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OPTIMAL ERROR ESTIMATES FOR

CORRECTED TRAPEZOIDAL RULES
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(Communicated by A. Aglić Aljinović)

Abstract. Corrected trapezoidal rules are proved for
∫ b
a f (x)dx under the assumption that f ′′ ∈

Lp([a,b]) for some 1 � p � ∞ . Such quadrature rules involve the trapezoidal rule modified by
the addition of a term k[ f ′(a)− f ′(b)] . The coefficient k in the quadrature formula is found
that minimizes the error estimates. It is shown that when f ′ is merely assumed to be continuous
then the optimal rule is the trapezoidal rule itself. In this case error estimates are in terms of the
Alexiewicz norm. This includes the case when f ′′ is integrable in the Henstock–Kurzweil sense
or as a distribution. All error estimates are shown to be sharp for the given assumptions on f ′′ .
It is shown how to make these formulas exact for all cubic polynomials f . Composite formulas
are computed for uniform partitions.

1. Introduction

This paper is concerned with numerical integration schemes for
∫ b
a f (x)dx where

it is assumed f ′ is absolutely continuous such that f ′′ ∈ Lp([a,b]) for some 1 � p � ∞ ,
or that f ′′ is integrable in the Henstock–Kurzweil sense, or that f ′ is continuous so that
f ′′ exists as a distribution and is integrable using a distributional integral. Integration
by parts shows that∫ b

a
f (x)dx =

1
2

[− f (a)φ ′(a)+ f (b)φ ′(b)+ f ′(a)φ(a)− f ′(b)φ(b)
]
+E( f ), (1.1)

where E( f ) = (1/2)
∫ b
a f ′′(x)φ(x)dx and φ is a monic quadratic polynomial. Ob-

serve that taking φ(x) = (x− a)(x− b) gives the usual trapezoidal rule
∫ b
a f (x)dx =

(b−a) [ f (a)+ f (b)]/2+ET ( f ) , where ET ( f ) = (1/2)
∫ b
a f ′′(x)(x−a)(x−b)dx . The

Hölder inequality then gives |ET ( f )| � ‖ f ′′‖p‖φ‖q/2, where q is the conjugate expo-
nent of p . Hence,

|ET ( f )| �
⎧⎨
⎩

‖ f ′′‖1(b−a)2/8, p = 1
[B(q+1,q+1)]1/q‖ f ′′‖p(b−a)2+1/q/2, 1 < p < ∞
‖ f ′′‖∞(b−a)3/12, p = ∞.

(1.2)
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Here, B(x,y) = Γ(x)Γ(y)/Γ(x+ y) is the beta function. See [4, Theorem 3.22]. (This
corrects a typographical error in [4].)

We find φ that minimizes the error in (1.1). This leads to a quadrature rule that
includes values of f and f ′ at the endpoints a and b . The error-minimizing polyno-
mial produces the classical trapezoidal rule, modified by the addition of first deriva-
tive terms. In the literature this is a called a corrected trapezoidal rule. This includes
solving the problem of choosing k ∈ R to minimize all quadrature rules of the form
(b−a) [ f (a)+ f (b)]/2+ k[ f ′(a)− f ′(b)] . The error terms are as in (1.2) but with the
coefficient of ‖ f ′′‖p(b− a)2+1/q minimized. In particular, the coefficients are strictly
less than in (1.2). We prove our results are the best possible given the assumption
f ′′ ∈ Lp([a,b]) (Theorem 2.1 and Corollaries 2.2-2.5). The composite formula (Corol-
lary 2.5) provides an improved error estimate over the trapezoidal rule. Since the f ′
terms telescope, the correction terms only require computation of f ′ at endpoints a
and b rather than at interior nodes. Compared to the usual trapezoidal rule the extra
computing time to implement our corrected rule is then negligible for large n .

Finding the polynomial φ that minimizes the error in (1.1) involves solving a tran-
scendental equation for a parameter in the polynomial. This transcendental equation is
written in various ways in Section 3. When q is an integer this reduces to a polynomial
equation for the parameter. We are able to solve for the exact value of the parameter
when p = 1,2,4/3,∞ . See Corollaries 2.2-2.4 and (3.3). Even without knowing the
parameter exactly, Theorem 3.2 gives a corrected trapezoidal rule with error estimate
smaller than in (1.2).

In Section 5 we reduce the assumption on f to f ∈C1([a,b]) and then f ′′ exists as
a distribution and is integrable using the continuous primitive integral (Corollary 5.3).
This includes the case when f ′′ is integrable in the Henstock–Kurzweil sense (Theo-
rem 5.1). The error estimate is then in terms of the Alexiewicz norm of f ′′ . In this
case, the optimum form of (1.1) is the trapezoidal rule itself.

In Section 6 we compute φ so that (1.1) is exact for all cubic polynomials f .
The required φ is the same as the one that minimizes the error in the case when f ′′ ∈
L2([a,b]) .

Several authors have considered corrected trapezoidal rules under the assumption
that the derivatives of f are in various function spaces. See [4] (Lp ), [8] (L∞ ), [9]
(Lipschitz, continuous and bounded variation, Lp ), [10] (Lp , Henstock–Kurzweil inte-
grable), [14] (continuous and bounded variation) and [17] (Lp ).

