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MATRIX INEQUALITIES INCLUDING FURUTA

INEQUALITY VIA RIEMANNIAN MEAN OF n–MATRICES

MASATOSHI ITO

(Communicated by M. Fujii)

Abstract. Very recently, Yamazaki has obtained an excellent generalization of Ando-Hiai in-
equality and a characterization of chaotic order (so called Furuta inequality for chaotic order)
via weighted Riemannian mean, a kind of geometric mean, of n positive definite matrices.

In this paper, by discussing extensions of Yamazaki’s results, we shall obtain a generaliza-
tion of Furuta inequality via weighted Riemannian mean of n -matrices.

1. Introduction

We frequently use the weighted geometric mean of two positive definite matrices
A and B defined by A �α B = A

1
2 (A

−1
2 BA

−1
2 )αA

1
2 for α ∈ [0,1] . In particular, we call

A � 1
2
B (denoted by A �B simply) the geometric mean of A and B .

It has been a longstanding problem to extend the (weighted) geometric mean for
three or more positive definite matrices. Many authors attempt to find a natural ex-
tension, for example, Ando-Li-Mathias’ mean and its refinement [2, 5, 15, 16] and
Riemannian mean (or the least squares mean) [4, 18, 19]. We remark that Ando-Li-
Mathias [2] originally proposed ten properties ((P1)–(P10) stated below) which should
be required for a reasonable geometric mean of positive definite matrices.

Let Pm(C) be the set of m×m positive definite matrices on C , and also we recall
that ω = (w1, . . . ,wn) is a probability vector if the components satisfy ∑i wi = 1 and
wi > 0 for i = 1, . . . ,n . For A,B ∈ Pm(C) , Riemannian metric between A and B is

defined as δ2(A,B) = ‖ logA
−1
2 BA

−1
2 ‖2 , where ‖X‖2 = (trX∗X)

1
2 (details are in [3]).

By using Riemannian metric, Riemannian mean is defined as follows:

DEFINITION 1. ([3, 4, 18, 19]) Let A1, . . . ,An ∈ Pm(C) and ω = (w1, . . . ,wn) be
a probability vector. Then weighted Riemannian mean Gδ (ω ;A1, . . . ,An) ∈ Pm(C) is
defined by

Gδ (ω ;A1, . . . ,An) = arg min
X∈Pm(C)

n

∑
i=1

wiδ 2
2 (Ai,X),

where arg min f (X) means the point X0 which attains minimum value of the function
f (X) . In particular, we call Gδ (ω ;A1, . . . ,An) (denoted by Gδ (A1, . . . ,An) simply)
Riemannian mean if ω = ( 1

n , . . . , 1
n ) .
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We remark that Gδ (ω ;A,B) = A �α B for α ∈ [0,1] and ω = (1−α,α) since the
property δ2(A,A �α B) = αδ2(A,B) holds.

On the other hand, the weighted geometric mean sometimes appears in famous
matrix inequalities, for example, Furuta inequality [10] and Ando-Hiai inequality [1].
We remark that these inequalities hold even in the case of bounded linear operators on a
complex Hilbert space. In what follows, we denote A � 0 if A is a positive semidefinite
matrix (or operator), and we denote A > 0 if A is a positive definite matrix (or operator).

THEOREM 1.A. (Satellite form of Furuta inequality [10, 17])

A � B � 0 with A > 0 implies A−r � 1+r
p+r

Bp � B � A for p � 1 and r � 0 .

THEOREM 1.B. (Ando-Hiai inequality [1]) For A,B > 0 ,

A �α B � I for α ∈ (0,1) implies Ar �α Br � I for r � 1 .

For A,B > 0, it is well known that chaotic order logA � logB is weaker than usual
order A � B since logt is a matrix (or operator) monotone function. The following
result is known as the Furuta inequality for chaotic order.

THEOREM 1.C. (Furuta inequality for chaotic order [7, 12]) Let A,B > 0 . Then
the following assertions are mutually equivalent;

(i) logA � logB,

(ii) A−p �Bp � I for all p � 0 ,

(iii) A−r � r
p+r

Bp � I for all p � 0 and r � 0 .

