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AN INEQUALITY FOR THE BINARY ENTROPY FUNCTION

AND AN APPLICATION TO BINOMIAL COEFFICIENTS

VANIA MASCIONI

(Communicated by A. Horwitz)

Abstract. We prove a tight inequality of non-exponential type for a weighted geometric mean
commonly appearing when using Stirling’s approximation (also frequently studied in its logarith-
mic form when computing entropies). As an application we prove corollaries involving binomial
coefficients.

1. The main inequalities

If r ∈ R\ {0} , in the notation from Mitrinović’s classic text [1, 2.14], the general
weighted mean of order r of a sequence of positive numbers a = (a1, . . . ,an) with
positive weights w = (w1, . . . ,wn) is defined as

M[r](a,w) :=
(

∑n
i=1 wiar

i

∑n
i=1 wi

)1/r

.

The weighted geometric mean (corresponding to the limit r→ 0 in the above definition)
is defined as

M[0](a,w) :=

(
n

∏
i=1

awi
i

)1/∑n
i=1 wi

.

Further, as customary we can set M[−∞](a,w) := mini ai and M[∞](a,w) := maxi ai .
M[−1](a,w) is referred to as the weighted harmonic mean, while M[1](a,w) is the
weighted arithmetic mean. It is well-known [1, 2.14.2,Th. 1] that unless all ai are
identical the function r → M[r](a,w) is strictly increasing.

From the point of view of weighted means, the binary entropy function (for the
probability p of a coin toss, see for example [2]) is the negative logarithm in base 2 of
pp(1− p)1−p , that is, in the above notation, of M[0] ((p,1− p),(p,1− p)). Our main
result is a very tight inequality for this weighted geometric mean (first inequality in
Theorems 1 and 2) whose interest lies in its simplicity (not containing exponentials)
and thus possibly lending itself to streamlining further calculations.

We provide the second inequality in Theorem 1 (which is actually harder to prove)
as it may be of independent interest but, mostly, because it underlines the tightness of
the first one given that the right hand side term in Theorem 1 is a weighted average
from the same family as the left hand side.
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THEOREM 1. For q � 0 , p � 1
3 and a,b > 0 we have

M[q] ((a,b),(a,b)) � (a+b)3

(a+b)2 +4ab
� M[p] ((a,b),(a,b)) (1)

with identity if and only if a = b (or if one takes limits and allows for a and/or b to be
zero). Further, the values q = 0 and p = 1

3 are optimal.

These inequalities (for q = 0 and p = 1
3 ) are surprisingly tight, so much that a

quick look at the three simultaneous 3D-plots in Mathematica may give the illusion of
a single sheet. Since it’s enough to consider the case where a+ b = 1, the monotonic
behavior of the means shows that we only need to prove the following more explicit
statement:

THEOREM 2. For x ∈ [0,1] (we define xx|x=0 and (1− x)1−x|x=1 to be 1 ), we
have

xx(1− x)1−x � 1
1+4x−4x2 �

(
x4/3 +(1− x)4/3

)3
(2)

where identities hold if and only if x ∈ {0, 1
2 ,1} .

We delay the proofs to the appendix (the proof of the optimality of q = 0 and
p = 1

3 in (1) is to be found at the very end).

2. An application to estimates of binomial sums

It is well-known that factorials (and thus binomial coefficients) allow for exact
expressions in terms of trigonometric integrals. For example, we have the classical
result (

n
k

)
=

2n−1

π

∫ π

−π
cos((2k−n)t)cosn t dt

which can be obtained by simply converting the cosines in the integrand into complex
exponentials via Euler’s formula, and then expanding using the binomial theorem. In
contrast with this kind of result, as an application of the first inequality in Theorem 2
(and indeed the application was the first motivation behind the work on the inequality)
we prove estimates for binomial coefficients (see the next Lemma and Theorem 4),
where the interest lies in a particularly simple connection of the estimate with the ratio
k/n of the integers appearing in

(n
k

)
. Before proving the estimate for sums, we isolate

a core idea to show how Theorem 2 gets used. For an alternate and recent approach to
estimating binomial coefficients we refer to the excellent article [4].