2. Main theorem

The error in (1.1) is minimized over all monic polynomials φ . Results in Lemma 4.1
show that a unique error-minimizing polynomial exists and is of the form φ(x) = (x−
c)2 −α2 such that c is the midpoint of [a,b] and φ has two real roots in [a,b] . Note
that (1.1) becomes a corrected trapezoidal rule precisely when φ ′(b) = −φ ′(a) = b−a
and this relation holds for φ(x) = (x− c)2−α2 . For a uniform partition the composite
rule obtained from (1.1) will in general have f ′ evaluated at all points at which f is
evaluated. However, when φ ′(a) = φ ′(b) the sum of f ′ terms telescopes, leaving only
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f ′(a) and f ′(b) (Corollary 2.5). This is the case with all the error-minimizing rules we
present.

We are able to compute exact values for α when p = 1,2,4/3,∞ . In other cases
α is given by the transcendental equation (2.10). When q is an integer this reduces to
finding the largest real root of a polynomial of degree 2q−1.

THEOREM 2.1. Let c be the midpoint of [a,b] . Let f : [a,b] → R such that f ′ is
absolutely continuous and f ′′ ∈ Lp([a,b]) for some 1 < p < ∞ . Let 1/p + 1/q = 1 .
Amongst all monic quadratic polynomials used to generate (1.1), taking φ(x) = (x−
c)2 −α2

q gives the unique minimum for the error |E( f )| . The constant βq > 1 is the
unique solution of the equation∫ βq

1
(x2 −1)q−1dx =

1
2
B(q,1/2) = 22q−2B(q,q) (2.1)

and αqβq = (b−a)/2 . This gives the quadrature formula∫ b

a
f (x)dx =

b−a
2

[ f (a)+ f (b)]+
(b−a)2

8
(1−β−2

q )[ f ′(a)− f ′(b)]+E( f ), (2.2)

where

|E( f )| � ‖ f ′′‖p(b−a)2+1/q(1−β−2
q )

23+1/q(q+1/2)1/q
. (2.3)

The coefficient of ‖ f ′′‖p in the error bound is the best possible.

Note that the numbers αq and βq are independent of f , while βq are also inde-
pendent of the interval [a,b] .

COROLLARY 2.2. If p = 1 and q = ∞ then β∞ =
√

2 , α∞ = (b−a)/(2
√

2) gives
the unique minimum error. The quadrature formula is∫ b

a
f (x)dx =

(b−a)
2

[ f (a)+ f (b)]+
(b−a)2

16

[
f ′(a)− f ′(b)

]
+E( f ), (2.4)

where the optimal error is |E( f )| � ‖ f ′′‖1(b−a)2/16.

COROLLARY 2.3. If p = q = 2 then β2 =
√

3 , α2 = (b− a)/(2
√

3) gives the
unique minimum error. The quadrature formula is∫ b

a
f (x)dx =

(b−a)
2

[ f (a)+ f (b)]+
(b−a)2

12

[
f ′(a)− f ′(b)

]
+E( f ), (2.5)

where the optimal error is |E( f )| � ‖ f ′′‖2(b−a)2.5/(12
√

5).

COROLLARY 2.4. If p = ∞ and q = 1 then β1 = 2 , α1 = (b− a)/4 gives the
unique minimum error. The quadrature formula is∫ b

a
f (x)dx =

(b−a)
2

[ f (a)+ f (b)]+
3(b−a)2

32
[ f ′(a)− f ′(b)]+E( f ), (2.6)

where the optimal error is |E( f )| � ‖ f ′′‖∞(b−a)3/32.
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Other authors have obtained corrected trapezoidal rules under the assumption f ′′ ∈
Lp([a,b]) , generally with different coefficients of f ′(a)− f ′(b) in (2.2) and strictly
larger coefficients of ‖ f ′′‖p(b − a)2+1/q than in (2.3). See Cerone and Dragomir
[4] equation (3.64), where the coefficient of f ′(a)− f ′(b) is (b− a)2/8 for all val-
ues of p . In Theorem 3.24 for p = ∞ they have the coefficient of f ′(a)− f ′(b) as
(b− a)2/12. This coefficient is only sharp for p = 2 (Corollary 2.3). The estimate
|E( f )| � [sup( f )− inf( f )](b− a)3/(24

√
5) is proved. Dedić, Matić and Pečarić [9,

Corollaries 9, 12] also consider corrected trapezoidal rules with f ′′ ∈ Lp([a,b]) . In
their Corollary 9 they have the coefficient of f ′(a)− f ′(b) as (b− a)2/12 and prove
the larger estimate |E( f )| � ‖ f ′′‖∞(b−a)3/(18

√
3) . The results of our Corollary 2.3

appear as their Corollary 12 (without sharpness). Similarly in [10].

COROLLARY 2.5. For a uniform partition given by xi = a+(b−a)i/n, 0 � i � n,
the composite formula is

∫ b

a
f (x)dx =

b−a
2n

[
f (a)+2

n−1

∑
i=1

f (xi)+ f (b)

]
+

(b−a)2

8n2 (1−β−2
q )[ f ′(a)− f ′(b)]+E( f ),

(2.7)
where

|E( f )| �

⎧⎪⎨
⎪⎩

‖ f ′′‖1(b−a)2/(16n2), p = 1
‖ f ′′‖p(b−a)2+1/q(1−β−2

q )
23+1/q(q+1/2)1/q n2 , 1 < p < ∞

‖ f ′′‖∞(b−a)3/(32n2), p = ∞.

The coefficient of ‖ f ′′‖p in the error bound is the best possible.

