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Abstract. Let n be a given positive integer, G an n -divisible abelian group, X a normed space
and f : G → X . We prove a generalized Hyers-Ulam stabitity of the following functional in-
equality

‖ f (x)+ f (y)+n f (z)‖ �
∥∥∥∥n f

(
x+ y

n
+ z

)∥∥∥∥+ϕ(x,y,z), ∀x,y,z ∈ G,

which has been introduced in [3], under some conditions on ϕ : G×G×G → [0,∞) .

1. Introduction

The stability problem of equations originated from a question of Ulam [9] con-
cerning the stability of group homomorphisms.

We are given a group G1 and a metric group G2 with metric ρ(·, ·) . Given ε > 0 ,
does there exist a δ > 0 such that if f : G1 → G2 satisfies ρ( f (xy), f (x) f (y)) < δ for
all x,y ∈ G1 , then a homomorphism h : G1 → G2 exists with ρ( f (x),h(x)) < ε for all
x ∈ G1 ?

In 1941, D. H. Hyers [4] considered the case of approximately additive mappings
between Banach spaces and proved the following result.

Suppose that E1 and E2 are Banach spaces and f : E1 →E2 satisfies the following
condition: there if an ε � 0 such that

‖ f (x+ y)− f (x)− f (y)‖� ε

for all x,y ∈ E1 . Then the limit h(x) = limn→∞
f (2nx)

2n exists for all x ∈ E1 and there
exists a unique additive mapping h : E1 → E2 such that

‖ f (x)−h(x)‖ � ε.

Moreover, if f (tx) is continuous in t ∈ R for each x ∈ E1 , then the mapping h is
R-linear.
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The method which was provided by Hyers, and which produces the additive map-
ping h , was called a direct method. This method is the most important and most pow-
erful tool for studying the stability of various functional equations.

In 1978, Th. M. Rassias [5] provided a generalization of Hyers Theorem which
allows the Cauchy difference to be unbounded. Let E1 and E2 be two Banach space
and f : E1 → E2 be a mapping such that f (tx) is continuous in t ∈ R for each fixed x .
Assume that there exists ε > 0 and 0 � p < 1 such that

‖ f (x+ y)− f (x)− f (y)‖ � ε(‖x‖p +‖y‖p) (1)

Then there exists a unique linear mapping T : E1 → E2 such that

‖ f (x)−T (x)‖ � 2
2−2p ε‖x‖p

for all x ∈ E1 .
In 1990, Th. M. Rassias [6] during the 27th International Symposium on Func-

tional Equations asked the question whether such a theorem can also be proved for
p � 1. This result is also true for p < 0.

In 1991, Z. Gajda [1] following the same approach as in [5], gave an affirmative
solution to this question for p > 1. It was shown by Z. Gajda [1], as well as by Th. M.
Rassias and P. S̆emrl [6], that one cannot prove a Th. M. Rassias type theorem when
p = 1. The counterexamples of Z. Gajda [1], as well as of Th. M. Rassias and P. S̆emrl
[6], have stimulated several mathematicians to invent new definitions of approximately
additive or approximately linear mappings, cf. P. Gǎvruta [2] and S. Jung [8], who
among others studied the stability of functional equations. In 1994, a generalized result
of Rassias’ theorem was obtained by P. Gǎvruta in [2].

Let G be an n -divisible abelian group n∈N (i.e., a �→ na : G→G is a surjection)
and X be a normed space with norm ‖ ·‖ . Now, for a mapping f : G→ X , we consider
the following generalized Cauchy-Jensen equation

f (x)+ f (y)+n f (z) = n f

(
x+ y

n
+ z

)
, ∀x,y,z ∈ G, n � 2

which has been introduced in the reference [3]. First of all, we recall some result in the
paper [3].

PROPOSITION 1.1. For a mapping f : G→X , the following statements are equiv-
alent.

(a) f is additive.