Very recently, Yamazaki [21] has obtained an excellent generalization of Theorems
1.B and 1.C via weighted Riemannian mean Gδ of n -matrices.

THEOREM 1.D. ([21]) Let A1, . . . ,An ∈ Pm(C) and ω = (w1, . . . ,wn) be a prob-
ability vector. Then

Gδ (ω ;A1, . . . ,An) � I implies Gδ (ω ;Ap
1 , . . . ,A

p
n) � I for p � 1 .

THEOREM 1.E. ([21]) Let A1, . . . ,An ∈ Pm(C) . Then the following assertions are
mutually equivalent;

(i) logA1 + · · ·+ logAn � 0 ,

(ii) Gδ (Ap
1 , . . . ,A

p
n) � I for all p > 0 ,

(iii) Gδ (ω ;Ap1
1 , . . . ,Apn

n ) � I for all p1, . . . , pn > 0 , where p �=i = ∏ j �=i p j and

ω =
(

p �=1

∑i p �=i
, . . . ,

p �=n

∑i p �=i

)
.
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Theorems 1.D and 1.E imply Theorems 1.B and 1.C, respectively, since Gδ (ω ;A,B)=
A �α B for ω = (1−α,α) . Moreover, it has been shown in [21] that Theorem 1.D does
not hold for other geometric means satisfying (P1)–(P10).

In this paper, corresponding to Theorem 1.E, we shall obtain a generalization of
Furuta inequality (Theorem 1.A) via weighted Riemannian mean of n -matrices. More-
over we shall show an extension of Theorem 1.D.

2. Preliminaries

Ando-Li-Mathias [2] originally proposed the following ten properties (P1)–(P10)
which should be required for a reasonable geometric mean of positive definite matrices.
It is shown in [3, 4, 18, 19] that weighted Riemannian mean satisfies (P1)–(P10) (see
also [21]).

Let Ai,A′
i,Bi ∈ Pm(C) for i = 1, . . . ,n and let ω = (w1, . . . ,wn) be a probability

vector. Then

(P1) Consistency with scalars. If A1, . . . ,An commute with each other, then

Gδ (ω ;A1, . . . ,An) = Aw1
1 . . .Awn

n .

(P2) Joint homogeneity. For positive numbers ai > 0 (i = 1, . . .n) ,

Gδ (ω ;a1A1, . . . ,anAn) = aw1
1 . . .awn

n Gδ (ω ;A1, . . . ,An).

(P3) Permutation invariance. For any permutation π on {1, . . .n} ,

Gδ (ω ;A1, . . . ,An) = Gδ (π(ω);Aπ(1), . . . ,Aπ(n)),

where π(ω) = (wπ(1), · · · ,wπ(n)) .

(P4) Monotonicity. If Bi � Ai for each i = 1, . . .n , then

Gδ (ω ;B1, . . . ,Bn) � Gδ (ω ;A1, . . . ,An).

(P5) Continuity. For each i = 1, . . .n , let {A(k)
i }∞

k=1 be positive definite matrix se-

quences such that A(k)
i → Ai as k → ∞ . Then

Gδ (ω ;A(k)
1 , . . . ,A(k)

n ) → Gδ (ω ;A1, . . . ,An) as k → ∞ .

(P6) Congruence invariance. For any invertible matrix S ,

Gδ (ω ;S∗A1S, . . . ,S∗AnS) = S∗Gδ (ω ;A1, . . . ,An)S.

(P7) Joint concavity.

Gδ (ω ;λA1 +(1−λ )A′
1, . . . ,λAn +(1−λ )A′

n)
� λGδ (ω ;A1, . . . ,An)+ (1−λ )Gδ(ω ;A′

1, . . . ,A
′
n) for 0 � λ � 1.
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(P8) Self-duality. Gδ (ω ;A−1
1 , . . . ,A−1

n )−1 = Gδ (ω ;A1, . . . ,An).

