ,τ)ω(z(σ ,τ))dτdσ , (27)
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where

C(x,y) =
x∫

0

y∫
0

A(σ ,τ)dτdσ .

Clearly C(x,y) is nonegative and nondecreasing in each variable x,y ∈ R+. Then,
by applying Lemma 3.1 to (27) and using (22) we get the required inequality in (18). �

REMARK 3.1. If we take r = 1 and q(x,y) = 1 we obtain Theorem 2 in [6].

THEOREM 3.3. Let u(x,y), a(x,y), b(x,y), f (x,y) and ω be as in Lemma 3.1,
and r � 1 is a constant and suppose

ur(x,y) � a(x,y)+b(x,y)
x∫
0

y∫
0
(xα1−sα1)β−1sγ1−1(yα2−tα2)β−1tγ2−1 f (s, t)ω (u(s, t))dtds,

(x,y) ∈ [0,T )2 (0 < T � ∞), (28)

then for any K > 0 the following assertions hold:
(i) If [α1,β ,γ1] , [α2,β ,γ2] ∈ I and ω satisfies the condition (q) with q = q1 =

1
1−β . Then

u(x,y)� ex+y

{
G−1

[
G(P1(x,y))+Q1(x,y)

x∫
0

y∫
0

k1(s,t)dtds

]}1−β
, for (x,y)∈ [0,T1)2,

(29)
where the function G and its inverse G−1 are as in Lemma 3.1 and

M11 = 1
α1

B
[

β+γ1−1
α1β , 2β−1

β

]
,

M21 = 1
α2

B
[

β+γ2−1
α2β , 2β−1

β

]
,

P1(x,y) = 3
β

1−β
[
( r−1

r K
1
r )

1
1−β +( 1

r K
1−r
r a(x,y))

1
1−β

]
,

Q1(x,y) = 3
β

1−β
[

1
r K

1−r
r b(x,y)

] 1
1−β

(M11M21)
β

1−β (x)
(α1+1)(β−1)+γ1

1−β (y)
(α2+1)(β−1)+γ2

1−β ,

k1(x,y) = f
1

1−β (x,y)R1(x+ y),
(30)

and T1 > 0 is such that the argument of G−1 in (29) belongs to Dom(G−1) for all
(x,y) ∈ [0,T1)2.

(ii) If [α1,β ,γ1] , [α2,β ,γ2] ∈ II, and ω satisfies the condition (q) with q = q2 =
1+4β

β . Then

u(x,y)� ex+y

{
G−1

[
G(P2(x,y))+Q2(x,y)

x∫
0

y∫
0

k2(s,t)dtds

]} β
1+4β

, for (x,y)∈ [0,T2)2,

(31)
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where
M12 = 1

α1
B
[

γ1(1+4β )−β
α1(1+3β ) , 4β 2

1+3β

]
,

M22 = 1
α2

B
[

γ2(1+4β )−β
α2(1+3β ) , 4β 2

1+3β

]
,

P2(x,y) = 3
1+3β

β

[
( r−1

r K
1
r )

1+4β
β +( 1

r K
1−r
r a(x,y))

1+4β
β

]
,

Q2(x,y) = 3
1+3β

β
[

1
r K

1−r
r b(x,y)

] 1+4β
β (M12M22)

(1+3β)
β

×(x)
(1+4β)[α1(β−1)+γ1 ]−β

β (y)
(1+4β)[α2(β−1)+γ2 ]−β

β ,

k2(x,y) = f
1+4β

β (x,y)R2(x+ y),

(32)

and T2 > 0 is such that the argument of G−1 in (31) belongs to Dom(G−1) for all
(x,y) ∈ [0,T2)2.

Proof. Define a function v(x,y) by

v(x,y) = b(x,y)
x∫
0

y∫
0
(xα1 − sα1)β−1(yα2 − tα2)β−1sγ1−1tγ2−1 f (s,t)ω (u(s,t))dtds,

(x,y) ∈ [0,T )2, (33)

then
ur(x,y) � a(x,y)+ v(x,y)

or
u(x,y) � (a(x,y)+ v(x,y))

1
r .

From the last inequality and Lemma 2.1, we have

u(x,y) � r−1
r

K
1
r +

1
r
K

1−r
r a(x,y)+

1
r
K

1−r
r v(x,y). (34)

If [α1,β ,γ1] , [α2,β ,γ2]∈ I, let p1 = 1
β , q1 = 1

1−β , and if [α1,β ,γ1] , [α2,β ,γ2]∈
II, let p2 =

1+4β
1+3β

, q2 =
1+4β

β
, then

1
pi

+
1
qi

= 1, for i = 1,2.

Applying the Hölder’s inequality with indices pi,qi to (33) after inserting es+t .e−(s+t)

into the integral on the right-hand side, we obtain

v(x,y) � b(x,y)
[

x∫
0

y∫
0
(xα1 − sα1)pi(β−1)spi(γ1−1)(yα2 − tα2)pi(β−1)t pi(γ2−1)epi(s+t)dtds

] 1
pi

×
[

x∫
0

y∫
0

f qi(s,t)e−qi(s+t)ωqi (u(s,t))dtds

] 1
qi

. (35)
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By using Lemmas 2.2 and 2.3 and the condition (q) with q = qi, (35) can be rewritten
as

v(x,y) � b(x,y)ex+y
{

xθ1i

α1
B
[

pi(γ1−1)+1
α1

, pi(β−1)+1
]

yθ2i

α2
B
[

pi(γ2−1)+1
α2

, pi(β−1)+1
]} 1

pi

×
[

x∫
0

y∫
0

f qi(s,t)Ri(s+ t)ω
(
e−qi(s+t)uqi(s,t)

)
dtds

] 1
qi

= b(x,y)ex+y
(
xθ1i yθ2iM1iM2i

) 1
pi

[
x∫
0

y∫
0

f qi(s,t)Ri(s+t)ω
(
e−qi(s+t)uqi(s, t)

)
dtds

] 1
qi

,

(x,y) ∈ [0,T )2,
(36)

where

θ1i = pi [α1(β −1)+ γ1−1]+1 and M1i =
1

α1
B

[
pi(γ1 −1)+1

α1
, pi(β −1)+1

]
,

θ2i = pi [α2(β −1)+ γ2−1]+1 and M2i =
1

α2
B

[
pi(γ2 −1)+1

α2
, pi(β −1)+1

]
,

for i = 1,2.