(b) f (x)+ f (y)+n f (z) = n f

(
x+ y

n
+ z

)
, ∀ x,y,z ∈ G.

(c) ‖ f (x)+ f (y)+n f (z)‖ �
∥∥∥∥n f

(
x+ y

n
+ z

)∥∥∥∥ , ∀ x,y,z ∈ G.
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The generalized Hyers-Ulam stability of functional equation (b) and functional
inequality (c) has been presented in the paper [3] for a special case n = 2. In this paper,
we are going to improve the theorems of [3] without using the oddness of approximate
additive functions concerning the functional inequality (c) for the general case.

2. generalized Hyers-Ulam stability of (c)

From now on, let G be an n -divisible abelian group for some positive integer
n � 2 and f : G → Y and let Y be a Banach space.

THEOREM 2.1. Let ϕ : G3 → R
+ satisfy limk→∞

1
nk ϕ(nkx,nky,nkz) = 0 for all

x,y,z ∈ G and

ϕ̌(x,z) :=
∞

∑
i=0

1
2ni+1

(
ϕ(ni+1x,0,−niz)+ ϕ(−ni+1x,0,niz)

)
< ∞,

for all x,z ∈ G. Suppose that a mapping f : G → Y satisfies the functional inequality

‖ f (x)+ f (y)+n f (z)‖ �
∥∥∥∥n f

(
x+ y

n
+ z

)∥∥∥∥+ ϕ(x,y,z) (2)

for all x,y,z ∈ G. Then there exists a unique additive mapping h : G → Y such that

‖ f (x)−h(x)‖ � ϕ̌(x,x)+
ϕ(x,−x,0)

2
+

n2

n−1
‖ f (0)‖ (3)

for all x ∈ G.

Proof. For all x ∈ G , letting y = −x , z = 0 in (2) and dividing both sides by 2,
we have ∥∥∥ f (x)+ f (−x)

2

∥∥∥ � ϕ(x,−x,0)
2

+n‖ f (0)‖ (4)

for all x ∈ G . Replacing x by nx and letting y = 0 and z = −x in (2), we get

‖ f (nx)+n f (−x)+ f (0)‖� ϕ(nx,0,−x)+n‖ f (0)‖ (5)

for all x ∈ G . Replacing x by −x in (5), one has

‖ f (−nx)+n f (x)+ f (0)‖� ϕ(−nx,0,x)+n‖ f (0)‖ (6)

for all x ∈ G . Put g(x) = f (x)− f (−x)
2 . Associating (5) with (6) yields

‖ng(x)−g(nx)‖� 1
2
(ϕ(nx,0,−x)+ ϕ(−nx,0,x))+n‖ f (0)‖

that is, ∥∥∥∥g(x)− 1
n
g(nx)

∥∥∥∥ � 1
2n

(ϕ(nx,0,−x)+ ϕ(−nx,0,x))+‖ f (0)‖ (7)
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for all x ∈ G . It follows from (7) that∥∥∥g(nlx)
nl − g(nmx)

nm

∥∥∥
�

m−1

∑
k=l

∥∥∥ 1
nk g(nkx)− 1

nk+1 g(nk+1x)
∥∥

=
m−1

∑
k=l

1
nk

∥∥∥g(nkx)− 1
n
g(nk+1x)

∥∥∥
�

m−1

∑
k=l

[ 1
2nk+1

(
ϕ(nk+1x,0,−nkx)+ ϕ(−nk+1x,0,nkx)

)
+

1
nk

‖ f (0)‖
]

(8)

for all nonnegative integers m and l with m > l � 0 and x ∈ G . Since the right hand

side of (8) tends to zero as l → ∞ , we obtain the sequence { g(nkx)
nk } is Cauchy for all

x∈G . Because of the fact that Y is a Banach space it follows that the sequence { g(nkx)
nk }

converges in Y . Therefore we can define a function h : G → Y by

h(x) = lim
k→∞

g(nkx)
nk , x ∈ G.

