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THE JENSEN INEQUALITY IN AN EXTERNAL FORMULA
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(Communicated by A. Agli¢ Aljinovic)

Abstract. The classical Jensen inequality is expressed by internally dividing points and so is
non-commutative Jensen inequalities. In this paper, considering that it is expressed by externally
dividing points, we shall discuss two non-commutative Jensen inequalities and their reverse, that
is, one is a vector state version and the other is a Davis-Choi-Jensen type version.

1. Introduction

The classical Jensen inequality is expressed by internally dividing points: If a real
valued continuous function f on an interval J is concave, then

n n
2 oif(xi)) < f 2 Ol x; (1.1)
i=1 i=1

for all x; € J and all o; > 0 such that 3 ; o; = 1. Mond-Pecari¢ [8] showed the

following vector state version of (1.1): If A is a selfadjoint operator on a Hilbert space
H , then

(f(A)x,x) < f((Ax,x)) (1.2)

for every unit vector x € H. Also, we can reform (1.2) a two variable version as follows:

(f(A)x,x) + (f(B)y,y) < f((Ax,x) + (Byy)) (1.3)

for all vectors x and y in H such that || x[|> + | y ||*>= 1, also see [4, Theorem 1.3].
On the other hand, a real valued continuous function f on J is said to be operator
concave if
(L=0)f(A)+1f(B) < f((1—1)A+1B)

for all selfadjoint operators A and B with the spectra in J and ¢ € [0,1]. As a char-
acterization of operator concavity, we have the following Davis-Choi-Jensen operator
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inequality [2, 1]: If @ is a normalized positive linear map and f is operator concave,
then

O(f(A)) < f(P(A)) (1.4)

for all selfadjoint operators A with the spectra in J. Also, we can reform (1.4) a two
variable version as follows:

O(f(A))+¥(f(B)) < f(P(A)+¥(B)) (1.5)

for all positive linear maps @,V such that ®(I) +‘¥(I) = I and for all selfadjoint
operators A, B with the spectrain J.

In [3], J.I.Fujii pointed out that the concavity is also expressed by externally di-
viding points: A real valued function f on an interval J is concave if and only if

J((U4r)x—ry) <(1+7)f(x) =rf(y)

for all x,y € J and r > 0 with (14 r)x—ry € J. Thus, an external version of the
classical Jensen inequality is as follows: A real valued function f on J is concave if
and only if

n k n n
f(Z oxi — Zﬁm) < (Z(Xi)f< nl
i=1 j=1 i=1

i—=1 O i

k
OCixi> - Z Bif(v;) (1.6)
1 j=1

for x1,--,Xu,y1, -, yx €J and (X,',ﬂj > 0 such that 2?:1 o —2];:1 ﬁj =1,and 2?:1 ox;
— le‘-: 1 Bjyj € J, also see [10, p83]. Moreover, he showed the following characteriza-
tion of operator concavity in terms of an external formula: A real valued continuous

function f on J is operator concave if and only if
F(1+PA—rB) < (14 1) f(A) — rf(B)

for all » > 0 and all selfadjoint operators A and B with 6(A),c(B) and o((1+r)A —
rB) C J. Then we have the following external version of the Jensen operator inequality:
If f is operator concave, then

n

f <(1 + i ri)A— i rkBk) <(I+ i i) f(A) = ref (Be)
=1 =1 =1

k=1

for all selfadjoint operators A and By (k= 1,---,n) with 6(A),0(By) and o((1+
St kA=Y reBy) C J, also see [9].

In this paper, considering that the Jensen inequality is also expressed by externally
dividing points, we shall discuss two non-commutative Jensen inequalities and their
reverse, that is, one is a vector state version (1.2) and the other is a Davis-Choi-Jensen
type version (1.4).
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2. Vector state version

First of all, we show an external version of the Jensen inequality which corre-
sponds to a two variable vector state version (1.3):

THEOREM 2.1. Let f be a real valued function on an interval J. Then f is
concave if and only if

X X

F((Ax) — (Byy)) <l x|P £ ((A— —)) ~(Byy) @D

e 1l x

forall x,y € H such that || x||* — || y ||*= 1 and for all selfadjoint operators A and B
with the spectra in J such that (Ax,x) — (By,y) € J.

Proof. Suppose that f is concave. Since || x ||?=| y ||? +1, it follows that

[E: 2f((A||—H>>

e (s - @ s (20 (52 )

Ty o P T o
> 1 Arx) (B 1y |? ((B y .y ))) oy (L1
11 (s nn - @b+ s (o)) v
e 1 )
FlAxx) = Byy)+ Iy DA\ By

> f((Ax,x) — (By,y)) + (f(B)y,y) by (1.2).