(P9) Determinant identity. detGδ (ω ;A1, . . . ,An) =
n

∏
i=1

(detAi)wi .

(P10) The arithmetic-geometric-harmonic mean inequality.(
n

∑
i=1

wiA
−1
i

)−1

� Gδ (ω ;A1, . . . ,An) �
n

∑
i=1

wiAi.

We remark that, in [2], they require continuity from above as (P5). Riemannian
mean has a stronger property (P5’) than (P5).

(P5’) Non-expansive.

δ2(Gδ (ω ;A1, . . . ,An),Gδ (ω ;B1, . . . ,Bn)) �
n

∑
i=1

wiδ2(Ai,Bi).

It was obtained in [18, 19] that Riemannian mean has a useful characterization via
a matrix equation.

THEOREM 2.A. ([18, 19]) Let A1, . . . ,An ∈ Pm(C) and ω = (w1, . . . ,wn) be a
probability vector. Then X = Gδ (ω ;A1, . . . ,An) is the unique positive solution of the
following matrix equation:

w1 logX
−1
2 A1X

−1
2 + · · ·+wn logX

−1
2 AnX

−1
2 = 0.

3. Main results

Firstly, we show an extension of Theorem 1.D. Theorem 1.D follows from Theo-
rem 3.1 by putting p1 = · · · = pn = p .

THEOREM 3.1. Let A1, . . . ,An ∈ Pm(C) and ω = (w1, . . . ,wn) be a probability
vector. If Gδ (ω ;A1, . . . ,An) � I , then

Gδ (ω ′;Ap1
1 , . . . ,Apn

n ) � Gδ (ω ;A1, . . . ,An) � I for p1, . . . , pn � 1 ,

where ω̂ ′ = (w1
p1

, . . . , wn
pn

) and ω ′ = ω̂ ′
‖ω̂ ′‖1

.

We remark that ‖ ·‖1 means 1-norm, that is, ‖x‖1 = ∑i |xi| for x = (x1, . . . ,xn) . In
order to prove Theorem 3.1, we use the following result.

THEOREM 3.A. ([21]) Let A1, . . . ,An ∈ Pm(C) and ω = (w1, . . . ,wn) be a prob-
ability vector. Then

w1 logA1 + · · ·+wn logAn � 0 implies Gδ (ω ;A1, . . . ,An) � I.
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Proof of Theorem 3.1. Let X = Gδ (ω ;A1, . . . ,An) � I . Then for each p1, . . . , pn ∈
[1,2] , by Theorem 2.A and Hansen’s inequality [14],

0 =
1

‖ω̂ ′‖1
∑wi logX

1
2 A−1

i X
1
2 =

1

‖ω̂ ′‖1
∑ wi

pi
log(X

1
2 A−1

i X
1
2 )pi

� 1

‖ω̂ ′‖1
∑ wi

pi
logX

1
2 A−pi

i X
1
2 ,

that is, ∑
wi
pi

‖ω̂ ′‖1

logX
−1
2 Api

i X
−1
2 � 0. By applying Theorem 3.A,

Gδ (ω ′;X
−1
2 Ap1

1 X
−1
2 , . . . ,X

−1
2 Apn

n X
−1
2 ) � I

where ω̂ ′ = (w1
p1

, . . . , wn
pn

) and ω ′ = ω̂ ′
‖ω̂ ′‖1

. Therefore we have that

X � I implies Gδ (ω ′;Ap1
1 , . . . ,Apn

n ) � X � I for p1, . . . , pn ∈ [1,2] . (3.1)

Put Y = Gδ (ω ′;Ap1
1 , . . . ,Apn

n ) � I . Then by (3.1), we get

Gδ (ω ′′;Ap1 p′1
1 , . . . ,Apn p′n

n ) � Y � X � I

for p′1, . . . , p
′
n ∈ [1,2] , where ω̂ ′′ = ( w1

p1p′1
, . . . , wn

pnp′n
) and ω ′′ = ω̂ ′′

‖ω̂ ′′‖1
. Therefore, by

putting qi = pip′i for i = 1, . . . ,n , we have that

X � I implies Gδ (ω ′′;Aq1
1 , . . . ,Aqn

n ) � X � I for q1, . . . ,qn ∈ [1,4] , (3.2)

where ω̂ ′′ = (w1
q1

, . . . , wn
qn

) and ω ′′ = ω̂ ′′
‖ω̂ ′′‖1

.