Proof of Theorem 2.1. Let φ be a monic quadratic polynomial. Integration by
parts gives (1.1). We are then led to minimize E( f ) = (1/2)

∫ b
a f ′′(x)φ(x)dx . By

the Hölder inequality, |E( f )| � (1/2)‖ f ′′‖p‖φ‖q . First consider a symmetric interval
[−a,a] . By Lemma 4.1, to minimize ‖φ‖q we need only consider φ(x) = x2 −α2 for
some α ∈ [0,a] . Let β = a/α . Define

Gq(α) = ‖φ‖q
q = 2

∫ a

0
|x2−α2|q dx = 2α2q+1

(∫ 1

0
(1− x2)q dx+

∫ a/α

1
(x2 −1)q dx

)
.

(2.8)
Note that

G′
q(α) = 4qα2q

(∫ 1

0
(1− x2)q−1 dx−

∫ a/α

1
(x2 −1)q−1dx

)
. (2.9)

We have G′
q(0) = 0. Since the function α �→ ∫ a/α

1 (x2 −1)q−1dx decreases from posi-
tive infinity to zero as α increases from zero to a , it follows that G′

q has a unique root
in (0,a) and Gq has a unique minimum at αq ∈ (0,a) . The first integral in (2.9) can
be evaluated in terms of beta and gamma functions. We have [16, 5.12.1]

∫ 1

0
(1− x2)q−1 dx =

1
2
B(q,1/2) = 22q−2B(q,q) =

√
π Γ(q)

2Γ(q+1/2)
.
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Let βq = a/αq . The required minimizing polynomial is then determined by the unique
root βq ∈ (1,∞) of the equation

∫ βq

1
(x2 −1)q−1dx =

1
2
B(q,1/2). (2.10)

To compute ‖φ‖q , evaluate the final integral in (2.8). Integration by parts estab-
lishes the recurrence relation∫

(x2 −1)q dx =
x(x2 −1)q

2q+1
− 2q

2q+1

∫
(x2 −1)q−1dx. (2.11)

Using this and the corresponding version with integrand (1−x2)q , we obtain Gq(αq) =
2a(a2−α2

q )q/(2q+1) . It then follows that

|E( f )| � ‖ f ′′‖p(2a)2+1/q[1− (αq/a)2]
23+1/q(q+1/2)1/q

.

Replacing a with (b− a)/2 establishes the error estimate for interval [a,b] . Using
φ(x) = (x− c)2−α2

q the formula (2.2) now follows.

With the Hölder inequality, |∫ b
a f ′′(x)φ(x)dx| � ‖ f ′′‖p‖φ‖q , the necessary and

sufficient condition for equality is f ′′(x) = d sgn[φ(x)]|φ(x)|1/(p−1) for some d ∈ R

and almost all x ∈ [a,b] . See [13, p. 46]. Integrating gives

f (x) = d
∫ x

a
(x− t)sgn[φ(t)]|φ(t)|1/(p−1) dt,

modulo a linear function. �

Proof of Corollary 2.2. It suffices to consider the interval [−a,a] . When p = 1
write φ(x) = x2−α2

∞ . By Lemma 4.1 we need only consider the case with two distinct
roots in (−a,a) , i.e., 0 < α∞ < a . We have

F∞(φ) := ‖φ‖∞ = max
|x|�a

|φ(x)| = max(|φ(0)|,φ(a)) = max(α2
∞,a2 −α2

∞).

It follows that α∞ = a/
√

2. Formula (2.4) and the error estimate now follow easily.
There is equality in |∫ a

−a f ′′(x)φ(x)dx| � ‖ f ′′‖1‖φ‖∞ whenever φ(x) = d sgn[ f ′′(x)]
for some d ∈ R and almost all x ∈ [−a,a] . See [13, p. 46]. This does not hold but
we can show the coefficient of ‖ f ′′‖1 cannot be reduced by considering a sequence
of functions. If f ′′ = δ , the Dirac distribution supported at 0 , then |∫ a

−a f ′′(x)(x2 −
α2

∞)dx|= α2
∞ = a2/2 = ‖ f ′′‖1‖φ‖∞ . Of course, if f ′′ = δ then f ′ = χ(0,∞) which is not

absolutely continuous. Let (ψn) be a delta sequence. This is a sequence of continuous

functions ψn � 0 with support in (0,1/n) such that
∫ 1/n
0 ψn(x)dx = 1. Now define

fn(x) =
∫ x
−a

∫ y
−a ψn(z)dzdy . Then f ′n is absolutely continuous and ‖ f ′′n ‖1 = 1. Since

φ is continuous we have limn→∞|
∫ a
−a f ′′n (x)(x2 −α2

∞)dx| = a2/2 = ‖φ‖∞ . The error
estimate is then optimal. �
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Proof of Corollary 2.4. Write φ(x) = x2−α2
1 . By Lemma 4.1 we need only con-

sider the case with two distinct roots in (−a,a) , i.e., 0 < α1 < a . Equation (2.9) now
becomes G′

1(α1) = 2α1(12α1 − 6a)/3, from which α1 = a/2. This then gives (2.6).
There is equality in |∫ a

−a f ′′(x)φ(x)dx| � ‖ f ′′‖∞‖φ‖1 whenever f ′′(x) = d sgn[φ(x)]
for some d ∈ R and almost all x ∈ [−a,a] . See [13, p. 46]. Integrating gives f (x) =
d
∫ x
−a(x− t)sgn[φ(t)]dt , modulo a linear function. �

This case also appears in [22, Theorem 1].
The proof of Corollary 2.5 follows using the Hölder inequality for series as in the

proof of Theorem 3.26 in [4].
Lemma 4.1 shows that the minimum of ‖φ‖q over monic quadratics is unique.

