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Abstract. In this paper, we first generalize an inequality and improve another one for unitarily
invariant norms, which are established by Kittaneh and Manasrah in [Improved Young and Heinz
inequalities for matrices. J. Math. Anal. Appl.361(2010)262-269]. Then we present a new in-
equality for unitarily invariant norms, which is equivalent to an inequality presented by Kittaneh
and Manasrah in the case of the Hilbert-Schmidt norm.

1. Introduction

Let Mm,n be the space of m×n complex matrices and Mn = Mn,n . Let ‖·‖ denote
any unitarily invariant norm on Mn . So, ‖UAV‖ = ‖A‖ for all A ∈ Mn and for all
unitary matrices U , V ∈ Mn . For A = (ai j) ∈ Mn , the Hilbert-Schmidt norm of A is
defined by

‖A‖2 =

√√√√( n

∑
i=1

n

∑
j=1

∣∣ai j
∣∣2)=

√
tr |A|2 =

√
n

∑
j=1

s2
j (A),

where s1 (A) � s2 (A) � · · · � sn−1 (A) � sn (A) are the singular values of A , that is, the

eigenvalues of the positive semidefinite matrix |A| = (AA∗)
1
2 , arranged in decreasing

order and repeated according to multiplicity. For A = (ai j) ∈ Mn , the trace norm is
defined by

‖A‖1 =
n

∑
j=1

s j (A) = tr |A| .

It is known that the Hilbert-Schmidt and trace norms are unitarily invariant.
Let A, B, X ∈ Mn such that A and B are positive semidefinite, Kittaneh and Man-

asrah [1] have obtained the following inequalities:

2
∥∥∥A1/2XB1/2

∥∥∥
2
+
(√

‖AX‖2 −
√
‖XB‖2

)2

� ‖AX +XB‖2 , (1.1)
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∥∥AvB1−v +A1−vBv
∥∥

1 � ‖A+B‖1−2r0

(√
‖A‖1 −

√
‖B‖1

)2

, (1.2)

∥∥AvXB1−v +A1−vXBv
∥∥2

2 � ‖AX +XB‖2
2 −2r0‖AX −XB‖2

2 , (1.3)

where 0 � v � 1 and r0 = min{v, 1− v} .

The inequality (1.1) [1, Theorem 3.3] is a refinement of the arithmetic-geometric
mean inequality [2, Theorem 2]:

2
∥∥∥A1/2XB1/2

∥∥∥� ‖AX +XB‖

for the Hilbert-Schmidt norm. The inequality (1.2) [1, Corollary 3.9] is a refinement of
the Heinz inequality [2, Theorem 2]:

∥∥AvXB1−v +A1−vXBv
∥∥� ‖AX +XB‖

for X = I and the trace norm. The inequality (1.3) [1, Theorem 3.5] is an improvement
of the Heinz inequality for the Hilbert-Schmidt norm.

In this paper, we first generalize the inequality (1.1) and improve the inequality
(1.2). Then we present a new inequality for unitarily invariant norms, which is equiva-
lent to the inequality (1.3) in the case of the Hilbert-Schmidt norm.

2. Main results

First, we generalize the inequality (1.1). To do this, we need the following lemma.

LEMMA 2.1. [3] Let A, B, X ∈ Mn such that A and B are positive semidefinite.
If 0 � v � 1 , then ∥∥AvXB1−v

∥∥� ‖AX‖v ‖XB‖1−v .

THEOREM 2.1. Let A, B, X ∈ Mn such that A and B are positive semidefinite. If
0 � v � 1 , then

2
√

v(1− v)
∥∥A1/2XB1/2

∥∥
2 +

(√
v‖AX‖2−

√
(1− v)‖XB‖2

)2

� ‖vAX +(1− v)XB‖2 .
(2.1)
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Proof. By Lemma 2.1, we have

