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Abstract. Let x,y > 0 with x �= y . We give new sharp bounds for identric mean I = e−1 (xx/yy)1/(x−y)

in terms of logarithmic mean L = (x− y)/(lnx− lny) and arithmetic mean A = (x+ y)/2 :( 1
2 Lp0 + 1

2 Ap0
)1/p0 < I <

( 1
2 Lp̃0 + 1

2 Ap̃0
)1/ p̃0 ,

where p0 = 8/5 and p̃0 = (ln2)/(1− ln2) are the best possible constants.

1. Introduction

The logarithmic and identric means of two positive real numbers x and y with
x �= y are defined by

L = L(x,y) =
x− y

lnx− lny
and I = I(x,y) = e−1

(
xx

yy

)1/(x−y)

,

respectively. The power mean of order r of the positive real numbers x and y is defined
by

Mr = Mr(x,y) =
(

xr + yr

2

)1/r

if r �= 0 and M0 = M0(x,y) =
√

xy.

The main properties of these means are given in [5]. In particular, the function r �→
Mr(x,y) (x �= y) is continuous and strictly increasing on R . As special cases, the
arithmetic mean and geometric mean are A = A(x,y) = M1(x,y) and G = G(x,y) =
M0(x,y) respectively.

There has been many bounds for identric mean in terms of other means. Stolarsky
[16] first established that

L < I < A. (1.1)

A reverse inequality of the the second one of (1.1) was given by Alzer [2]:

2e−1A < I.
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In [17] the author and Pittenger [9] proved that the inequalities

M2/3 < I (1.2)

and
I < Mln2 (1.3)

hold, respectively, where the constants 2/3 and ln2 are the best possible. The follow-
ing reverse inequality of (1.2) is due to Yang [22]:

I <
√

8e−1M2/3. (1.4)

In 1990, Sandor [11] gave an improvement of the first inequality of (1.1):

I >
L+A

2
. (1.5)

For the bounds for identric mean in terms of arithmetic mean and geometric mean,
Neuman and Sándor [7] first showed that

A+G
2

< I < 4e−1 A+G
2

. (1.6)

In [12], Sándor further proved the inequalities

2A+G
3

< I <

√
2A2 +G2

3
(1.7)

hold. Alzer and Qiu [3] pointed out that

αA+(1−α)G < I < βA+(1−β )G (1.8)

hold if and only if α � 2/3 and β � 2/e . While Trif [18] derived that for p � 2
inequalities

αAp +(1−α)Gp < I p < βAp +(1−β )Gp (1.9)

hold if and only if α � (2/e)p and β � 2/3. Recently, Kouba [6] proved that the
inequalities (

2
3Ap + 1

3Gp)1/p
< I <

(
2
3Aq + 1

3Gq)1/q
(1.10)

hold if and only if p � 6/5 and q � (ln3− ln2)/(1− ln2) .
Other inequalities involving the identric mean can be found in the literature [7],

[10], [12], [13], [14], [15], [21], [22], [23], [24], [25], [26]
The main aim of this paper is to present the sharp bounds for identric mean I in

terms of p -order power means of logarithmic mean L and arithmetic mean A , that is,
determine the best p > 1 such that

I >

(
Lp +Ap

2

)1/p

(1.11)

and its reverse inequality hold for all x,y > 0 with x �= y .
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THEOREM 1. For all x,y > 0 with x �= y, the inequality (1.11) holds if and only
if p � p0 = 8/5 . Moreover, we have( 1

2Lp0 + 1
2Ap0

)1/p0 < I < c0
( 1

2Lp0 + 1
2Ap0

)1/p0 , (1.12)

where c0 = 213/8e−1 = 1.13470... is the best possible constant.

THEOREM 2. For all x,y > 0 with x �= y, the inequality (1.11) is reversed if and
only if p � p̃0 = (ln2)/(1− ln2) . Moreover, we have

c̃0
(
Lp̃0 +Ap̃0

)1/ p̃0 < I <
(
Lp̃0 +Ap̃0

)1/ p̃0 , (1.13)

where c̃0 ≈ 0.97634 is the best possible constant.

2. Lemmas

To prove our main results, we need the following lemmas.

LEMMA 1. ([19], [1]) Let f ,g : [a,b] �→ R be two continuous functions which are
differentiable on (a,b) . Further, let g′ �= 0 on (a,b) . If f ′/g′ is increasing (or de-
creasing) on (a,b) , then so are the functions

x �→ f (x)− f (b)
g(x)−g(b)

and x �→ f (x)− f (a)
g(x)−g(a)

.

