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MATRIX INEQUALITIES INCLUDING FURUTA
INEQUALITY VIA RIEMANNIAN MEAN OF n-MATRICES

MASATOSHI ITO

(Communicated by M. Fujii)

Abstract. Very recently, Yamazaki has obtained an excellent generalization of Ando-Hiai in-
equality and a characterization of chaotic order (so called Furuta inequality for chaotic order)
via weighted Riemannian mean, a kind of geometric mean, of n positive definite matrices.

In this paper, by discussing extensions of Yamazaki’s results, we shall obtain a generaliza-
tion of Furuta inequality via weighted Riemannian mean of n-matrices.

1. Introduction

We frequently use the weighted geometric mean of two positive definite matrices
A and B defined by Ay B =A? (A%IBA%I)“A% for o € [0,1]. In particular, we call
Af 1 B (denoted by A # B simply) the geometric mean of A and B.

It has been a longstanding problem to extend the (weighted) geometric mean for
three or more positive definite matrices. Many authors attempt to find a natural ex-
tension, for example, Ando-Li-Mathias’ mean and its refinement [2, 5, 15, 16] and
Riemannian mean (or the least squares mean) [4, 18, 19]. We remark that Ando-Li-
Mathias [2] originally proposed ten properties ((P1)—(P10) stated below) which should
be required for a reasonable geometric mean of positive definite matrices.

Let P,,(C) be the set of m x m positive definite matrices on C, and also we recall
that @ = (wy,...,w,) is a probability vector if the components satisfy >;w; = 1 and
w; >0 for i=1,...,n. For A,B € P,(C), Riemannian metric between A and B is
defined as 6,(A,B) = || logAleBAfTl ll2, where || X||» = (trX*X)% (details are in [3]).
By using Riemannian metric, Riemannian mean is defined as follows:

DEFINITION 1. ([3, 4, 18, 19]) Let Ay,...,A, € Py(C) and ® = (wy,...,w,) be
a probability vector. Then weighted Riemannian mean &4(w;A1,...,A,) € P,(C) is
defined by

n
65 (w;Ala cee 7An) = arg min Z Wi622(Ai7X)a
XePu(C) i=1
where arg min f(X) means the point Xy which attains minimum value of the function
f(X). In particular, we call &5(w;A1,...,A,) (denoted by G5(Aj,...,A,) simply)

. . . _ 1 1
Riemannian mean if ® = (,...,).
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We remark that &5(w;A,B) = A B for o0 € [0,1] and @ = (1 — &, o) since the
property & (A,Afq B) = 06:(A,B) holds.

On the other hand, the weighted geometric mean sometimes appears in famous
matrix inequalities, for example, Furuta inequality [10] and Ando-Hiai inequality [1].
We remark that these inequalities hold even in the case of bounded linear operators on a
complex Hilbert space. In what follows, we denote A > 0 if A is a positive semidefinite
matrix (or operator), and we denote A > 0 if A is a positive definite matrix (or operator).

THEOREM 1.A. (Satellite form of Furuta inequality [10, 17])

A>ZB>20withA>0 implies A™"#1. BP<B<A forp>1andr>0.
p+r

THEOREM 1.B. (Ando-Hiai inequality [1]) For A,B >0,
AfaB<I for a € (0,1) implies A"§aB" <I forr>1.

For A, B > 0, it is well known that chaotic order logA > log B is weaker than usual
order A > B since logt is a matrix (or operator) monotone function. The following
result is known as the Furuta inequality for chaotic order.

THEOREM 1.C. (Furuta inequality for chaotic order [7, 12]) Let A,B > 0. Then
the following assertions are mutually equivalent;

(i) logA >logB,
(ii) AP§BP <1 forall p >0,
(iii) A’rﬁ# BP LI forall p>0 and r > 0.

Very recently, Yamazaki [2 1] has obtained an excellent generalization of Theorems
1.B and 1.C via weighted Riemannian mean &5 of n-matrices.

THEOREM 1.D. ([21]) Let Ay,...,A, € P,y(C) and @ = (wy,...,wy,) be a prob-
ability vector. Then

Bs(w;Ay,...,Ay) <I  implies Gg(w;AY,...,AP) <1 for p>1.