(
2
√

v(1− v)
∥∥A1/2XB1/2

∥∥
2 +
(√

v‖AX‖2 −
√

(1− v)‖XB‖2

)2
)2

−‖vAX +(1− v)XB‖2
2

= 4
√

v(1− v)
∥∥A1/2XB1/2

∥∥
2

(√
v‖AX‖2−

√
(1− v)‖XB‖2

)2

+2v(1− v)
∥∥A1/2XB1/2

∥∥2
2 +
(√

v‖AX‖2−
√

(1− v)‖XB‖2

)4

−v2 ‖AX‖2
2 +(1− v)2 ‖XB‖2

2

� 4
√

v(1− v)
∥∥A1/2XB1/2

∥∥
2

(√
v‖AX‖2−

√
(1− v)‖XB‖2

)2

+
(√

v‖AX‖2 −
√

(1− v)‖XB‖2

)
− (v‖AX‖− (1− v)‖XB‖2)

2

= −4
√

v(1− v)
(√

v‖AX‖2−
√

(1− v)‖XB‖2

)2

×(√‖AX‖2 ‖XB‖2−
∥∥A1/2XB1/2

∥∥
2

)
� 0.

(2.2)

For the proof of the last inequality in (2.2), we have used Lemma 2.1 again. This
completes the proof. �

REMARKS.

1. Taking v = 1
2 in the inequality (2.1), we obtain the inequality (1.1).

2. The inequality (2.1) is related to the following inequality presented by Kosaki [4]
and Bhatia and Parthasarathy [5]: if A, B, X ∈Mn such that A and B are positive
semidefinite and if 0 � v � 1, then

∥∥AvXB1−v
∥∥

2 � ‖vAX +(1− v)XB‖2 . (2.3)

It should be noticed that neither (2.1) nor (2.3) is uniformly better than the other.
Second, we improve the inequality (1.2). To do this, we need the two lemmas as

follows.

LEMMA 2.2. [6] Suppose that a, b � 0 . If 0 � v � 1 , then

avb1−v +a1−vbv

2
� ta1/2b1/2 +(1− t)

a+b
2

,

where t = 4
(
v− v2

)
.
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LEMMA 2.3. [7, p. 94] Let A,B ∈ Mn , then

n

∑
j=1

s j (AB) �
n

∑
j=1

s j (A)s j (B).

THEOREM 2.2. If A, B ∈ Mn are positive semidefinite, then

∥∥AvB1−v
∥∥

1 +
∥∥A1−vBv

∥∥
1 � (1− t)‖A+B‖1 +2t

√
‖A‖1 · ‖B‖1, (2.4)

where 0 � v � 1 , t = 4
(
v− v2

)
.

Proof. By Lemma 2.2, we have

sv
j (A)s1−v

j (B)+ s1−v
j (A) sv

j (B)
2

� ts1/2
j (A)s1/2

j (B)+ (1− t)
s j (A)+ s j (B)

2
,

for all j = 1, · · · ,n . By Lemma 2.3 and the Cauchy-Schwarz inequality, we obtain

‖AvB1−v‖1 +‖A1−vBv‖1

2

=

n
∑
j=1

s j(AvB1−v)+
n
∑
j=1

s j(A1−vBv)

2

�

n
∑
j=1

sv
j (A)s1−v

j (B)+
n
∑
j=1

s1−v
j (A)sv

j (B)

2

� t
n
∑
j=1

s1/2
j (A)s1/2

j (B)+
(

1−t
2

) n
∑
j=1

(s j (A)+ s j (B))

� t

√
n
∑
j=1

s j (A)
n
∑
j=1

s j (B)+
(

1−t
2

) n
∑
j=1

(s j (A)+ s j (B))

= (1− t)tr
(

A+B
2

)
+ t

√
trA · trB.

(2.5)

Note that

(1− t)‖A+B‖1 +2t
√
‖A‖1 · ‖B‖1 = (1− t)tr (A+B)+2t

√
trA · trB. (2.6)

If follows from (2.5) and (2.6) that

∥∥AvB1−v
∥∥

1 +
∥∥A1−vBv

∥∥
1 � (1− t)‖A+B‖1 +2t

√
‖A‖1 · ‖B‖1.