LEMMA 2. ([4]) Let an and bn (n = 0,1,2, ...) be real numbers and let the power
series A(t) = ∑∞

n=1 antn and B(t) = ∑∞
n=1 bntn be convergent for |t|< R. If bn > 0 for

n = 0,1,2, ... , and an/bn is strictly increasing (or decreasing) for n = 0,1,2, ... , then
the function t �→ A(t)/B(t) is strictly increasing (or decreasing) on (0,R) .

LEMMA 3. Let M (x,y) be a homogeneous mean of positive arguments x and y.
Then

M (x,y) =
√

xyM
(
et ,e−t) , (2.1)

where t = 1
2 ln(x/y) .

The proofs of the following two lemmas are complicated. Some algebraic compu-
tations involved in them are preformed with the aid of built-in computer algebra system
of Scientific Workplace Version 5.5.

LEMMA 4. Let (an) and (bn) be the sequences defined by

an = −16n3 +22n2−3n−1 (2.2)

+32n−2(2n2−13n+9
)
+22n−1(4n2 +2n−4

)
,

bn = 16n4−72n3 +80n2−35n+1 (2.3)

+32n−1 (n−3)+22n−3(−4n3 +6n2 +14n+16
)
.

Then bn > 0 and an/bn is strictly increasing for n � 5 .
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Proof. We first prove that bn > 0 for n � 5. Note that

23−2nbn >
(−4n3 +6n2 +14n+16

)
+9
(

3
2

)2n−3 (n−3).

Using binomial expansion we have

(
3
2

)2n−3
> 1+(2n−3) 1

2 + (2n−3)(2n−4)
2

1
4 + (2n−3)(2n−4)(2n−5)

6
1
8

+(2n−3)(2n−4)(2n−5)(2n−6)
24

1
16 ,

which yields

23−2nbn >
(−4n3 +6n2 +14n+16

)
+9(n−3)(1+(2n−3) 1

2 + (2n−3)(2n−4)
2

1
4

+(2n−3)(2n−4)(2n−5)
6

1
8 + (2n−3)(2n−4)(2n−5)(2n−6)

24
1
16)

= 3
8n5−3n4 + 265

32 n3− 153
8 n2 + 1141

32 n− 41
16

= 3
8 (n−5)5 + 51

8 (n−5)4 + 1345
32 (n−5)3 + 3963

32 (n−5)2 + 1099
8 (n−5)+ 237

8

> 0.

Hence, bn > 0 for n � 5.
Now we show that an/bn is strictly increasing for n � 5. Since bn > 0, it suffices

to show that
an+1bn−anbn+1 > 0.

Straightforward computation and arrangement yield

an+1bn−anbn+1 = c99
2n + c66

2n + c44
2n + c33

2n + c22
2n + c1,

where

c9 = 2
3n2− 10

3 n+8,

c6 = − 5
9n5 + 34

9 n4− 341
36 n3 + 143

36 n2− 217
18 n−36,

c4 = 4n4 +12n3 +9n2 +45n+40,

c3 = 256
9 n6− 2368

9 n5 +800n4− 7600
9 n3 + 2924

9 n2 + 596
9 n,

c2 = 72n6−259n5−488n4 + 4469
4 n3− 3207

4 n2− 239
2 n+4,

c1 = 256n6 +64n5−544n4 +496n3 +478n2−134n−8.

For n = 5, we have
an+1bn−anbn+1 = 603187200 > 0.

Hence, it is enough to check that an+1bn−anbn+1 > 0 for n � 6.
Clearly, c4 > 0 and

c1 = n4 (256n2−544
)
+64n5 +

(
496n3−8

)
+n(478n−134)> 0.
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We have for n � 5,

c3 = 256
9 (n−5)6 + 5312

9 (n−5)5 + 44000
9 (n−5)4 + 184400

9 (n−5)3

+45436(n−5)2 + 459836
9 (n−5)+25120

> 0,

c2 = 72(n−5)6 +1901(n−5)5 +20037(n−5)4 + 426429
4 (n−5)3

+294007(n−5)2 + 1489127
4 (n−5)+129644

> 0.

It remains to prove that c992n + c662n > 0 for n � 6, which is equivalent to

c9
(

9
6

)2n + c6 = c9
(

9
4

)n + c6 > 0.

Using binomial expansion again we get(
9
4

)n =
(
1+ 5

4

)n
> 1+n 5

4 + n(n−1)
2

(
5
4

)2
+ n(n−1)(n−2)

6

(
5
4

)3
+ n(n−1)(n−2)(n−3)

24

(
5
4

)4
+ n(n−1)(n−2)(n−3)(n−4)

120

(
5
4

)5
,

which yields

c9
( 9

4

)n + c6 >
( 2

3n2− 10
3 n+8

)× (1+n 5
4 + n(n−1)

2

( 5
4

)2
+ n(n−1)(n−2)

6

( 5
4

)3
+ n(n−1)(n−2)(n−3)

24

(
5
4

)4
+ n(n−1)(n−2)(n−3)(n−4)

120

(
5
4

)5
)

+
(
− 5

9n5 + 34
9 n4− 341

36 n3 + 143
36 n2− 217

18 n−36
)

= 625
36864n7− 6875

36864n6 + 20645
36864n5 + 11339

36864n4− 50207
18432n3

− 961
512n2− 463

72 n−28.