By repeating the same way from (3.1) to (3.2), we have the conclusion. �

Theorem3.1 also implies generalizedAndo-Hiai inequality [9] since Gδ (ω ;A,B)=

A �α B for ω = (1−α,α) and ω ′ =
(

1−α
r

1−α
r + α

s
,

α
s

1−α
r + α

s

)
=
(

(1−α)s
(1−α)s+αr ,

αr
(1−α)s+αr

)
.

THEOREM 3.B. (Generalized Ando-Hiai inequality [9]) Let A,B > 0 . If A�α B �
I for α ∈ (0,1) , then

Ar � αr
(1−α)s+αr

Bs � A �α B � I for s � 1 and r � 1 .

The following Theorem 3.2 is a variant from Theorem 3.1.

THEOREM 3.2. Let A1, . . . ,An ∈ Pm(C) and ω = (w1, . . . ,wn) be a probability
vector. For each i = 1, . . . ,n and q ∈ R , if

Gδ (ω ;Ap1
1 , . . . ,Api

i , . . . ,Apn
n ) � Aq

i for p1, . . . , pn ∈ R with pi > q,
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then

Gδ (ω ′;Ap1
1 , . . . ,Api−1

i−1 ,A
p′i
i ,Api+1

i+1 , . . . ,Apn
n )

� Gδ (ω ;Ap1
1 , . . . ,Api−1

i−1 ,Api
i ,Api+1

i+1 , . . . ,Apn
n )

� Aq
i

for p′i � pi , where ω̂ ′ = (w1, . . . ,wi−1,
pi−q
p′i−qwi,wi+1, . . . ,wn) and ω ′ = ω̂ ′

‖ω̂ ′‖1
.

Proof. We may assume i = 1 by permutation invariance of Gδ .
For p1, . . . , pn ∈ R with p1 � q , Gδ (ω ;Ap1

1 ,Ap2
2 , . . . ,Apn

n ) � Aq
1 if and only if

Gδ (ω ;Ap1−q
1 ,A

−q
2

1 Ap2
2 A

−q
2

1 , . . . ,A
−q
2

1 Apn
n A

−q
2

1 ) � I.

By applying Theorem 3.1,

Gδ (ω ′;Ap′1−q
1 ,A

−q
2

1 Ap2
2 A

−q
2

1 , . . . ,A
−q
2

1 Apn
n A

−q
2

1 )

� Gδ (ω ;Ap1−q
1 ,A

−q
2

1 Ap2
2 A

−q
2

1 , . . . ,A
−q
2

1 Apn
n A

−q
2

1 )
� I,

holds for p′1−q
p1−q � 1, where ω̂ ′ = ( p1−q

p′1−qw1,w2, . . . ,wn) . Therefore

Gδ (ω ′;Ap′1
1 ,Ap2

2 , . . . ,Apn
n ) � Gδ (ω ;Ap1

1 ,Ap2
2 , . . . ,Apn

n ) � Aq
1

holds for p′1 � p1 . �
Next, we show our main result. The following Theorem 3.3 is a parallel result to

(i) =⇒ (iii) in Theorem 1.E. In the next section, we shall recognize that Theorem 3.3
is a generalization of Theorem 1.A.