THEOREM 1.E. ([21]) Let Ay,...,A, € Py(C). Then the following assertions are
mutually equivalent;

(i) logA;+---+1logA, <0,
(ii) (’55(Af,...,A,’Z)<I SJorall p>0,

(iii) Gg5(@:AY",...,A") <1 forall py,...,p, >0, where pj =11, p; and

co:( P41 P+n )
Yipsi XD
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Theorems 1.D and 1.E imply Theorems 1.B and 1.C, respectively, since &5(w;A,B) =
Aty B for o = (1 — o, 0r). Moreover, it has been shown in [21] that Theorem 1.D does
not hold for other geometric means satisfying (P1)—(P10).

In this paper, corresponding to Theorem 1.E, we shall obtain a generalization of
Furuta inequality (Theorem 1.A) via weighted Riemannian mean of n-matrices. More-
over we shall show an extension of Theorem 1.D.

2. Preliminaries

Ando-Li-Mathias [2] originally proposed the following ten properties (P1)-(P10)
which should be required for a reasonable geometric mean of positive definite matrices.
It is shown in [3, 4, 18, 19] that weighted Riemannian mean satisfies (P1)-(P10) (see
also [21]).

Let A;,Al,B; € P,(C) for i =1,...,n and let @ = (wy,...,w,) be a probability
vector. Then

(P1) Consistency with scalars. If Ay,...,A, commute with each other, then

65((0;A1,...,An) ZA;VI Arvf"

(P2) Joint homogeneity. For positive numbers ¢; >0 (i =1,...n),

65((0;611141,... ,a,,An) = a:vl ...a;f’lﬁg(w;Al,...,An).

(P3) Permutation invariance. For any permutation 7 on {1,...n},
@5(60;1417 .. ,An) = @5(7‘[(60);147,(1)7 .. 7An:(n))7
where (@) = (Wr(1),*, Wa(n)) -
(P4) Monotonicity. If B; < A; foreach i =1,...n, then

@5((0;31,...,3,7) < @5(60;1417... ,An).

(P5) Continuity. For each i =1,...n, let {Agk)};’:l be positive definite matrix se-
(k)

quences such that A, — A; as k — oo. Then

Gs(0:A% AP 5 G5(0:A,... A,) as k— o,

(P6) Congruence invariance. For any invertible matrix S,
Gs5(w;S*A1S,...,SA,S) =S5"6G5(w;Aq,...,A,)S.

(P7) Joint concavity.

Bs(0; A1+ (1 —A)A], ..., AA, + (1 —L)A))
> A8s5(w;A;,...,Ap) + (1 —2)B5(w;A),...,A,) forO<A <L
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(P8) Self-duality. &g(w:A7!,...,A ) =Bs5(w:A1,...,A,).

n

n
(P9) Determinant identity. ~ det&5(w;A1,...,A,) = [ [(detA)""
i=1

(P10) The arithmetic-geometric-harmonic mean inequality.

WiAi.

1M

-1
<ZWIAL_1> <®3((03A177An) <
i=1

We remark that, in [2], they require continuity from above as (P5). Riemannian
mean has a stronger property (P5’) than (P5).
(P5’) Non-expansive.

& (Bs(w;Ay,...,A,),65(w;By,...,B Zwl (A;,B).

It was obtained in [18, 19] that Riemannian mean has a useful characterization via
a matrix equation.

THEOREM 2.A. ([18, 19]) Let Ay,...,A, € Py(C) and ® = (wy,...,w,) be a
probability vector. Then X = Gg(w;Ay,...,A,) is the unique positive solution of the
following matrix equation:

wilogX T AIX T 4+ wylogX T A, X7 =0.

3. Main results

Firstly, we show an extension of Theorem 1.D. Theorem 1.D follows from Theo-
rem 3.1 by putting p; =--- = p, =p.

THEOREM 3.1. Let Ay,..., A, € Py(C) and ® = (wy,...,w,) be a probability
vector. If &5(w;Ay,...,Ay) < I, then

65(60/;141171""7145”) < 65((0;141,...,14”) gl fOV P13 Pn P 17

T (wi w’
where @' = (Tt,..., Ok Yu) and @' =T
We remark that || - ||; means 1-norm, that is, ||x||; = ¥ |xi| for x = (x1,...,x,). In

order to prove Theorem 3.1, we use the following result.