Hence, the coefficient of ‖ f ′′‖p(b− a)2+1/q in (2.3) is strictly less than for any other
choice of αq and indeed for any other choice of monic quadratic. In particular, we get
a smaller coefficient than in the trapezoidal rule (1.2).

3. Evaluation and approximation of βq

In Corollaries 2.2 through 2.4 we were able to compute the exact value of αq and
βq for q = 1,2,∞ . In this section we compute β4 as the root of a cubic polynomial.
When q is an integer, equation (2.10) becomes a polynomial of degree 2q− 1. See
(3.1) and (3.4). When q is even the degree reduces to q−1 and we compute the exact
value of β4 (3.3). In general, equation (2.10) is transcendental and most likely cannot
be solved exactly. We rewrite this in terms of hypergeometric and associated Legendre
functions and also show that

√
2 � βq � 2 and is decreasing (Proposition 3.1). In

Theorem 3.2 we show how the corrected trapezoidal rule can give good approximations
of the integral of f with f ′′ ∈ Lp([a,b]) for all 1 � p � ∞ even if the exact value of
βq is not known. Part (c) of this theorem shows that the corrected trapezoidal rule
with α = 0, β = ∞ gives a smaller error estimate than (1.2) for all 1 � q < ∞ . The
coefficient is a simple function of q .

If q is an integer, use the binomial theorem to write (2.10) as

∫ βq

1
(x2 −1)q−1dx =

q−1

∑
k=0

(
q−1

k

)
(−1)q−1+k

2k+1

[
β 2k+1

q −1
]

=
q−1

∑
k=0

(
q−1

k

)
(−1)k

2k+1
.

(3.1)
This gives a polynomial of degree 2q−1 for βq . When q is even this reduces to

q−1

∑
k=0

(
q−1

k

)
(−1)kβ 2k

q

2k+1
= 0. (3.2)

When p = 4/3 and q = 4 we get the polynomial β 6
4 − (21/5)β 4

4 +7β 2
4 −7 = 0.

The unique solution is [16, 1.11(iii)]

β4 =

{
2(71/3)
(32/3)5

([
5
√

30+27
]1/3−

[
5
√

30−27
]1/3

)
+7/5

}1/2
.= 1.589291662.

(3.3)
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This can then be used in equations (2.2) and (2.3).
Repeated use of (2.11) yields the equivalent series form of (2.10) when q is an

integer

βq

q−1

∑
k=0

(−1)k
(

2k
k

)(β 2
q −1

4

)k

= 1− (−1)q. (3.4)

When q is even this simplifies to

q−1

∑
k=0

(
2k
k

)(
1−β 2

q

4

)k

=
q−1

∑
k=0

(1/2)k

k!
(1−β 2

q )k = 0. (3.5)

When p = 3 and q = 3/2 the integrals in (2.10) can be evaluated in terms of
elementary functions but this leads to a transcendental equation for β3/2 . Similarly
when q is a half integer.

As can be seen from (3.3) the numbers βq are not necessarily simple functions of
q . For cases other than p = 1,2,∞ they can be numerically approximated and for this
there are many other ways (2.10) can be rewritten. For example, using a linear change
of variables and then the identities [16, 15.6.1, 15.9.21] the integral in (2.10) can be
written in terms of hypergeometric and associated Legendre functions. The result is

∫ βq

1
(x2 −1)q−1dx = 2q−1(βq−1)q

∫ 1

0
[1− (1−βq)x/2]q−1 xq−1 dx

=
2q−1(βq−1)q

q 2F1(1−q,q;1+q;(1−βq)/2)

= 2q−1Γ(q)
(
β 2

q −1
)q/2

P−q
q−1(βq).

Numerical equation solvers can now be applied to any of these representations of∫ βq
1 (x2 −1)q−1dx in order to solve (2.10).

The range of βq is known.

PROPOSITION 3.1. βq is a decreasing function of q and
√

2 � βq � 2 for 1 �
q � ∞ .

Proof. A change of variables shows that (2.1) is equivalent to
∫ β 2

q −1
0 yq−1(1 +

y)−1/2 dy = J(q) , where J(q) =
∫ 1
0 yq−1(1−y)−1/2 dy . Since (1+y)−1/2 � (1−y)−1/2

for all 0 � y < 1 we must have β 2
q −1 � 1.

Equation (2.1) can also be written as I(q) + 2
∫ βq√

2
(x2 − 1)q−1 dx = J(q) where

I(q) =
∫ 1
0 yq−1(1+ y)−1/2 dy . The argument above shows that J′(q) < I′(q) < 0 for all

1 < q < ∞ . Since βq �
√

2 it must be a decreasing function of q . �

Even without knowing the exact value of βq we can use the method of Theo-
rem 2.1 to obtain good estimates of the error in corrected trapezoidal rules.
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THEOREM 3.2. Let c be the midpoint of [a,b] . Let f : [a,b] → R such that f ′ is
absolutely continuous and f ′′ ∈ Lp([a,b]) for some 1 � p < ∞ . (a) If 1 � p < 2 let
φ(x) = (x− c)2− (b−a)2/8 . Equation (1.1) gives the quadrature formula

∫ b

a
f (x)dx =

(b−a)
2

[ f (a)+ f (b)]+
(b−a)2

16

[
f ′(a)− f ′(b)

]
+E( f ), (3.6)

where the error satisfies |E( f )| � ‖ f ′′‖1(b− a)2/16. (b) If 2 � p < ∞ let φ(x) =
(x− c)2− (b−a)2/12 . Equation (1.1) gives the quadrature formula