LEMMA 3. Let 0 < k < n. Writing α := k/n we have:

1.
( n

k )
2n
√

2πα(1−α)
> exp

(
1

1+12n − 1
12α(1−α)n

)( 1
2 +2α(1−α)

)n
2.

( n
k )

2n
√

2πnα(1−α)
< exp

(
1

12n − 2(1+6n)
1+12n+144α(1−α)n2

)(
1
2 +
√

α(1−α)
)n

.
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Proof. Robbins [3] proved the following refinement of the classical Stirling’s ap-
proximation to the factorial:

m! =
√

2πm ·mme−m · erm

where
1

1+12m
< rm <

1
12m

for m � 1. For integers 0 < k < n set k = αn (thus α ∈ (0,1)) and apply Robbins’
inequalities to obtain

exp

(
1

1+12n
− 1

12α(1−α)n

)
<
(n

k

)√
2πnα(1−α)

(
αα(1−α)1−α)n

< exp

(
1

12n
− 1

1+12αn
− 1

1+12(1−α)n

)
.

We can rewrite the first inequality in (2) as

1
(αα(1−α)1−α)n � 2n

(
1−2

(
α − 1

2

)2
)n

,

and thus we have a lower estimate( n
k

)
2n
√

2πnα(1−α)
> exp

(
1

1+12n
− 1

12α(1−α)n

)(
1−2

(
α − 1

2

)2
)n

.

To obtain the upper estimate we can make use of the inequality

M[−1/2] ((α,1−α),(α,1−α)) =
1

1+2
√

α(1−α)
� αα (1−α)1−α

(which trivially follows from the monotonic behavior of weighted means [1]). Thus,
arguing as above from (3) we have( n

k

)
2n
√

2πnα(1−α)
< exp

(
1

12n
− 1

1+12αn
− 1

1+12(1−α)n

)(
1
2

+
√

α(1−α)
)n

,

as stated in the lemma. �

THEOREM 4. We have the following estimates:

1. For integers 2 � k � n
2 :

k2

∑
k=k1

(n
k

)
> 2n exp

(
1

1+12n
− n

12(n−1)

)√
n
π

∫ β2

β1

cos2n t dt,

where β1 = arcsin
(√

2
(

k1−1
n − 1

2

))
and β2 = arcsin

(√
2
(

k2
n − 1

2

))
, and n� 1

(note that β j ∈ (−π/4,0)).
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2. For integers 1 � k1 � k2 < n
2 :

k2

∑
k=k1

(n
k

)
< 2n exp

(
1

12n
− 2

1+6n

)√
2n
π

∫ γ2

γ1

cos
( t

2

)2n
dt

where γ1 = arcsin
(
2
(

k1
n − 1

2

))
and γ2 = arcsin

(
2
(

k2+1
n − 1

2

))
, and n � 1

(note that γ j ∈ (−π/2,0)).

As it will be clear from the proof, we made some small sacrifices by further es-
timating some terms in order to obtain a more readable result — the proof thus yields
stronger (and asymptotically accurate) estimates. By way of a numerical example, if
n = 100, k1 = 20 and k2 = 40, the logarithms of the three quantities appearing in
Theorem 4 are

65.4169 < 65.7549 < 68.0469 ,

where the closeness of the first inequality is in line with expectations since the first
inequality in Theorem 2 is quite a bit tighter than the one used for the upper estimate of
the sum.