THEOREM 3.A. ([21]) Let Ay,...,A, € Py(C) and © = (wy,...,w,) be a prob-
ability vector. Then

wilogA; +---+wylogA, <0  implies Gg(w;Ay,...,A,) <1
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Proof of Theorem 3.1. Let X = G5(w;Ay,...,A,) <I. Thenforeach py,...,p, €
[1,2], by Theorem 2.A and Hansen’s inequality [14],

1 i :
= TZWilOgX%A;IX% = — Klog(X%Alle%)l"
o] J@'|[s = Pi
1 ;
3 Dlogx 1A Pix?
o[y == Pi

']
B (@ X AP Y 2 Lyt
s X TAPX T XD APX )<
where @ = (M. %) and @ = —2— . Therefore we have that
e P llo'lly
X <I implies &g(w" ;AN ... AP") <X <I for py,....pn €[1,2]. (3.1)

Put Y = &4(w";A", ... Al") <I. Then by (3.1), we get

/ /
Gs(a AV AT <Y <X <

w//

for p,...,p;, € [1,2], where 0" = (pvlv;),l,...,pf";l) and " = v Therefore, by
putting ¢; = p;p} for i = 1,...,n, we have that
X < I lmphes 6(s(Cl)//;Alth"’Azn) <X < I fOI' fIla~~~7‘]n E [174]7 (32)
where @” = (YL,.... ") and @ = o
(‘Il l]n> |1

By repeating the same way from (3.1) to (3.2), we have the conclusion. [

Theorem 3.1 also implies generalized Ando-Hiai inequality [9] since B5(w;A,B) =

l—,a % 1—
AfgB foro=(1—a,o) and o' = (',‘M‘;" ld+‘§‘) = ((lgaﬁfw, (170?)2+05r>'

r

THEOREM 3.B. (Generalized Ando-Hiai inequality [9]) Let A,B>0. If Ay B <
I for o0 € (0,1), then

A"t o B'<AtaB<I fors>1andr>1.

(I—o)s+ar

The following Theorem 3.2 is a variant from Theorem 3.1.

THEOREM 3.2. Let Ay,..., Ay € Py(C) and ® = (wy,...,w,) be a probability
vector. Foreach i=1,...,n and g € R, if

Gs(m AN, LAY AP <A for py,...,pn € R with p; > q,
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then
/
/. AP1 Pi—1 APi APitl
Gs(w AL, AP AP APY L arn)
AP Pil APi APitl
< Bs(@AT . AP AP AP AP
<Al
/ -5 i— / o
for pi = pi, where @' = (wy,...,wi_1, ﬁ—;_gwi,wiﬂ,...,wn) and ®' = o
1

Proof. We may assume i = 1 by permutation invariance of &g.
For pi,...,pn € R with p; > q, G5(w;A AP, ... Al") < A? if and only if

= = = =q
Gs( AT AT ARAZ AT APAT ) <L
By applying Theorem 3.1,
/. pllfq %q P2 %q %‘i Pn %q
Gs(w AT AP APAPR AT ADAR)

') ') -4 -4
Gs(@ A AT ARAT AT ADAT)
1

NN

)

/o — N
holds for Zi_z > 1, where @' = (Z,‘_Zwl,wz,...,wn). Therefore
1

/
p n . n
Gs(w AN AR AP < B AP AR L AP < AY

holds for p} > p;. O

Next, we show our main result. The following Theorem 3.3 is a parallel result to
(i) = (iii) in Theorem 1.E. In the next section, we shall recognize that Theorem 3.3
is a generalization of Theorem 1.A.

THEOREM 3.3. Let Ay,..., Ay € Py(C) and wy,...,w, > 0. If

AT > AT >0 (3.3)
and
1 gn P *gn
— logA,* AJ'A° +
P1—q1 ) ) (3.4)
Wn—1 % Pn—1 % Wn -
+ ———logA,* A" A + log AP 0
Pn—1—4qn—-1 Pn—dqn

hold for g € R, p; >q; and i=1,...,n, then

@5(60/;A11717...,A,I;:1) < Bs(m A, AP < AP forall pi>piandi=1,...,n,

n

. —~ 5 =
wherea)=<m‘flql7...,pwj >’w/:</w71 fe ),w:ﬁand(o’: L
n—4qn Pi—q1 Pn—An 1 [l ||1
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Proof. Applying Theorem 3.A to (3.4), we have