∫ b

a
f (x)dx =

(b−a)
2

[ f (a)+ f (b)]+
(b−a)2

12

[
f ′(a)− f ′(b)

]
+E( f ), (3.7)

where the error satisfies |E( f )|� ‖ f ′′‖2(b−a)2.5/(12
√

5). (c) If 1 < p < ∞ let φ(x) =
(x− c)2 and 1/p+1/q = 1 . Equation (1.1) gives the quadrature formula

∫ b

a
f (x)dx =

(b−a)
2

[ f (a)+ f (b)]+
(b−a)2

8

[
f ′(a)− f ′(b)

]
+E( f ), (3.8)

where the error satisfies

|E( f )| � ‖ f ′′‖p(b−a)2+1/q

23+1/q(q+1/2)1/q
. (3.9)

Proof. Use the fact that Ls([a,b]) ⊂ Lr([a,b]) whenever 1 � r � s � ∞ . In (a)
use the approximation from Corollary 2.2 and in (b) use the approximation from Corol-
lary 2.3. In (c) take α = 0, β = ∞ and then compute

‖φ‖q
q = 2

(
b−a

2

)2q+1∫ 1

0
x2q dx =

(b−a)2q+1

22q+1(q+1/2)
.

The rest follows as in the proof of Theorem 2.1. �

It is also possible to compute ‖φ‖q when β = 1 but this gives the trapezoidal
rule (1.2). Note that the coefficient in part (c) is strictly less than the corresponding
coefficient in (1.2) for all 1 � q < ∞ . In the limit q → ∞ the coefficient becomes 1/8
as in (1.2).

4. Lemmas

Let Pm be the set of monic polynomials of degree m ∈ N with real coefficients.
Define Fq :Pm → R by Fq(φ) = ‖φ‖q where 1 � q � ∞ and the norms are over com-
pact interval [a,b] . Since Fq(φ) is bounded below for φ ∈ Pm it has an infimum over
Pm . It also has a unique minimum at a polynomial that has m roots in [a,b] . As well,
the error-minimizing polynomial is even or odd about the midpoint of [a,b] as m is
even or odd.
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LEMMA 4.1. (a) For m � 2 , let φ ∈ Pm with a non-real root. There exists ψ ∈
Pm with a real root such that Fq(ψ) < Fq(φ) . (b) Let φ ∈ Pm with a root t 	∈ [a,b] .
There exists ψ ∈Pm with a root in [a,b] such that Fq(ψ) < Fq(φ) . (c) If φ minimizes
Fq then it has m simple zeros in [a,b] . (d) If Fq has a minimum in Pm it is unique.
(e) Fq attains its minimum over Pm . (f) If φ ∈ Pm is neither even nor odd about
c := (a+ b)/2 then there is a polynomial ψ ∈ Pm that is either even or odd about c
such that Fq(ψ) < Fq(φ) . (g) The minimum of Fq occurs at a polynomial φ ∈Pm with
m simple zeros in [a,b] . If m is even about c then so is φ . If m is odd about c then so
is φ . This minimizing polynomial is unique.

Theorem 2.1 and its corollaries used only P2 but the lemmas give results for
Pm for all m . These will be useful for considering integration schemes generated by
polynomials of degree m , which we do not include here.

The results of Lemma 4.1 are well known and go back to Chebyshev and Fejér. To
keep the paper self contained we have provided elementary proofs. For a full exposition
and references to the original literature see, for example, [5], [7] and [15]. Three cases
of the minimizing problem of Lemma 4.1 appear in the literature. When q = ∞ the
minimizing polynomial in P2 is the Chebyshev polynomial of the first kind φ(x) =
x2 − 1/2 = T2(x)/2. When q = 2 it is given as a Legendre polynomial φ(x) = x2 −
1/3 = (2/3)P2(x) . When q = 1 it is the Chebyshev polynomial of the second kind
φ(x) = x2 − 1/4 = U2(x)/4. These are for the interval [−1,1] . A linear change of
variables is used for other intervals. These are all types of Gegenbauer polynomials,
which are orthogonal on [−1,1] with respect to a certain weight function. Gillis and
Lewis [11] give an argument to show that the minimizing polynomials are most likely
not orthogonal polynomials for other values of q .

Proof. (a) Write φ(x) = [(x− r)2 + s2]ω(x) for some r,s ∈ R , s 	= 0, and ω ∈
Pm−2 . Let ψ(x) = (x− r)2ω(x) . For all x ∈ R such that ω(x) 	= 0 we have |ψ(x)| <
|φ(x)| . Hence, ‖ψ‖q < ‖φ‖q .

(b) If m = 1 let φ(x) = x− t . Direct calculation shows the unique minimum of
‖φ‖q occurs at t = c . If m � 2, by (a) we can assume all the roots of φ are real and
write φ(x) = (x− t)ω(x) for some t 	∈ [a,b] , and ω ∈ Pm−1 . Suppose t < a . Let
ψ(x) = (x− a)ω(x) . For all x ∈ [a,b] such that ω(x) 	= 0 we have |ψ(x)| < |φ(x)| .
Hence, ‖ψ‖q < ‖φ‖q . Similarly if t > b .