THEOREM 3.3. Let A1, . . . ,An ∈ Pm(C) and w1, . . . ,wn > 0 . If

Aqi
i � Aqn

n > 0 (3.3)

and
w1

p1−q1
logA

−qn
2

n Ap1
1 A

−qn
2

n + · · ·

+
wn−1

pn−1−qn−1
logA

−qn
2

n Apn−1
n−1 A

−qn
2

n +
wn

pn−qn
logApn−qn

n � 0
(3.4)

hold for qi ∈ R , pi > qi and i = 1, . . . ,n, then

Gδ (ω ′;Ap′1
1 , . . . ,Ap′n

n ) � Gδ (ω ;Ap1
1 , . . . ,Apn

n ) � Aqn
n for all p′i � pi and i = 1, . . . ,n,

where ω̂ =
(

w1
p1−q1

, . . . , wn
pn−qn

)
, ω̂ ′ =

(
w1

p′1−q1
, . . . , wn

p′n−qn

)
, ω = ω̂

‖ω̂‖1
and ω ′ = ω̂ ′

‖ω̂ ′‖1
.
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Proof. Applying Theorem 3.A to (3.4), we have

Gδ (ω ;A
−qn

2
n Ap1

1 A
−qn

2
n , . . . ,A

−qn
2

n Apn−1
n−1 A

−qn
2

n ,Apn−qn
n ) � I,

so that by (3.3),

X0 ≡ Gδ (ω ;Ap1
1 , . . . ,Apn−1

n−1 ,Apn
n ) � Aqn

n � Aq1
1 . (3.5)

By applying Theorem 3.2 to (3.5) and by (3.3),

X1 ≡ Gδ (ω1;A
p′1
1 ,Ap2

2 , . . . ,Apn
n ) � X0 � Aqn

n � Aq2
2 (3.6)

for p′1 � p1 , where ω̂1 =
(

w1
p′1−q1

, w2
p2−q2

, . . . , wn
pn−qn

)
and ω1 = ω̂1

‖ω̂1‖1
. By applying

Theorem 3.2 to (3.6) and by (3.3),

X2 ≡ Gδ (ω2;A
p′1
1 ,A

p′2
2 ,Ap3

3 , . . . ,Apn
n ) � X1 � X0 � Aqn

n � Aq3
3

for p′1 � p1 and p′2 � p2 , where ω̂2 =
(

w1
p′1−q1

, w2
p′2−q2

, w3
p3−q3

, . . . , wn
pn−qn

)
and ω2 =

ω̂2
‖ω̂2‖1

. By repeating this argument, we can get

Xn ≡ Gδ (ω ′;Ap′1
1 , . . . ,Ap′n

n ) � Xn−1 � X0 � Aqn
n

for p′i � pi for i = 1, . . . ,n , where ω̂ ′ = ω̂n =
(

w1
p′1−q1

, . . . , wn
p′n−qn

)
. �

REMARK. (i) in Theorem 1.E, that is, logA1 + · · ·+ logAn � 0 holds if and only
if

1
p1

logAp1
1 + · · ·+ 1

pn
logApn

n � 0 for every pi > 0 and i = 1, . . . ,n .

Therefore we recognize that Theorem 3.3 implies (i) =⇒ (iii) in Theorem 1.E by
putting q1 = · · · = qn = 0 and w1 = · · · = wn = 1 since

1
pi

‖ω̂‖1
=

1
pi

1
p1

+ · · ·+ 1
pn

=
p �=i

∑ j p �= j
for i = 1, . . . ,n

ensures ω =
ω̂

‖ω̂‖1
=

(
1
p1

‖ω̂‖1
, . . . ,

1
pn

‖ω̂‖1

)
=
(

p �=1

∑i p �=i
, . . . ,

p �=n

∑i p �=i

)
.
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4. Furuta inequality

Furuta inequality [10] (see also [6, 11, 13, 17, 20]) has the following original form.

THEOREM 4.A.
(Original form of Furuta inequality [10])

If A � B � 0 , then for each r � 0 ,

(i) (B
r
2 ApB

r
2 )

1
q � (B

r
2 BpB

r
2 )

1
q

and
(ii) (A

r
2 ApA

r
2 )

1
q � (A

r
2 BpA

r
2 )

1
q

hold for p � 0 and q � 1 with (1+ r)q � p+ r .

p

q(1, 0)

(0,−r)

(1, 1)

q = 1 p = q

(1 + r)q = p + r

Figure

We remark that Theorem 4.A implies Löwner-Heinz theorem “A � B � 0 ensures
Aα � Bα for any α ∈ [0,1]” by putting r = 0. By Löwner-Heinz theorem, we recog-
nize that the essence of Theorem 4.A is the case that p � 1 and q = p+r

1+r (cf. Theorem
1.A). We can interpret Theorem 1.A as a consequence of monotonicity of an operator
function.

