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MATRIX INEQUALITIES INCLUDING FURUTA

INEQUALITY VIA RIEMANNIAN MEAN OF n–MATRICES

MASATOSHI ITO

Abstract. Very recently, Yamazaki has obtained an excellent generalization of Ando-Hiai in-
equality and a characterization of chaotic order (so called Furuta inequality for chaotic order)
via weighted Riemannian mean, a kind of geometric mean, of n positive definite matrices.

In this paper, by discussing extensions of Yamazaki’s results, we shall obtain a generaliza-
tion of Furuta inequality via weighted Riemannian mean of n -matrices.
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