Moreover, letting l = 0 and m → ∞ in (8) yields

‖g(x)−h(x)‖� ϕ̌(x,x)+
n

n−1
‖ f (0)‖

for all x ∈ G . Hence we have∥∥∥ f (x)− f (−x)
2

−h(x)
∥∥∥ � ϕ̌(x,x)+

n
n−1

‖ f (0)‖ (9)

for all x ∈ G . It follows from (4) and (9) that

‖ f (x)−h(x)‖ � ϕ̌(x,x)+
ϕ(x,−x,0)

2
+

n2

n−1
‖ f (0)‖

for all x ∈ G . It follows from (2) that

‖h(x)+h(y)−h(x+ y)‖
= ‖h(x)+h(y)+h(−x− y)‖
= lim

k→∞

1
nk

‖g(nkx)+g(nky)+ng(−nk(x+ y))‖

= lim
k→∞

1
2nk

(
‖ f (nkx)+ f (nky)+ f (−nk(x+ y))− f (−nkx)− f (−nky)− f (nk(x+ y))‖

)
� lim

k→∞

1
2nk

(
‖n f (0)‖+ϕ(nkx,nky,−nk−1(x+y))+‖n f (0)‖+ϕ(−nkx,−nky,nk−1(x+y))

+‖n f (nk−1(x+ y))+ f (−nk(x+ y))‖+‖n f (−nk−1(x+ y))+ f (nk(x+ y))‖
)

� lim
k→∞

1
2nk

(
ϕ(nkx,nky,−nk−1(x+ y))+ ϕ(−nkx,−nky,nk−1(x+ y))

+ϕ(−nk(x+ y),0,nk−1(x+ y))+ ϕ(nk(x+ y),0,−nk−1(x+ y))
)

= 0
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for all x,y ∈ G . This implies that

h(x)+h(y) = h(x+ y)

for all x,y ∈ G . Hence the mapping h is additive.
Next, let h′ : G → Y be another additive mapping satisfying

‖ f (x)−h′(x)‖ � ϕ̌(x,x)+
ϕ(x,−x,0)

2
+

n2

n−1
‖ f (0)‖

for all x ∈ G .
Then we have

‖h(x)−h′(x)‖ =
∥∥∥∥ 1

nk h(nkx)− 1
nk h′(nkx)

∥∥∥∥
� 1

nk (‖h(nkx)− f (nkx)‖+‖ f (nkx)−h′(nkx)‖)

� 2
nk

(
ϕ̌(nkx,nkx)+

ϕ(nkx,−nkx,0)
2

)
+

n2

nk(n−1)
‖ f (0)‖

=
∞

∑
i=k

2
ni+1

[
ϕ(ni+1x,0,−nix)+ϕ(−ni+1x,0,nix)

]
+

ϕ(nkx,−nkx,0)
nk +

n2

nk(n−1)
‖ f (0)‖

for all k ∈ N and all x ∈ G . Taking the limit as k → ∞ , we conclude that

h(x) = h′(x)

for all x ∈ G . This completes the proof. �
Suppose that X is a normed space in the following corollaries. If we put ϕ(x,y,z)

:= θ (‖x‖p‖y‖q‖z‖t) and ϕ(x,y,z) := θ (‖x‖p + ‖y‖q + ‖z‖t) in Theorem 2.1, respec-
tively, then we get the following Corollaries 2.2 and 2.3.

COROLLARY 2.2. Let p+q+ t < 1 , p,q,t > 0 and θ > 0 . If a mapping f : X →
Y satisfies the following functional inequality

‖ f (x)+ f (y)+n f (z)‖ �
∥∥∥∥n f

(
x+ y

n
+ z

)∥∥∥∥+ θ (‖x‖p‖y‖q‖z‖t)

for all x,y,z ∈ X , then f is additive.

