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A REMARK ON SOME ACCURATE ESTIMATES OF n

GERGO NEMES

(Communicated by N. Elezovic)

Abstract. In this paper we correct and generalize some inequalities related to an accurate asymp-
totic series of 7. A recurrence for the coefficients of this asymptotic series involving the Euler
numbers is established as well.

1. Introduction

It is well-known that the constant 7 can be expressed as an infinite product due to
Wallis [6]
T 22 4.4 6-6 (2k) (2k)

2 13'3'5_7"':,!;[1(21(—1)(2“1)'

If we put
n (2k) (2k)
=1, = — — nx>1,
%0 on kl:Il Qk—1)(2k+1) "
then the Wallis product can be written as 1im,,—. .. s, = 7 /2. However, the convergence

of s, is very slow, so it is not suitable for approximating 7. Based on the following
asymptotic expansion of Fields [2]

(2p)
I'(x+a) jab I'(b—a+2k)By" (p) _
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as x — +oo, Mortici [4] claims to have established the result
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for n > 1. Here I' denotes the Gamma function and B,(CK) (A) is the kth Norlund
polynomial, defined by

x xk
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Numerical calculation easily shows these bounds to be incorrect, e.g., for n = 1. The
failure comes from the misunderstanding of the monotonicity properties of some se-

quences in his proof. The correct inequalities are
ak\ BY/? (1/4) ak\ BY/? (1/4)
Sn Z 2% Sn Z
=0 \2k (4n—+ 1) =0 \2k (4n-+ nH*

for n > 1, in the reverse order than Mortici expected. This will follow from a more
general formula that we will derive as a consequence of a theorem by Frenzen. We will

2n+1
dn+1

2n+1

<4
dn+1

also give a recurrence for the coefficients ( ) (1/2) (1 /4).

2. The main results

THEOREM 2.1. For all integers n,N > 0, the following bounds hold

ON+1 4k 1/2 (1/4)
Sn (kz ) Sn (kzo <2k> (4n+ )

2n+1
4
dn+1

2n+1

<4
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<4k> B/ (1/4)
0 2k (4n+ )2k .
If N =2, we get back the corrected version of Mortici’s bounds, even for n = 0. The

table below shows the accuracy of the lower and upper bounds for various values of n
and N. All listed digits of the approximations are correct, expect for those underlined.

n N lower bound upper bound
10 2 3.1415926535897628070423307 3.1415926535909571508605035
10 5 3.1415926535897932384591445 3.1415926535897932384918964
15 2 3.1415926535897929746560479 3.1415926535898154462691564
15 5 3.1415926535897932384626431 3.1415926535897932384626483
20 2 3.1415926535897932296210783 3.1415926535897945480896845
20 5 3.1415926535897932384626433  3.1415926535897932384626433
The Euler numbers can be defined by the exponential generating function
2 o
E —
e +e z Ky X <

The coefficients (; )Béi/z

bers.

k=0

(1/4) in Theorem 2.1 have a nice relation with these num-

THEOREM 2.2. The sequence (‘2”,;) BS(/ 2) (1/4) satisfies the recurrence relation

and

for k> 0.
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3. The Proof of the Theorems

Proof of Theorem 2.1. Frenzen [3] showed that if x+ min[a,(a+b—1)/2] >0
and 0<a—b+1<1,then

B e (M r-a+200B5 (p)
=(+a=p) (,;E)F(b—a)(2k)!(x+a—p)2k+RM

I'(x+a)
I'(x+0)

where
I (b—a+2M)B5Y (p)
r'(b—a)M)! (x+a—p)*™

and 0< Oy <1, M>0. If we put x=n,a=1/2,b=1 and M = 2N + 1 into this
expression we obtain

Fnt1/2) _( 1\ 4k By (1/4) 8N +4\ Biyos(1/4)
rry = (r+3) (,E)(zk)m“’wﬁ(ammﬁm

Ry := 0y

(3.1
for every integers n, N > 0. From the recurrence (see, e.g., [2])
k
(2x) _ 1 2k+1 (2x)
BRh 0= (=20 3 -t (57 ) Bayeab )
J=0
we have
k
(172 (1 1 1 2k+1 (172 (1
B - )=z — By oB = ). 3.2
2k+2<4> 21262]._’_2 2j+1 2j+2P2k-2j \ 3 (3.2)

Here B; = B( ) (0) denotes the jth Bernoulli number. For the first two terms we find
B{"? (1/4)=1>0, B{"/? (1/4) = —1/24 < 0. Using the fact that

B; <0, k=0 mod 4,
By, >0, k=2 mod 4

and the recurrence (3.2), it follows by induction that

B\ (1/4) >0, k=0 mod 4,
B"? (1/4) <0, k=2 mod 4.

And hence by (3.1)

INFL /g 1/2 (1/4) 1 1/2F(n—|—1/2) 4k 1/2 (1/4)
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for every integers n,N > 0. By taking squares, then multiplying through by 42:+lg

4n+1
and noting that
2n+1 1\ 2 1/2 ) (2k r? 1/2
Sl (NP 12) H ) I(n+1/2)
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we conclude the proof of the theorem. [

Proof of Theorem 2.2. Ttis known thatif 0 <A <1 and x — oo,

| | (1B ()
logI” h) ~ h—= 1 - —log(2m) — —_
ogl (x+h) <x+ 2) 0gx —x+ 5 og(2m) ]; AN

where B (1) = B,(Cl) (A) is the kth Bernoulli polynomial [5, p. 141]. The substitution
x=n+1/4 and h =1/4 gives

DY toe(ne ) (ne ) L1 5 DB (1/4)
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(3.3)

If we put x=n+1/4 and h = 3/4, we obtain
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(3.4)

By subtracting (3.4) from (3.3) we get
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Here we have used the identities
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(see, e.g., [1, pp. 804-806]). Taking the exponential of each side we have

r(n+1) ( 1)1/2 Ex ( 1)1/2 by
—~|n+- ex — | ~ | n+-— —
I'(n+1) 4 P ;;4k(4n+1)2k . ;{226(4n—|—1)2k

for some rational coefficients b; . On the other hand from (3.1) the limit case N — +oo

gives

r(n+1) 1\ 2« 74K\ B/ (1/4)

——=L ~ (4 D 7.

I'(n+1) 4 S0 \2k) (4n+1)*
From the uniqueness theorem on asymptotic series it follows that by = (2k) (1/2) (1 /4)
for all k > 0, and hence we have derived the formal generating function

Ery 4k\ (172 (1
o5 524) -5 (0 ()

=1 =0

Differentiating both sides with respect to x yields

Ey 4 E2kk - 4k, a2 (1 s
2o e D) = 2 )P (5)

k>1 k>1 k>1
E2k+2xk <4k) (1/2) (1) X <4k—|—4) (1/2) (1)
B — X = (k+1)B — )X
kg(’) 4 kgf) 2k )% 4 kg(’) 2k+2 k42 \ 4

Expanding the product and comparing the coefficients of the powers of x we deduce
2.n). O
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