(c) Consider ψ(x) = (x− t)2 with t ∈ (a,b) and ψε (x) = (x− t + ε)(x− t − ε) =
ψ(x)− ε2 . For all x we have |ψε(x)| � |ψ(x)|+ ε2 and for x 	∈ (t− ε,t + ε) we have
|ψε(x)| < |ψ(x)| . This shows that ‖ψε‖∞ < ‖ψ‖∞ if ε > 0 is small enough. Factoring
now shows the zeros of any minimizing polynomial are simple. Similarly for t = a or
b .

For q = 1,

‖ψε‖1 =
∫

x∈(t−ε,t+ε)

[
ε2−ψ(x)

]
dx+

∫
x	∈(t−ε,t+ε)

[
ψ(x)− ε2] dx

� ‖ψ‖1 +4ε3− ε2(b−a)
< ‖ψ‖1 for small enough ε > 0.
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And, if g ∈ L∞([a,b]) such that |g| > 0 almost everywhere then ‖ψεg‖1 < ‖ψg‖1 for
small enough ε > 0. A similar construction is used when t equals a or b . Factoring
ψ shows the zeros of any minimizing polynomial must be simple.

For 1 < q < ∞ use the same construction, with Taylor’s theorem in (4.1), to get

‖ψε‖q
q =

∫
x∈(t−ε,t+ε)

[
ε2 −ψ(x)

]q
dx+

∫
x	∈(t−ε,t+ε)

[
ψ(x)− ε2]q dx

�
∫

x∈(t−ε,t+ε)
ε2q dx+

∫
x	∈(t−ε,t+ε)

ψq(x)−qε2 [ψ(x)− ε2]q−1
dx (4.1)

< 2ε2q+1 +‖ψ‖q
q−qε2

∫
x	∈(t−2ε,t+2ε)

(3ε2)q−1 dx

= 2ε2q+1 +‖ψ‖q
q−3q−1qε2q(b−a−4ε)

< ‖ψ‖q
q for small enough ε > 0.

As with the q = 1 case above, it now follows that zeros of minimizing polynomials
must be simple.

(d) Suppose the minimum of Fq occurs at both φ ,ω ∈ Pm . Let ψ = (φ + ω)/2.
Then ψ ∈ Pm so ‖φ‖q � ‖ψ‖q � (‖φ‖q + ‖ω‖q)/2 = ‖φ‖q . The Minkowski in-
equality must then reduce to equality. For 1 < q < ∞ this means φ = dω for some
d > 0 [13, p. 47]. Since φ ,ω ∈ Pm we must have d = 1. If q = 1 then there
is equality in the Minkowski inequality if and only if φω � 0. If there is equal-
ity, then φ and ψ must share roots of odd multiplicity. But by (c), φ and ψ have
m simple zeros in [a,b] . Hence, φ = ψ . For q = ∞ , Lemma 4.2 shows there are
a < x1 < · · · < xm−1 < b , a < y1 < · · · < ym−1 < b and a < z1 < · · · < zm−1 < b
such that |φ(xi)| = |ω(yi)| = |ψ(zi)| = ‖φ‖∞ , φ ′(xi) = ω ′(yi) = ψ ′(zi) = 0 for each
1 � i � m− 1. Let Mφ = {xi}m−1

i=1 , Mω = {yi}m−1
i=1 , Mψ = {zi}m−1

i=1 . Let z ∈ Mψ then
‖φ‖∞ = |ψ(z)| = |φ(z) + ω(z)|/2 < ‖φ‖∞ unless z ∈ Mφ ∩Mω . Hence, Mφ = Mω .
Therefore, φ ′(xi) = ψ ′(xi) for each 1 � i � m−1. And then φ = ω .

(e) By parts (a) and (b) we need only consider φ ∈Pm with m real roots in [a,b] .
Let ti ∈ [a,b] for 1 � i � m and define φ ∈ Pm by φ(x) = ∏m

i=1(x− ti) .
Suppose 1 � q < ∞ . Define Gq(t) =

∫ b
a ∏m

i=1|x− ti|q dx . Then Gq : [a,b]m → R

attains its minimum over [a,b]m if and only if Fq attains its minimum over Pm . The
set [a,b]m is compact in Rm . And, Gq is continuous. For, suppose t ∈ [a,b]m and
s(k) ∈ [a,b]m for each k ∈ N such that s(k) → t in the Euclidean norm. We have

∫ b

a

m

∏
i=1

|x− s(k)i |q dx �
∫ b

a

m

∏
i=1

(b−a)q dx = (b−a)mq+1.

By dominated convergence (for example, [1, Theorem 7.2]), limk→∞ Gq(s(k)) = Gq(t)
and Gq is continuous. Therefore, Gq attains its minimum over [a,b]m .

The case q = ∞ is similar, using F∞(φ) = maxx∈[a,b] ∏m
i=1|x− ti| .

(f) Without loss of generality, b = −a . Suppose ψ ∈ Pm is the unique minimizer
of Fq . Let ω(x) = ψ(−x) if m is even and ω(x) = −ψ(−x) if m is odd. Then
ω ∈ Pm and ‖ω‖q = ‖ψ‖q . Let ζ = (ψ + ω)/2. Then ζ ∈ Pm and is even if m is
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even, odd if m is odd. Also, ‖ζ‖q � (‖ψ‖q +‖ω‖q)/2 = ‖ψ‖q . Hence, ζ = ψ = ω .
But then ψ is even or odd as m is even or odd. If φ ∈ Pm is neither even nor odd then
Fq(ψ) < Fq(φ) . �

LEMMA 4.2. Suppose φ ∈ Pm is a minimum of F∞ . Then φ(x) = ∏m
i=1(x− ti)

for a < t1 < t2 < · · · < tm < b. For each 1 � i � m−1 there is ξi ∈ (ti,ti+1) such that
|φ(ξi)| = ‖φ‖∞ .