Conversely, put A = diag(x,---,x,) and B=diag(y;,---,yx) and x = (\/01, -+, /)
and y = (\/B1,---,+/Px) in (2.1). Then we have (1.6):

n k n n k
f (2 oGix; — Z ﬁj}’j) < (Z o) f (%a Z%‘%‘) - 2 Bif(v;)
i=1 j=1 i=1 i=1"" j=1 j=1

and hence f is concave.
Next, we consider the reverse Jensen inequality in an external formula. For this,
we need the following result [8]:

LEMMA 2.2. Let A be a positive operator on a Hilbert space H such that ml <
A < MI for some scalars M > m > 0. Let [ be a real valued continuous function on
[m,M] and f(t) >0 forall t € [m,M]. If f is concave, then

K(m,M, f)f((Ax,x)) < (f(A)x,x) 22

Sfor every unit vector x € H, where the generalized Kantorovich constnat K(m,M, f) is
defined by

K(mM,f) = min{% (%(x—m)jtf(m)) re [m,M]}. (2.3)
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By Lemma 2.2, we obtain the following estimate in an external formula

THEOREM 2.3. Let f be a real valued continuous function on [m,M] and f(t)
0 forall t € [m,M]. If f is concave, then

K(m’M’fo(A)x’x) _K(m’M’f)71
< f((Ax,x) — (By,y))
< K(m,M, )" (f(A)x,x) = (f(B)y.y)

for all x,y € H such that || x ||> —

| v I>= 1 and for all selfadjoint operators A and
B with the spectra in J such that (Ax,x) — (By,y) € J, where K(m,M, f) is defined as
(2.3).

(f(B)y,y)

Proof. For all x,y € H such that || x || —

|l v||?>= 1, it follows from Lemma 2.2
that

(f(A)x,x)

<lx P FlA——, =)

by (1.2)
[x |17 [l x|l

Iy 12 y
=157 () - @b+ o e (o o)
2
< x| KM, )" (mﬂmx,w—(w,y»ﬂ — ”2f<< o L)))

iyl
— K(m,M, )" (f((Ax,X) —Byy)+ Iy f ((Bll%lli—IID)

and hence

K(m,M, f)(f(A)x.x) < f((Ax,x) = Byy))+ | v > f((B HyH Hill))
gf((Axrx)_(By’y))+K(m’M’f) (f( )y,y).

On the other hand, by Theorem 2.1 and Lemma 2.2 again, we have

F((Ax,x) — (By,y)) <[/ x| f((AHj—”, H;‘—H» — (f(B)y.y)

K(m7M7f)_1(f(A)x’x) - (f(B)y’y)'

REMARK 2.4. Put the power function f(r) =¢? for 0 < p < 1 in Theorem 2.3
then we exactly have the evaluation

mMP — Mm?P (p—1)(MP —mP) P
K(m,M,f) :K(m,M,tp) = (p—l)(M—m) < lpy(mMP_MmP) ) ’
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see [4], and hence

mMP — MmP (p—1)(MP —mP)\?
(p—1)(M—m) ( p(mMP — MmP) ) (APx,x)
(p—1)(M—m) ( p(mMP —MmP \"
- II)’)’ZMP—MmP ((p_l)(Mp_mp)) (pr7y)
(p—l)(M—m)< p(mMP — MmP
mMP — MmP ( —1)(Mp—mp

P
< ((Ax) — (Byy) < ) @)= )
for all vectors x,y € H such that || x ||> — || v ||>= 1 and all selfadjoint operators A and
B such that (Ax,x) — (By,y) € [m,M].

3. Davis-Choi-Jensen inequality

In this section, we denote P[B(H),B(K)| as the set of all positive linear maps
@ : B(H) — B(K), where B(H) is a C*-algebra of all bounded linear operators on a
Hilbert space H .

The following theorem is an external version of the Davis-Choi-Jensen inequality
for operator concave functions which corresponds to (1.5):

THEOREM 3.1. Let f be a real valued continuous function on an interval J. Then
f is operator concave if and only if

1

(@A) =¥ (B) <O (@) Fo@)e() ) o) —¥(/(B) (B

forall ®,¥ € P[B(H),B(K)] such that ®(I) —Y(I) = I and for all selfadjoint opera-
tors A and B with 6(A),c(B) and o(®(A) —¥(B)) CJ.

Proof. (1) = (ii): By Stinespring decomposition theorem [1 1], ® restricted to a
C*-algebra C*(A) generated by A and I admits a decomposition ®(X) =C*¢(X)C for
all X € C*(A), where ¢ is a x-representation of C*(A) C B(H) and C is a bounded lin-
ear operator from K to a Hilbert space K’. Similarly we have a decomposition W(Y) =
D*y(Y)D forall Y € C*(B), where y are a *-representation and D is a bounded lin-
ear operator from K to a Hilbert space K”. The assumption ®(1) —¥(I) = I implies
C*C — D*D =1 and hence |C| is invertible. Since |C|~2 + (D|C|~")*(D|C|™!) =1, it
follows that

oDt f (o) to@)em ) o)
= lclf(cl et oa)cic il
= |CIf (I (C 9 (A)C — D" VB L (DlCI )y wBDICI ) [C]
> |Cl (IC]™ F(@(A) —W(B))CI™ +(DICI™) F(w(B)DICI ) €] by (1.5)
)

= f(®(A) =Y(B))+ D y(f(B))D
= f(®(A) —¥(B)) +¥(f(B))-

D=

— —
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(ii)==(i): Put ®(A) = C*AC and ¥(B) = D*BD for C*C — D*D = in (ii), then the
operator concavity of f follows from [3, Theorem 1].