Substituting (36) in (34), we get

u(x,y) � r−1
r K

1
r + 1

r K
1−r
r a(x,y)+ 1

r K
1−r
r b(x,y)ex+y

(
xθ1i yθ2iM1iM2i

) 1
pi

×
[

x∫
0

y∫
0

f qi(s,t)Ri(s+ t)ω
(
e−qi(s+t)uqi(s,t)

)
dtds

] 1
qi

,

or

e−(x+y)u(x,y) � r−1
r K

1
r + 1

r K
1−r
r a(x,y)+ 1

r K
1−r
r b(x,y)

(
xθ1i yθ2iM1iM2i

) 1
pi

×
[

x∫
0

y∫
0

f qi(s,t)Ri(s+ t)ω
(
e−qi(s+t)uqi(s,t)

)
dtds

] 1
qi

, (x,y) ∈ [0,T )2.

(37)
From (37) and the inequality

(A+B+C)q � 3q−1(Aq +Bq +Cq), A,B,C � 0, q � 1,

we obtain

ψi(x,y) � Pi(x,y)+Qi(x,y)
x∫

0

y∫
0

ki(s,t)ω (ψi(s,t))dtds, (38)
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where

ψi(x,y) = e−qi(x+y)uqi(x,y),

Pi(x,y) = 3qi−1
(

r−1
r

K
1
r

)qi

+3qi−1
(

1
r
K

1−r
r a(x,y)

)qi

,

Qi(x,y) = 3qi−1
(

1
r
K

1−r
r b(x,y)

)qi (
xθ1i yθ2iM1iM2i

) qi
pi ,

ki(x,y) = f qi(x,y)Ri(x+ y), for i = 1,2.

Since qi � 0 and θ1i, θ2i � 0 (i = 1,2), then Pi(x,y) and Qi(x,y) are also non-
decreasing in x and y .

By Lemma 3.1 and (38), considering two situations for i = 1,2, we can get the
desired estimations (29) and (31), respectively. �

COROLLARY 3.4. Let functions u(x,y), a(x,y), b(x,y), and f (x,y) be as in the-
orem 3.3, and r � 1, m > 0 are constants and suppose

ur(x,y) � a(x,y)+b(x,y)
x∫
0

y∫
0
(xα1 − sα1)β−1sγ1−1(yα2 − tα2)β−1tγ2−1 f (s,t)um(s,t)dtds,

(x,y) ∈ [0,T )2 (0 < T � ∞), (39)

then for any K > 0 the following assertions hold:
(i) for [α1,β ,γ1] , [α2,β ,γ2] ∈ I ,

if m = 1,

u(x,y) � ex+y

[
P1(x,y)exp

(
Q1(x,y)

x∫
0

y∫
0

f
1

1−β (s,t)dtds

)]1−β
, (40)

if m > 0, m �= 1,

u(x,y) � ex+y

[
P1−m

1 (x,y)+ (1−m)Q1(x,y)
x∫
0

y∫
0

e
(m−1)(s+t)

1−β f
1

1−β (s,t)dtds

] 1−β
1−m

, (41)

for x � 0, y � 0, where P1(x,y), Q1(x,y) are defined as in theorem 3.3.
(ii) for [α1,β ,γ1] , [α2,β ,γ2] ∈ II,

if m = 1,

u(x,y) � ex+y

[
P2(x,y)exp

(
Q2(x,y)

x∫
0

y∫
0

f
1+4β

β (s,t)dtds

)] β
1+4β

(42)

if m > 0, m �= 1,

u(x,y)� ex+y

[
P1−m

2 (x,y)+ (1−m)Q2(x,y)
x∫
0

y∫
0

e
(m−1)(1+4β)(s+t)

β f
1+4β

β (s, t)dtds

] β
(1+4β)(1−m)

,

(43)
for x � 0, y � 0, where P2(x,y), Q2(x,y) are defined as in theorem 3.3.
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4. Applications

In this section, we present applications of the inequalities (29) and (31) in theo-
rem 3.3 for studing the boundedness of certain partial integral equations with weakly
singular kernel. Consider the partial integral equation:

ur(x,y) = l(x,y)+h(x,y)
x∫
0

y∫
0
(xα1 − sα1)β−1sγ1−1(yα2 − tα2)β−1tγ2−1F(s,t,u(s,t))dtds,

(44)
for (x,y) ∈ D = [0,T )2, where l(x,y) and h(x,y) ∈C(D,R), F ∈C(D×R,R), r � 1.
Suppose that

|l(x,y)| � a(x,y),

|h(x,y)| � b(x,y),

|F(x,y,u)| � f (x,y)ω(|u|),
(45)

where the functions, a(x,y), b(x,y), f (x,y) and ω are as in theorem 3.3. If u(x,y),
(x,y) ∈ D, is any solution of (44), then by plugging (45) in (44) and applying Theorem
3.3, we obtain a bound on the solutions u(x,y) of (44).
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