—4qn —4qn =

—qn —qn
G5(w;A,% AT'A? . A APAE ARy
so that by (3.3),
Xo = Gs(w; Al AP APy < A < AT (3.5)

By applying Theorem 3.2 to (3.5) and by (3.3),

/
X = 65(wp AN AR AP < Xo < Al < AP (3.6)
for p| > pi, where @ = (p,lw;'ql , p;izqz,...,pn‘ﬂqu and o, = Wg]‘—Hl By applying

Theorem 3.2 to (3.6) and by (3.3),

/ /
X2 = 65(@’1411?1 7A§2aAg3’ cee 7A5n) < Xl < XO < AZn < Ag3

/ > / > Dy — w1 wo w3 Wn —
for p} = p1 and p, > p>, where <p,17ql7p,27q27p3iq37...,pniqn> and

0
[l

. By repeating this argument, we can get

_ Py n "
Xn:éé(w/;Alla"ﬂAg ) an—l <XO SAZ

, ) —~ ; ,
for p; > p; fori=1,...,n, where @' = 0, = (plqul7-~~»p;:qun>- U

REMARK. (i) in Theorem 1.E, that is, logA; + --- +1ogA, < 0 holds if and only
if

1 1
—logAl" + .-+ —logAl" <0 forevery p;>0andi=1,...,n.
P1 Pn

Therefore we recognize that Theorem 3.3 implies (i) = (iii) in Theorem 1.E by

putting gy =---=¢g,=0and w; =--- =w, = 1 since
1 L )
B Pi fori=1,...,n
o~ T L3y

N 1 1

& be be
ensures @ = —— = | & .. I :< b1 P )
|1 [@]]y @]y Yipsi U Xips
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4. Furuta inequality

Furuta inequality [10] (see also [6, 11, 13, 17, 20]) has the following original form.

p (I+4r)g=p+r
THEOREM 4.A.
(Original form of Furuta inequality [10])

If A> B >0, then for each r > 0,
r r l r r l
) (B2APB2)d > (B2BPB7)4

(1,1

and r rl r ro 1
(ii) (A?APAf)E > (A2BPAT)4
hold for p >0 and g= 1 with (1+r)g=p—+r. (1,0) q

(O’ _T)

Figure

We remark that Theorem 4. A implies Lowner-Heinz theorem “A > B > 0 ensures
A% = B* forany a € [0,1]” by putting r = 0. By Lowner-Heinz theorem, we recog-
nize that the essence of Theorem 4.A is the case that p > 1 and g = ’7 L — (cf. Theorem
1.A). We can interpret Theorem 1.A as a consequence of monot0n1c1ty of an operator
function.

THEOREM 4.B. ([7]) Let A> B >0 with A > 0. Then
F(pr) = AT (ASBPAS)FTAT =A " 41, B 4.1)
p+r

is decreasing for p > 1 and r > 0.

In fact, Theorem 4.B ensures Theorem 1.A since A > B > 0 with A > 0 implies
f(p,r) < f(1,0)=B<Aforp>1andr=>0.

REMARK. Similarly to Theorem 4.B, we can easily get monotonicity of
G5(m;A", ... ,Al") corresponding to Theorems 3.1, 3.2 and 3.3, respectively.

It is well known that we have a variant from Theorem 1.A by replacing A, B with
A4,B9 and p,r with ;—’, f} in Theorem 1.A respectively.

THEOREM 4.C. ([8]) Let A>0, B>0 and q > 0. Then

A1 > B implies A™"f§4:r BP <B1 <A for p>=qand r>=0.

p¥r

Here we show that Theorem 3.3 is a generalization of Furuta inequality via weighted
Riemannian mean of n-matrices. Precisely, we show that Theorem 3.3 ensures the fol-
lowing Theorem 4.1 and Theorem 4.1 is a generalization of Theorem 4.C.