THEOREM 4.B. ([7]) Let A � B � 0 with A > 0 . Then

f (p,r) = A
−r
2 (A

r
2 BpA

r
2 )

1+r
p+r A

−r
2 = A−r � 1+r

p+r
Bp (4.1)

is decreasing for p � 1 and r � 0 .

In fact, Theorem 4.B ensures Theorem 1.A since A � B � 0 with A > 0 implies
f (p,r) � f (1,0) = B � A for p � 1 and r � 0.

REMARK. Similarly to Theorem 4.B, we can easily get monotonicity of
Gδ (ω ;Ap1

1 , . . . ,Apn
n ) corresponding to Theorems 3.1, 3.2 and 3.3, respectively.

It is well known that we have a variant from Theorem 1.A by replacing A,B with
Aq,Bq and p,r with p

q , r
q in Theorem 1.A respectively.

THEOREM 4.C. ([8]) Let A > 0 , B � 0 and q > 0 . Then

Aq � Bq implies A−r � q+r
p+r

Bp � Bq � Aq for p � q and r � 0 .

Here we show that Theorem3.3 is a generalization of Furuta inequality via weighted
Riemannian mean of n -matrices. Precisely, we show that Theorem 3.3 ensures the fol-
lowing Theorem 4.1 and Theorem 4.1 is a generalization of Theorem 4.C.

THEOREM 4.1. Let A1, . . . ,An ∈ Pm(C) and q > 0 . Then Aq
i � Aq

n > 0 for i =
1, . . . ,n−1 implies

Gδ (ω ;A−p1
1 , . . . ,A−pn−1

n−1 ,Apn
n ) � Aq

n � Aq
i (4.2)
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for all pi � 0 , i = 1, . . . ,n−1 and pn > q, where ω̂ =
(

1
p1+q , . . . , 1

pn−1+q , n−1
pn−q

)
and

ω = ω̂
‖ω̂‖1

.

Proof. Assume that Aq
i � Aq

n > 0 for q > 0 and i = 1, . . . ,n−1. Then Aq
i � Aq

n > 0
implies logAi � logAn . By (i) =⇒ (iii) in Theorem 1.C, logAi � logAn implies
A−pi

i � pi
q+pi

Aq
n � I for all pi � 0. This is equivalent to A−q

n � q
q+pi

Api
i � I , that is,

(A
q
2
n Api

i A
q
2
n )

q
pi+q � Aq

n . By taking logarithm, we have 1
pi+q logA

q
2
n Api

i A
q
2
n � 1

pn−q logApn−q
n ,

that is,
1

pi +q
logA

−q
2

n (A−1
i )piA

−q
2

n +
1

pn−q
logApn−q

n � 0 (4.3)

for all pi � 0, i = 1, . . . ,n−1 and pn > q . Summing up (4.3) for i = 1, . . . ,n−1, we
have

1
p1 +q

logA
−q
2

n (A−1
1 )p1A

−q
2

n + · · ·

+
1

pn−1 +q
logA

−q
2

n (A−1
n−1)

pn−1A
−q
2

n +
n−1
pn−q

logApn−q
n � 0.