Proof. This follows from the q = ∞ case of Lemma 4.1(c). �

5. f ′′ Henstock–Kurzweil integrable

Let HK([a,b]) be the set of functions integrable in the Henstock–Kurzweil sense
on [a,b] . See, for example, [12]. Note that Ls([a,b]) � Lr([a,b]) � HK([a,b]) for all
1 � r < s � ∞ . An example of a function f ∈ HK([0,1]) that is not in any Lp([0,1])
space is f = F ′ where F(x) = x2 sin(x−3) for x ∈ (0,1] and F(x) = 0. In this section
we use the method of Theorem 2.1 to choose a monic quadratic φ to minimize the error
in the resulting corrected trapezoidal rule when f ′′ ∈ HK([a,b]) . We also consider the
case when f ′ is merely continuous and then f ′′ exists as a distribution. For all of these
cases, it turns out that amongst corrected trapezoidal rules (1.1), the trapezoidal rule
itself minimizes the error.

If f ∈ HK([a,b]) then the Alexiewicz norm of f is ‖ f‖ = supx∈[a,b]|
∫ x
a f (t)dt| .

If g : [a,b] → R is of bounded variation then f g ∈ HK([a,b]) . Integration by parts
shows that |∫ b

a f (x)g(x)dx| � |∫ b
a f ||g(b)|+ ‖ f‖Vg , where Vg is the variation of g .

This is a version of an inequality known in the literature as the Darst–Pollard–Beesack
inequality. See [6], [2]. However, it appears earlier in [18]. It is proved for a more
symmetric version of the Alexiewicz norm for Henstock–Kurzweil integrals in [19,
Lemma 24].

Under the Alexiewicz norm, HK([a,b]) is a normed linear space but is not com-
plete. We will discuss integration in the completion later in this section.

THEOREM 5.1. Let c be the midpoint of [a,b] . Let f : [a,b] → R such that
f ′ ∈ C([a,b]) and f ′′ ∈ HK([a,b]) . Amongst all monic quadratic polynomials used
to generate (1.1), taking φ(x) = (x− c)2 − (b− a)2/4 = (x− a)(x− b) minimizes the
error |E( f )| . This gives the quadrature formula∫ b

a
f (x)dx =

b−a
2

[ f (a)+ f (b)]+E( f ), (5.1)

where
|E( f )| � ‖ f ′′‖(b−a)2/4. (5.2)

For a uniform partition given by xi = a+(b−a)i/n, 0 � i � n, the composite formula
is the trapezoidal rule

∫ b

a
f (x)dx =

b−a
2n

[
f (a)+2

n−1

∑
i=1

f (xi)+ f (b)

]
+E( f ), (5.3)
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where

|E( f )| � ‖ f ′′‖(b−a)2

4n
.

The coefficient of ‖ f ′′‖ in the error bounds is the best possible.

Proof. From (1.1) we have |E( f )| � (|∫ b
a f ′′(x)dx||φ(b)|+ ‖ f ′′‖Vφ)/2. Write

φ(x) = (x−r)2 +s . Then Vφ = 2
∫ b
a |x−r|dx . This is minimized when r = c . Note that

φ(b) = 0 if and only if s = −(b− a)2/4. The unique error-minimizing polynomial is
then φ(x) = (x−c)2−(b−a)2/4 = (x−a)(x−b) , for which Vφ = (b−a)2/2. Hence,
|E( f )| � ‖ f ′′‖(b− a)2/4. To show this estimate cannot be improved, let (ψn) be a
delta sequence as in the proof of Corollary 2.2. Define f ′′n (x) = ψn(x− a)− 2ψn(x−
c)+ ψn(b− x) . Then

∫ b
a f ′′n (x)dx = 0 and ‖ f ′′n ‖ = 1. Integrate to get fn(x) =

∫ x
a (x−

t) f ′′n (t)dt , modulo a linear function. Since φ is continuous, limn→∞|
∫ b
a f ′′n (x)φ(x)dx|=

|φ(a)−2φ(c)+ φ(b)|= (b−a)2/2. �
In the terminology of Theorem (2.1) the minimizing polynomial has β = 1 and

α = (b− a)/2 and is the same as the one that generated the trapezoidal rule in (1.2).
Notice that the variation is additive over disjoint intervals so the error in the composite
formula is order 1/n , compared with error of order 1/n2 in Corollary 2.5 when f ′′ ∈
Lp([a,b]) .

An equivalent norm is ‖ f‖∗ = supI |
∫
I f (x)dx| where the supremum is taken over

all intervals I ⊂ [a,b] . It is easy to see that ‖ f‖ � ‖ f‖∗ � 2‖ f‖ for all f ∈ HK([a,b]) .
In terms of this norm, (5.2) implies |E( f )| � ‖ f ′′‖∗(b−a)2/4. This inequality appears
as Theorem 21 in [10]. We improve this inequality by a factor of 1/2 and show our
result is sharp.

COROLLARY 5.2. With the assumptions of Theorem 5.1 we have |E( f )| � (b−
a)2‖ f ′′‖∗/8 . The constant 1/8 is the best possible.

Proof. Use the second mean value theorem for integrals [3]. If φ is monotonic on
[a,b] then there is ξ ∈ [a,b] such that

E( f ) =
1
2

∫ b

a
f ′′(x)φ(x)dx =

φ(a)
2

∫ ξ

a
f ′′(x)dx+

φ(b)
2

∫ b

ξ
f ′′(x)dx.