COROLLARY 2.3. Let 0 < p,q,t < 1 , θ > 0 . If a mapping f : X → Y satisfies
the following functional inequality

‖ f (x)+ f (y)+n f (z)‖ �
∥∥∥∥n f

(
x+ y

n
+ z

)∥∥∥∥+ θ (‖x‖p +‖y‖q +‖z‖t)

for all x,y,z ∈ X , then there exists a unique additive mapping h : X → Y such that

‖ f (x)−h(x)‖ � θ
[( np

n−np +
1
2

)
‖x‖p +

1
2
‖x‖q +

( 1
n−nt

)
‖x‖t

]
+

n2

n−1
‖ f (0)‖

for all x ∈ X .
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The following corollary is an immediate consequence of Theorem 2.1.

COROLLARY 2.4. For any fixed positive integer n � 2 , suppose that a mapping
f : G → Y satisfies the inequality∥∥∥∥ f (x)+ f (y)+n f (z)−n f

(
x+ y

n
+ z

)∥∥∥∥ � ε

for all x,y,z ∈G, where ε � 0. Then there exists a unique additive mapping h : G→Y
satisfying the inequality

‖ f (x)−h(x)‖ � ε
n−1

+
ε
2

+
n2

n−1
‖ f (0)‖

for all x ∈ G.

We can similarly prove another stability theorem under a somewhat different con-
dition as follows:

REMARK 2.5. Let ϕ : G3 → R
+ satisfy

ϕ̌(x,y,z) :=
∞

∑
i=0

1
ni

(1
n

ϕ(ni+1x,0,−niz)+ ϕ(nix,−niy,0)
)

< ∞,

limk→∞
1
nk ϕ(nkx,nky,nkz) = 0 for all x,y,z ∈ G . If f : G → Y is a mapping such that

‖ f (x)+ f (y)+n f (z)‖ �
∥∥∥∥n f

(
x+ y

n
+ z

)∥∥∥∥+ ϕ(x,y,z)

for all x,y,z ∈ G , then there exists a unique additive mapping h : G → Y such that

‖ f (x)−h(x)‖ � ϕ̌(x,x,x)+
2n2 +n−1

n−1
‖ f (0)‖

for all x ∈ G .

Proof. Replacing x by nx and letting y = 0 and z = −x in (2), we get

‖ f (nx)+n f (−x)+ f (0)‖� ϕ(nx,0,−x)+n‖ f (0)‖ (10)

for all x ∈ G . For all x ∈ G , letting y = −x , z = 0 in (2), we have

‖ f (x)+ f (−x)+n f (0)‖ � ϕ(x,−x,0)+n‖ f (0)‖ (11)

for all x ∈ G . Then we obtain the following inequality

‖ f (nx)−n f (x)‖ � ϕ(nx,0,−x)+nϕ(x,−x,0)+ (2n2+n−1)‖ f (0)‖ (12)

for all x ∈ G . The rest of the proof is similar to proof of Theorem 2.1. �
We may obtain more simple and sharp approximation than that of Theorem 2.1 for

the stability result under the oddness condition.
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COROLLARY 2.6. Let ϕ : G3 → R
+ satisfy limk→∞

1
nk ϕ(nkx,nky,nkz) = 0 for all

x,y,z ∈ G and

ϕ̌(x,z) :=
∞

∑
i=0

1
ni+1 ϕ(ni+1x,0,−niz) < ∞,

for all x,z ∈ G. Suppose that f : G→Y is a mapping such that f (−x) =− f (x) for all
x ∈ G and

‖ f (x)+ f (y)+n f (z)‖ �
∥∥∥∥n f

(
x+ y

n
+ z

)∥∥∥∥+ ϕ(x,y,z)

for all x,y,z ∈ G, then there exists a unique additive mapping h : G → Y such that

‖ f (x)−h(x)‖ � ϕ̌(x,x)

for all x ∈ G.

We may obtain a stability result of functional equation (b) by the similar way as in
the proof of Theorem 2.1.