REMARK 3.2. If C is invertible in a decomposition ®(A) = C*$(A)C, then
f(®(A) —¥(B)) < ©(f(4)) —¥(f(B)).

In fact, if C is invertible, then V' is unitary in the polar decomposition C = V|C| and
hence

o) f (@) o)) ~F) o) = [Clf(IcI ' co@)ciclcl

=[Clf (V7 o(A)V)ICl = [CIVf(9(A)VIC|
=C 0(f(A))C = D(f(A)).
By virtue of the generalized Kantorovich constant, we consider the difference be-

tween the concavity and the operator concavity, based on an external version of the
Jensen inequality:

THEOREM 3.3. Let f be a real valued continuous function on [m,M] and f(t) >
0 forall t € [m,M]. If f is concave, then

1

K(m, M, )®(1)? £ (@(1) 20(4)D(1) "> O(1)2 — ¥(£(B))
< f(@(A) —¥(B))
<K(mM. ) o f (o) 0()a) 1) o) —w(/(B)

forall ®,¥ € P[B(H),B(K)] such that ®(I) —Y(I) = I and for all selfadjoint opera-
tors A and B with the spectra in J such that o(®(A) — ( )) CJ, where K(m,M, f)
is defined as (2.3).

[N

To prove it, we need the following lemma [4, Corollary 3.21]:
LEMMA 3.4. Let f be a real valued continuous function on [m,M| and f(t) >0
forall t € [m,M]. If f is concave, then
K(m,M,f)f(U'AU +W*BW) < U* f(A)U +W* f(B)W
<K(mM, f) L f(U*AU +W*BW)  (3.2)
Sfor all selfadjoint operators A,B with the spectra in [m,M| and U*U +W*W =1,
where K(m,M, f) is defined as (2.3).

Proof. We give a proof for reader’s convenience. For any unit vector x € H, we
have || Ux ||> + || Wx ||>= 1 and hence

(U*fA)U+W*f(B)W)x,x) = (f(A)Ux,Ux) + (f(B)Wx,Wx)
< f((AUx,Ux) + (BWx,Wx)) by (1.3)
F(((UTAU +W*BW)x,x))
K(m,M, f)~ (f(U*AU +W*BW)x,x) by Lemma 2.2
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and this implies
U*f(AU+W*f(B)W < K(m,M, f)~' f(U*AU +W*BW).
Similarly,

(U*AU +W*BW)x,x)) by (1.2)
(AUx,Ux) + (BWx,Wx))

m,M, f)~' ((f(A)Ux,Ux) + (f(B)Wx,Wx))
m,M, f)" (U f(A)U +W* f(B)W)x,x)

(f(UTAU +W*BW)x,x) < f(
=f(

N

K(
K(

and this implies
K(m,M,f) f(U*AU +W*BW) <U*f(A)U +W*f(B)W. O
Proof of Theorem 3.3. As in the proof of Theorem 3.1, let ®(A) = C*¢(A)C and

Y(B) = D*y(B)D be the Stinespring decomposition. Then ®(I) —¥(I) = I implies
C*C—D*D =1 and so |C|~2+ (D|C|~")*(D|C|~") = I. By Lemma 3.4, it follows that

I\JI'—‘

K(m,M, f) (1) £ (@)~ 10(a)0(1)F) o)
K(m,M.£) CIf (Ic] " e(a)ic| ) [c]

K(m,M. £) CIf (€] (@(a) — ¥(B))|C| ™'+ (DI ) wiB)DIC ) [C]
Cl(ICI™ F@(@A) = WB)IC|™ + (DI FyB)DIcI ™) |c|
f(@(4) = ¥(B)) + ¥(/(B))

and also

<

[ (@A) —¥(B))+¥(f(B)
KMWIH(M ¥ (B))|
< K(m,M, )7 F (] (@A)

= K(m.M, f)" o) f (o(1)

)
cl™t =+l f(y(B)DICI ) [l
¥(B ))\C\ L (Dl wB)Dc| )

DA)D )@Uﬁ

N\»—- |

and this implies Theorem 3.3. [

REMARK 3.5. If we put ®(A) = (Ax,x) and W(B) = (By,y) for x,y € H such that
| x|I> = ||y |>=1 in Theorem 3.3, then Theorem 3.3 does not implies Theorem 2.3,
because f((Ax,x)) =| x||* f((ArX, =) does not always hold.

[l > <l
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