THEOREM 4.1. Let Ay,...,A, € P,(C) and g > 0. Then A? > Al >0 for i =
1,...,n—1 implies

(A7, AT AR AT < AT (4.2)

n 1
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. -~ 1 1 —1
for all p,- >0,i=1,....n—1 and p, > q, where ® = (m""’m—lﬂj’:)zﬂi> and

H@H

Proof. Assume that A? > Al >0 forg>0andi=1,....,n—1. Then Ay > Al >0
implies logA; > logA,. By (i) = (iii) in Theorem 1.C, logA; > logA, implies
AP m A} < for all p; > 0. This is equivalent to A, q.Ap’ > 1, that is,

q+ I’l
(A,%Af’A,%)I’iW > A}, By taking logarithm, we have m logA,%Af’A,% > mlogAﬁ"
that is,

= = 1
logA,” (A;7PiA2 + ———log A9 <0 (4.3)
pi+q Pn—4q
forall p; >0,i=1,...,n—1 and p, > ¢q. Summingup (4.3) fori=1,...,n—1, we
have
4, =]
logA,” (A7 )P'A2 +---

pP1+4q (4.4)

-4 -4 —1
+ ————1logA,2 (A ' )P1A7 + 10 APn=1 L 0.
Pn—1 + g ( " 1) Pn— &

By applying Theorem 3.3 to (A; 1= > A? > 0 and (4.4), we can obtain

Bs(w; A", A AP < AT < AY
forall p;>0>—q,i=1,....n—1and p, >q. O
Proof of Theorem 4.C. Put n =2, p; =r and pp = p in Theorem 4.1. Then

o— (-1 1 — (p=q atr i i
o= <r+q, pﬂ{) and w = <p+r, p+r> . Therefore we obtain the desired result. [

5. Remarks on (3.4) in Theorem 3.3

Here we discuss the following inequality (3.4) in Theorem 3.3.

PL—4q1
Wn—1

—qn
+——"——1logA,> A" A, e AL logAP»—n < ().
Pn—1 —d4qn—-1 Pn—4n

Firstly, we obtain monotonicity of left hand side of (3.4).

(3.4)

PROPOSITION 5.1. Let Ay,...,A, € Py(C), q1,...,qgn € R and wy,...,w, > 0.
IFAT 2 A" >0 fori=1,....n—1, then

‘in
F(plr"apn—l): IOgA APIA +
P1—q
Wn—1 a1y A Pn—d4n
——logA,* A" A° + ———logA]
Pn—1—4n-1 Pn—dqn

is decreasing for p1 > q1, ..., Pn—1 > qn—1-
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Proposition 5.1 is immediately shown by the following Proposition 5.2

PROPOSITION 5.2. Let A,B >0 and q,r € R. If A1

>B" >0, then
F(p) =

1 —r —r
logB2 APB? s decreasing for p > q.

—q

Proof. By Hansen’s inequality [14], we easily obtain that T*T > I ensures

(T*ST)* < T*S*T for S >0 and o € [0,1]. (5.1)
Put T =A?B7 and S =A” 9. Then by (5.1)

1
/
F(p)=p,_

logB%rAp/B%r = log(

—r q / q —r L q. 1

BT A2AY "9A2B7 )r'-a P4
S\t

<10g(B2A2A1’ qAZBT)P

1 —r —r
logB2 A’B2 =F(p)
-9
forp’>p>q. O
Put pj=¢qgi+a foroe>0and i=1,...,n in (3.4). Then

—logA Faqra$ L el

—qn
logA, " Aq” 1A, —|—%logA,‘jC
that is,

—4qn —4qn
wilogA,? ATTEAT 4o fw, qlogA,? ATTYALT £w,logA% <0, (5.2)
Let ¢ — 40 in (5.2). Then we have

wilogA,? AflhAnz + -+ wu_1logA,? Adn-14 2

<0. (5.3)
We have the following proposition on (5.3)
PROPOSITION 5.3. Let Ay,..., Ay € Py(C) and wy,...,w,—1 > 0. If
A% > AD >0 (5.4)
and
wilogA, a A‘“A e -+ w,_1logA, " Aq” LA, 3 <0 (5.3)
holdfor q; € R and i=1,...,n, then AY

=AM fori=1,....n—1.
Proof. (5.4) is equivalent to

—4qn —4qn
logA,* ATA,2 >0 fori=1,....n—1,
so we get logA,? ATA,? =0, thatis, AY

=Al" by (5.3). O
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