Then |E( f )| � (|φ(a)|+ |φ(b)|)‖ f ′′‖∗/2. This is minimized by taking φ(x) = (x−a)2

or φ(x) = (x− b)2 , for which |E( f )| � (b− a)2‖ f ′′‖∗/2. If φ has a minimum at
r ∈ (a,b) then there are ξ1 ∈ [a,r] and ξ2 ∈ [r,b] such that

E( f ) =
φ(a)

2

∫ ξ1

a
f ′′(x)dx+

φ(r)
2

∫ r

ξ1

f ′′(x)dx+
φ(r)

2

∫ ξ2

r
f ′′(x)dx+

φ(b)
2

∫ b

ξ2

f ′′(x)dx.

It follows that |E( f )| � (|φ(a)|+ |φ(r)|+ |φ(b)|)‖ f ′′‖∗/2. Choosing φ(x) = (x−
a)(x−b) minimizes the coefficient of ‖ f ′′‖∗ and we get |E( f )|� (b−a)2‖ f ′′‖∗/8. To
prove this estimate is sharp, let (ψn) be a delta sequence as in the proof of Corollary 2.2.
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Define f ′′n (x) = ψn(x− c) . Then ‖ f ′′n ‖∗ = 1 and |E(ψn)| → (c− a)(b− c)/2 = (b−
a)2/8. �

The completion of HK([a,b]) in the Alexiewicz norm is the Banach space Ac([a,b]) .
Each element of Ac([a,b]) is the distributional derivative of a function in Bc([a,b]) =
{F ∈C([a,b]) | F(a) = 0} . Note that Bc([a,b]) is a Banach space under usual point-
wise operations and the uniform norm. If f ∈Ac([a,b]) then there is a unique primitive
F ∈ Bc([a,b]) such that F ′ = f . The distributional derivative is 〈F ′,φ〉 = −〈F,φ ′〉 =
−∫ b

a F(x)φ ′(x)dx where φ ∈C∞
c (R) . The Alexiewicz norm of f is ‖ f‖= supx∈[a,b]|

∫ x
a f |

= ‖F‖∞ . This makes Ac([a,b]) into a Banach space isometrically isomorphic to
Bc([a,b]) . The continuous primitive integral of f ∈ Ac([a,b]) is then

∫ b
a f = F(b)−

F(a) . If g is of bounded variation then the integration by parts formula is given in
terms of a Riemann–Stieltjes integral as

∫ b
a f g = F(b)g(b)− ∫ b

a F(x)dg(x) . Note that
Ac([a,b]) contains HK([a,b]) and hence Lp([a,b]) for each 1 � p � ∞ . If F is a con-
tinuous function such that its pointwise derivative F ′(x) = 0 almost everywhere then
the Lebesgue integral of F ′(x) exists and is 0 but the continuous primitive integral
is
∫ b
a F ′ = F(b)−F(a) . If F is continuous such that the pointwise derivative exists

nowhere then the Lebesgue integral of F ′(x) does not exist but F ′ ∈ Ac([a,b]) and∫ b
a F ′ = F(b)−F(a) . See [20] for details. Note that if F ∈C([a,b]) then F ′ ∈Ac([a,b])

and
∫ b
a F ′ = F(b)−F(a) . An advantage of the continuous primitive integral is that the

space of primitives is simple. It is the continuous functions while for the Henstock–
Kurzweil integral it is a complicated space called ACG∗ . See [3] for the definition.

COROLLARY 5.3. Let f ∈ C1([a,b]) . Then f ′′ ∈ Ac([a,b]) and the formulas in
Theorem 5.1 hold.

In a sense this now reduces to estimates on f ′ since the Alexiewicz norm of f ′′ is
the uniform norm of f ′ . The formulas in Theorem 5.1 also hold when f ′ is a regulated
function. This is a function that has a left limit and a right limit at each point. See [21]
for details.

6. Exact for cubics

In this section we show (1.1) is exact for all φ when f is a linear function. We also
show (1.1) is exact for all cubic polynomials f whenever φ(x) = (x−c)2−(b−a)2/12.

THEOREM 6.1. Let f : [a,b] → R and let c be the midpoint of [a,b] . Let φ be a
monic quadratic. Write

∫ b

a
f (x)dx =

1
2

[− f (a)φ ′(a)+ f (b)φ ′(b)+ f ′(a)φ(a)− f ′(b)φ(b)
]
+E( f ). (6.1)

(a) If f is a linear function then E( f ) = 0 for all such φ . (b) E( f ) = 0 for all cubic
polynomials f if and only if φ(x) = (x− c)2− (b−a)2/12 .
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Proof. The proof of (a) is straightforward using E( f ) = (1/2)
∫ b
a f ′′(x)φ(x)dx .

By (a) we need only consider f (x) = Ax3 + Bx2 . Write φ(x) = x2 +Cx + D . The
equation

∫ b
a (6Ax+2B)(x2 +Cx+D)dx = 0 gives the linear system

2(a2 +ab+b2)C+3(a+b)D = −3
2
(a+b)(a2 +b2) (6.2)

(a+b)C+2D = −2
3
(a2 +ab+b2). (6.3)

The solution is C =−(a+b) , D = (a2 +4ab+b2)/6, and this gives φ(x) = (x−c)2−
(b−a)2/12. �

Note that this is the same φ as in Corollary 2.3. Also, E( f ) = 0 for all quadratic
polynomials f if and only if (6.3) holds.
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