This completes the proof. �

REMARK. By the triangle inequality, we have∥∥AvB1−v +A1−vBv
∥∥

1 �
∥∥AvB1−v

∥∥
1 +
∥∥A1−vBv

∥∥
1 . (2.7)
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So, it follows from (2.4) and (2.7) that

∥∥AvB1−v +A1−vBv
∥∥

1 � (1− t)‖A+B‖1 +2t
√
‖A‖1 · ‖B‖1. (2.8)

Now, we compare the inequality (1.2) with the inequality (2.8). Let

K = ‖A+B‖1−2r0

(√
‖A‖1 −

√
‖B‖1

)2

− (1− t)‖A+B‖1 −2t
√
‖A‖1 · ‖B‖1,

where r0 = min{v, 1− v} . It easily follows that

K = 2v(1−2v)
(
‖A+B‖1 −2

√
‖A‖1 · ‖B‖1

)
� 0, 0 � v � 1

2

and

K = 2
(−2v2 +3v−1

)(‖A+B‖1 −2
√
‖A‖1 · ‖B‖1

)
� 0,

1
2

� v � 1

Therefore, the inequality (2.8) is a refinement of the inequality (1.2).
Next, we present a new inequality for unitarily invariant norms. To do this, we

need the following lemmas on convex functions.

LEMMA 2.4. If A, B, X ∈ Mn such that A and B are positive semidefinite, then
the function f (v) =

∥∥AvXB1−v +A1−vXBv
∥∥2

is continuous and convex on [0,1] .

Proof. For each unitarily invariant norm, the function

ϕ (v) =
∥∥AvXB1−v +A1−vXBv

∥∥
is continuous and convex on [0,1][7, p. 265].

Since h(x) = x2 (x � 0) is continuous and nondecreasing, h(φ (v)) = φ2 (v) is
also continuous and convex, which implies that the function f (v) is continuous and
convex on [0,1] . This completes the proof. �

LEMMA 2.5. [8,9] Let ϕ (x) be a real valued convex function on an interval
[a,b] . For any x1,x2 ∈ [a,b] , we have

ϕ (x) � ϕ (x2)−ϕ (x1)
x2 − x1

x− x1ϕ (x2)− x2ϕ (x1)
x2− x1

, x ∈ (x1,x2) .

THEOREM 2.3. Let A, B, X ∈ Mn such that A and B are positive semidefinite.
For unitarily invariant norms, we have

∥∥AvXB1−v +A1−vXBv
∥∥2 � (1−2r0)‖AX +XB‖2 +8r0

∥∥∥A1/2XB1/2
∥∥∥2

, (2.9)

where 0 � v � 1 , r0 = min{v, 1− v} .

Proof. By Lemma 2.4, from Lemma 2.5 we obtain:
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If 0 � v � 1
2 , then

f (v) �
f
( 1

2

)− f (0)
1
2 −0

v− 0 · f
( 1

2

)− 1
2 f (0)

1
2 −0

= (1−2v)‖AX +XB‖2 +8v
∥∥A1/2XB1/2

∥∥2

= (1−2r0)‖AX +XB‖2 +8r0
∥∥A1/2XB1/2

∥∥2
.

If 1
2 � v � 1, then

f (v) �
f (1)− f

(
1
2

)
1− 1

2

v−
1
2 · f (1)−1 · f

(
1
2

)
1− 1

2

= (2v−1)‖AX +XB‖2 +8(1− v)
∥∥A1/2XB1/2

∥∥2

= (1−2r0)‖AX +XB‖2 +8r0
∥∥A1/2XB1/2

∥∥2
.

This completes the proof. �

REMARK. For the Hilbert-Schmidt norm, the inequality (2.9) is equivalent to the
inequality (1.3). In fact, it easily follows that

‖AX +XB‖2
2 = ‖AX‖2

2 +‖XB‖2
2 +2

∥∥∥A1/2XB1/2
∥∥∥2

2

and

‖AX −XB‖2
2 = ‖AX‖2

2 +‖XB‖2
2 −2

∥∥∥A1/2XB1/2
∥∥∥2

2
.

As a result, we have

(1−2r0)‖AX +XB‖2
2 +8r0

∥∥∥A1/2XB1/2
∥∥∥2

2
= ‖AX +XB‖2

2 −2r0‖AX −XB‖2
2 .

So, from (2.9) we obtain

∥∥AvXB1−v +A1−vXBv
∥∥2

2 � ‖AX +XB‖2
2−2r0‖AX −XB‖2

2 ,

which is the inequality (1.3).
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