Proof. Applying Lemma 3 with k in the range 2 � k1 � k2 � n/2 and k1 − 1 =
α1n , k2 = α2n , we obtain the following lower estimate for a binomial sum

k2

∑
k=k1

(n
k

)
> 2n+ 1

2 exp

(
1

1+12n
− n

12(n−1)

)√
n
π

∫ α2

α1

(
1−2

(
α − 1

2

)2
)n

dα

where we also used the trivial estimates α(1−α) � 1
4 and α � 1

n to obtain a cleaner
expression. As a final clean-up, the substitution α − 1

2 = 1√
2
sin t turns the latter esti-

mate into
k2

∑
k=k1

(n
k

)
> 2n exp

(
1

1+12n
− n

12(n−1)

)√
n
π

∫ β2

β1

cos2n t dt,

where β1 = arcsin
(√

2
(

k1−1
n − 1

2

))
and β2 = arcsin

(√
2
(

k2
n − 1

2

))
, and n � 1 (note

that β j ∈ (−π/4,0)).
Concerning the upper estimate, we again apply Lemma 3 and we first obtain

k2

∑
k=k1

(n
k

)
< exp

(
1

12n
− 2

1+6n

)√
n
2π

∫ α2

α1

1√
α(1−α)

(
1+2

√
α(1−α)

)n
dα

where 1 � k1 � k2 < n/2 and k1 = α1n , k2 + 1 = α2n . Finally, the substitution α =
1
2(1+ sint) yields α(1−α) = 1

4 cos2 t and

k2

∑
k=k1

(n
k

)
< 2n exp

(
1

12n
− 2

1+6n

)√
2n
π

∫ γ2

γ1

cos
( t

2

)2n
dt

where γ1 = arcsin
(
2
(

k1
n − 1

2

))
and γ2 = arcsin

(
2
(

k2+1
n − 1

2

))
, and n � 1 (note that

γ j ∈ (−π/2,0)). �
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3. Appendix: Proof of Theorem 1

Proof of Theorem 1. We begin by proving the first inequality in (2). Taking loga-
rithms left and right and considering the difference, our attention shifts to the function

g(x) := − ln
(
1+4x−4x2)− x lnx− (1− x) ln(1− x).

We want to show that g(x) � 0 with identity if and only if x ∈ {0, 1
2 ,1} . A calculation

gives

g′(x) =
4(1−2x)

1+4x−4x2 + ln(1− x)− lnx,

g′′(x) = − (1−2x)2(1−12x+12x2)
x(1− x)(1+4x−4x2)2 ,

and thus g(x) is convex on [ 3−√
6

6 , 3+
√

6
6 ] and concave elsewhere in [0,1] . Since g(0) =

0,

g

(
3−√

6
6

)
> 0.018 > 0,

and g(x) is concave on (0,(3−√
6)/6) , clearly g(x) > 0 for x ∈ (0, 3−√

6
6 ] . Further,

g′
(

1
2

)
= 0 and, since g

(
1
2

)
= 0, convexity of g(x) on [ 3−√

6
6 , 1

2 ) implies that g(x) > 0
on this latter interval. Therefore, since g(1− x) = g(x) we have that g(x) � 0 on [0,1]
with identity if and only if x ∈ {0, 1

2 ,1} as stated.
We now move on to the proof of the second inequality in (2), which is going to be

a bit tougher to verify. We need to show that the function

f (x) := x4/3 +(1− x)4/3− 1

(1+4x−4x2)1/3
(3)

is non-negative on [0,1] with identity if and only if x ∈ {0, 1
2 ,1} . Using the binomial

series gives the representation

f (x) = 2−1/3
∞

∑
k=1

[(
4/3
2k

)
2k − (−1)k

(
1/3
k

)]
2k
(

x− 1
2

)2k

(which converges absolutely for x ∈ [0,1]). A calculation shows that the expression

m(k) :=
(

4/3
2k

)
2k − (−1)k

(
1/3
k

)
(4)

is positive for k = 1, negative for 2 � k � 7 and positive for k = 8. In fact, we now
claim it is positive for all k � 8. We proceed by induction. First, when k = 8 (4) is a
difference of two positive terms and yields

m(8) =
4522537472
31381059609

− 5434
59049

> 0.05 > 0.
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Assume then that m(k) > 0. Since we have

(
4/3

2(k+1)