(4.4)

By applying Theorem 3.3 to (A−1
i )−q � Aq

n > 0 and (4.4), we can obtain

Gδ (ω ;A−p1
1 , . . . ,A−pn−1

n−1 ,Apn
n ) � Aq

n � Aq
i

for all pi � 0 > −q , i = 1, . . . ,n−1 and pn > q . �
Proof of Theorem 4.C. Put n = 2, p1 = r and p2 = p in Theorem 4.1. Then

ω̂ =
(

1
r+q , 1

p−q

)
and ω =

(
p−q
p+r ,

q+r
p+r

)
. Therefore we obtain the desired result. �

5. Remarks on (3.4) in Theorem 3.3

Here we discuss the following inequality (3.4) in Theorem 3.3.

w1

p1−q1
logA

−qn
2

n Ap1
1 A

−qn
2

n + · · ·

+
wn−1

pn−1−qn−1
logA

−qn
2

n Apn−1
n−1 A

−qn
2

n +
wn

pn−qn
logApn−qn

n � 0.

(3.4)

Firstly, we obtain monotonicity of left hand side of (3.4).

PROPOSITION 5.1. Let A1, . . . ,An ∈ Pm(C) , q1, . . . ,qn ∈ R and w1, . . . ,wn � 0 .
If Aqi

i � Aqn
n > 0 for i = 1, . . . ,n−1 , then

F(p1, . . . , pn−1) =
w1

p1−q1
logA

−qn
2

n Ap1
1 A

−qn
2

n + · · ·

+
wn−1

pn−1−qn−1
logA

−qn
2

n Apn−1
n−1 A

−qn
2

n +
wn

pn −qn
logApn−qn

n

is decreasing for p1 > q1 , . . . , pn−1 > qn−1 .



490 MASATOSHI ITO

Proposition 5.1 is immediately shown by the following Proposition 5.2.

PROPOSITION 5.2. Let A,B > 0 and q,r ∈ R . If Aq � Br > 0 , then

F(p) =
1

p−q
logB

−r
2 ApB

−r
2 is decreasing for p > q.

Proof. By Hansen’s inequality [14], we easily obtain that T ∗T � I ensures

(T ∗ST )α � T ∗SαT for S � 0 and α ∈ [0,1] . (5.1)

Put T = A
q
2 B

−r
2 and S = Ap′−q . Then by (5.1),

F(p′) =
1

p′ −q
logB

−r
2 Ap′B

−r
2 = log(B

−r
2 A

q
2 Ap′−qA

q
2 B

−r
2 )

p−q
p′−q

· 1
p−q

� log(B
−r
2 A

q
2 Ap−qA

q
2 B

−r
2 )

1
p−q =

1
p−q

logB
−r
2 ApB

−r
2 = F(p)

for p′ � p > q . �
Put pi = qi + α for α > 0 and i = 1, . . . ,n in (3.4). Then

w1

α
logA

−qn
2

n Aq1+α
1 A

−qn
2

n + · · ·+ wn−1

α
logA

−qn
2

n Aqn−1+α
n−1 A

−qn
2

n +
wn

α
logAα

n � 0,

that is,

w1 logA
−qn

2
n Aq1+α

1 A
−qn

2
n + · · ·+wn−1 logA

−qn
2

n Aqn−1+α
n−1 A

−qn
2

n +wn logAα
n � 0, (5.2)

Let α → +0 in (5.2). Then we have

w1 logA
−qn

2
n Aq1

1 A
−qn

2
n + · · ·+wn−1 logA

−qn
2

n Aqn−1
n−1 A

−qn
2

n � 0. (5.3)

We have the following proposition on (5.3).

PROPOSITION 5.3. Let A1, . . . ,An ∈ Pm(C) and w1, . . . ,wn−1 > 0 . If

Aqi
i � Aqn

n > 0 (5.4)

and

w1 logA
−qn

2
n Aq1

1 A
−qn

2
n + · · ·+wn−1 logA

−qn
2

n Aqn−1
n−1 A

−qn
2

n � 0 (5.3)

hold for qi ∈ R and i = 1, . . . ,n, then Aqi
i = Aqn

n for i = 1, . . . ,n−1 .

Proof. (5.4) is equivalent to

logA
−qn

2
n Aqi

i A
−qn

2
n � 0 for i = 1, . . . ,n−1,

so we get logA
−qn

2
n Aqi

i A
−qn

2
n = 0, that is, Aqi

i = Aqn
n by (5.3). �
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