COROLLARY 2.7. Let ϕ : G3 → R
+ satisfy

ϕ̌(x,z) :=
∞

∑
i=0

1
2ni+1

(
ϕ(ni+1x,0,−niz)+ ϕ(−ni+1x,0,niz)

)
< ∞,

for all x,z ∈ G and limk→∞
1
nk ϕ(nkx,nky,nkz) = 0 for all x,y,z ∈ G. If f : G → Y is a

mapping such that f (0) = 0 and∥∥∥∥ f (x)+ f (y)+n f (z)−n f

(
x+ y

n
+ z

)∥∥∥∥ � ϕ(x,y,z)

for all x,y,z ∈ G, then there exists a unique additive mapping h : G → Y such that

‖ f (x)−h(x)‖ � ϕ̌(x,x)+
ϕ(x,−x,0)

2

for all x ∈ G.

Now, we consider another stability result of functional inequality (c) in the follow-
ings.

THEOREM 2.8. Let ϕ : G3 → R
+ satisfy

ϕ̃(x,z) :=
1
2

∞

∑
i=0

ni
(

ϕ
( x

ni ,0,− z
ni+1

)
+ ϕ

(
− x

ni ,0,
z

ni+1

))
< ∞,

for all x,z ∈ G and limk→∞ nkϕ( x
nk ,

y
nk ,

z
nk ) = 0 for all x,y,z ∈ G. If f : G → Y is a

mapping such that

‖ f (x)+ f (y)+n f (z)‖ �
∥∥∥∥n f

(
x+ y

n
+ z

)∥∥∥∥+ ϕ(x,y,z) (13)
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for all x,y,z ∈ G. Then there exists a unique additive mapping h : G → Y such that

‖ f (x)−h(x)‖ � ϕ̃(x,x)+
ϕ(x,−x,0)

2
(14)

for all x ∈ G.

Proof. Note that f (0) = 0 since ϕ(0,0,0) = 0. Let y = −x , z = 0 in (13) and
dividing both sides by 2, we have

∥∥∥ f (x)+ f (−x)
2

∥∥∥ � ϕ(x,−x,0)
2

(15)

for all x ∈ G . Replacing x by nx and letting y = 0 and z = −x in (13), we get

‖ f (nx)+n f (−x)‖ � ϕ(nx,0,−x) (16)

for all x ∈ G . Replacing x by −x in (16), we get

‖ f (−nx)+n f (x)‖ � ϕ(−nx,0,x) (17)

for all x ∈ G . Put g(x) = f (x)− f (−x)
2 . Using (16) and (17) yields the functional inequal-

ity

‖ng(x)−g(nx)‖� 1
2
(ϕ(nx,0,−x)+ ϕ(−nx,0,x))

for all x ∈ G . Replacing x by x
n , we get

∥∥∥g(x)−ng
(x

n

)∥∥∥ � 1
2

(
ϕ

(
x,0,− x

n

)
+ ϕ

(
−x,0,

x
n

))
(18)

for all x ∈G . The remaining roof is similar to the corresponding proof of Theorem 2.1.
This completes the proof. �

Suppose that X is a normed space in the following corollaries. If we put ϕ(x,y,z)
:= θ (‖x‖p‖y‖q‖z‖t) and ϕ(x,y,z) := θ (‖x‖p + ‖y‖q + ‖z‖t) in Theorem 2.8, respec-
tively, then we get the following Corollaries 2.9 and 2.10.

COROLLARY 2.9. Let p+q+ t > 1 , p,q,t > 0 , θ > 0 . If a mapping f : X → Y
satisfies the following functional inequality

‖ f (x)+ f (y)+n f (z)‖ �
∥∥∥∥n f

(
x+ y

n
+ z

)∥∥∥∥+ θ (‖x‖p‖y‖q‖z‖t)

for all x,y,z ∈ X , then f is additive.
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COROLLARY 2.10. Let p,q,t > 1 , θ > 0 . If a mapping f : X → Y satisfies the
following functional inequality

‖ f (x)+ f (y)+n f (z)‖ �
∥∥∥∥n f

(
x+ y

n
+ z

)∥∥∥∥+ θ (‖x‖p +‖y‖q +‖z‖t)

for all x,y,z ∈ X , then there exists a unique additive mapping h : X → Y such that

‖ f (x)−h(x)‖ � θ
[( np

np−n
+

1
2

)
‖x‖p +

1
2
‖x‖q +

( 1
nt −n

)
‖x‖t

]
for all x ∈ X .