)
2k+1 =

((
4/3
2k

)
2k
)
· (2k− 4

3)(2k− 1
3 )

(2k+1)(k+1)
,

(−1)k+1
(

1/3
k+1

)
=
(

(−1)k
(

1/3
k

))
· k+ 1

3

k+1

and (for k > 2, hence in all our relevant cases)

(2k− 4
3)(2k− 1

3 )
(2k+1)(k+1)

>
k+ 1

3

k+1
,

our claim is proved. Now, consider the Taylor polynomial of degree 14 for f (x) at
x = 1

2 :

f̃ (x) := 2−1/3
7

∑
k=1

[(
4/3
2k

)
2k − (−1)k

(
1/3
k

)]
2k
(

x− 1
2

)2k

.

By the claim we just proved, we clearly have f (x) � f̃ (x) for x ∈ [0,1] with identity
only if x = 1

2 . Now, define the polynomial of degree six

F(z) := 2−1/3
7

∑
k=1

[(
4/3
2k

)
2k − (−1)k

(
1/3
k

)]
2kzk−1

and note that we have

f̃ (x) = F

((
x− 1

2

)2
)
·
(

x− 1
2

)2

.

Since F(0) > 0 and the coefficients of z j for j > 0 are negative, clearly F(z) is strictly
decreasing for z > 0 and thus F(z) has exactly one real root. Now, since a numerical
calculation shows that F(0.24) > 0.002 > 0, reverting to the variable x it follows that
f̃ (x) � 0 for all x ∈ ( 1

2 −
√

0.24, 1
2 +

√
0.24) , with identity within this interval if and

only if x = 1
2 and, consequently, the same is true for f (x) .

At this point let us go back to function f (x) itself (see (3)). We have f (0) = 0
and a calculation shows that f ′(0) = 0. Further, for x > 0,

f ′′(x) =
4
9

(
1

x2/3
+

1

(1− x)2/3
− (4−8x)2

(1+4x−4x2)7/3
− 6

(1+4x−4x2)4/3

)

meaning that f (x) is strictly increasing and positive for x small enough (since
limx↓0 f ′′(x) = ∞ and thus f (x) is initially strictly convex). A numerical calculation
now show that

1

x2/3
+

1

(1− x)2/3

∣∣∣∣
x= 1

2 +
√

0.24
> 22.4,
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while
(4−8x)2

(1+4x−4x2)7/3
− 6

(1+4x−4x2)4/3
� 22 (5)

throughout x ∈ [0,1] : indeed the latter observation easily follows from the fact that the
function

h(w) :=
64
(1

4 −w
)

(1+4w)7/3
+

6

(1+4w)4/3

has negative derivative for w ∈ [0, 1
4 ] and thus the function on the left hand side of

(5) is maximal at x = 0 (and x = 1). Consequently, f (x) is strictly convex through
the interval [0, 1

2 +
√

0.24] , which together with the first part of the proof means that
f (x) > 0 for all x ∈ (0,1)\ { 1

2} , as we had to prove.
Finally, we need to make sure that the choice of exponents q = 0 and p = 1

3
in Theorem 1 is optimal, that is, that the inequality (2) is no longer true if q > 0 or
0 < p < 1

3 . To see this, simply observe that the derivative of

fp(x) := xp+1 +(1− x)p+1− 1

(1+4x−4x2)p

at x = 0 is equal to 3p−1, and thus since fp(0) = 0 the function fp(x) is negative for
x > 0 small enough when p < 1

3 . So could it be that, perhaps, for some 0 < p < 1
3 we

have fp(x) � 0 throughout [0,1]? The answer is no, because fp( 1
2) = f ′p( 1

2 ) = 0 and
yet

f ′′p

(
1
2

)
= p222−p > 0,

that is, fp(x) will always be strictly convex and have zero derivative at x = 1
2 , meaning

that fp(x) > 0 for x close enough to 1
2 . This concludes the proof of Theorem 2. �
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