We can similarly prove another stability theorem under somewhat different condi-
tions as follows:

REMARK 2.11. Let ϕ : G3 → R
+ satisfy

ϕ̃(x,y,z) :=
∞

∑
i=0

ni
(

ϕ
( x

ni ,0,− z
ni+1

)
+nϕ

( x
ni+1 ,− y

ni+1 ,0
))

< ∞,

and limk→∞ nkϕ
(

x
nk ,

y
nk ,

z
nk

)
= 0 for all x,y,z ∈G . If f : G→Y is a mapping such that

‖ f (x)+ f (y)+n f (z)‖ �
∥∥∥∥n f

(
x+ y

n
+ z

)∥∥∥∥+ ϕ(x,y,z)

for all x,y,z ∈ G , then there exists a unique additive mapping h : G → Y such that

‖ f (x)−h(x)‖ � ϕ̃(x,x,x)

for all x ∈ G .

We may obtain more simple and sharp approximation than that of Theorem 2.8 for
the stability result under the oddness condition.

REMARK 2.12. Let ϕ : G3 → R
+ satisfy

ϕ̃(x,z) :=
∞

∑
i=0

niϕ
( x

ni ,0,− z
ni+1

)
< ∞,

for all x,z ∈ G and limk→∞ nkϕ
(

x
nk ,

y
nk ,

z
nk

)
= 0 for all x,y,z ∈ G . If a mapping f :

G → Y is odd and

‖ f (x)+ f (y)+n f (z)‖ �
∥∥∥∥n f

(
x+ y

n
+ z

)∥∥∥∥+ ϕ(x,y,z)

for all x,y,z ∈ G , then there exists a unique additive mapping h : G → Y such that

‖ f (x)−h(x)‖ � ϕ̃(x,x)

for all x ∈ G .
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We may alternatively obtain a stability result of functional equation (b) by the
similar way as in the proof of Theorem 2.8.

COROLLARY 2.13. Let ϕ : G3 → R
+ satisfy

ϕ̃(x,z) :=
1
2

∞

∑
i=0

ni
(

ϕ
( x

ni ,0,− z
ni+1

)
+ ϕ

(
− x

ni ,0,
z

ni+1

))
< ∞,

for all x,z ∈ G and limk→∞ nkϕ( x
nk ,

y
nk ,

z
nk ) = 0 for all x,y,z ∈ G. If f : G → Y is a

mapping such that

∥∥∥∥ f (x)+ f (y)+n f (z)−n f

(
x+ y

n
+ z

)∥∥∥∥ � ϕ(x,y,z)

for all x,y,z ∈ G, then there exists a unique additive mapping h : G → Y such that

‖ f (x)−h(x)‖ � ϕ̃(x,x)+
ϕ(x,−x,0)

2

for all x ∈ G.
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[2] P. GǍVRUTA, A generalization of the Hyers–Ulam–Rassias stability of approximately additive map-
pings, J. Math. Anal. Appl. 184 (1994), 431–436.

[3] Z.-X. GAO, H.-X. CAO, W.-T. ZHENG AND LU XU, Generalized Hyers–Ulam–Rassias stability of
functional inequalities and functional equations, J. Math. Inequal. 3(1)(2009), 63–77.

[4] D. H. HYERS, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941),
222–224.

[5] TH. M. RASSIAS, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72
(1978), 297–300.

[6] TH. M. RASSIAS, The stability of mappings and related topics, In ‘Report on the 27th ISFE’, Aequ.
Math. 39 (1990), 292–293.
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