The above seven degree polynomial can be written as

625
36864 (n−6)7 + 19375

36864 (n−6)6 + 245645
36864 (n−6)5 + 1643189

36864 (n−6)4

+ 3126961
18432 (n−6)3 + 377105

1024 (n−6)2 + 1878053
4608 (n−6)+ 29125

384 ,

which is clearly positive for n � 6.
Consequently, an+1bn −anbn+1 > 0 for n � 5, and thus an/bn is strictly increas-

ing for n � 5.
This completes the proof. �

LEMMA 5. Let f1 be the function defined on (0,∞) by

f1 (t) =
ln
((

sinh2 t− t2
)
cosh t

)− ln(t (t cosht− sinht))
ln(t cosh t)− lnsinh t

. (2.4)

Then f1 (t) increases from 8/5 to ∞ as t increases from 0 to ∞ .
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Proof. We first prove the function t �→ f1 (t) is strictly increasing on (0,∞) . De-
fine

f2 (t) = ln

(
sinh2 t− t2

)
cosht

t2 cosht− t sinh t
,

f3 (t) = ln
t cosh t
sinh t

and notice that

f2
(
0+) = lim

t→0+
f2 (t) = 0,

f3
(
0+) = lim

t→0+
f3 (t) = 0.

Then f1 (t) can be written as

f1 (t) =
f2 (t)− f2 (0+)
f3 (t)− f3 (0+)

.

By Lemma 1, in order to prove that f1 is strictly increasing on (0,∞) , it suffices to
show that the function

t �→ f ′2 (t)
f ′3 (t)

:= f4 (t)

is strictly increasing.
Differentiation yields

f4 (t) =
d
dt

(
ln
((

sinh2 t− t2
)
cosht

)− ln(t (t cosh t− sinht))
)

d
dt (ln(t cosh t)− lnsinht)

=
2t(sinht cosht)(sinh4t+2t2 sinh4t−4t cosh4t−2sinh2t+8t2 sinh2t+4t cosh2t−8t3)

(sinh2t−2t)(t2 cosh4t−t sinh4t−4t4 cosh2t+4t3 sinh2t+2t sinh2t−t2−4t4)

:=
A(t)
B(t)

.

Using “product into sum” formula for hyperbolic functions leads to

A(t) =
(
t−4t3

)
+
(
2t2 sinh2t−8t4 sinh2t− 1

2 t cosh2t− t3 cosh2t
)

+
(
2t2 sinh4t− t cosh4t +4t3 cosh4t

)
+
(−2t2 sinh6t + 1

2 t cosh6t + t3 cosh6t
)
,

B(t) =
(
−t +8t5

)
+
(
− 11

2 t2 sinh2t−12t4 sinh2t + 1
2 t cosh2t +8t5 cosh2t

)
+
(
2t2 sinh4t−2t4 sinh4t + t cosh4t

)
+
(1

2 t2 sinh6t− 1
2 t cosh6t

)
.

From which we easily obtain the Taylor series of A(t) and B(t) :

A(t) =
∞

∑
n=5

ãnt
2n+1 and B(t) =

∞

∑
n=5

b̃nt
2n+1,
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where

ãn = 22n−1

(2n)! (
(
22n2−16n3−3n−1

)
+22n−1(4n2 +2n−4

)
+32n−2(2n2−13n+9

)
),

b̃n = 22n−1

(2n)!

(
16n4−72n3 +80n2−35n+1

)
+22n−3(−4n3 +6n2 +14n+16

)
+32n−1 (n−3).

It is clear that

ãn =
22n−1

(2n)!
an, b̃n =

22n−1

(2n)!
bn, ãn/b̃n = an/bn,

where an,bn are defined by (2.2), (2.3), respectively. By Lemma 4, it is seen that b̃n > 0
and ãn/b̃n is strictly increasing for n � 5, from which and Lemma 2 it follows that
A(t)/B(t) is strictly increasing on (0,∞) . This reveals that f4 , that is, f ′2/ f ′3 is also
strictly increasing on (0,∞) . Thus, by Lemma 1 the function f1 is strictly increasing
on (0,∞) .

Limit calculation gives

lim
t→0

f1 (t) =
8
5

and lim
t→∞

f1 (t) = ∞,

which completes the proof. �

LEMMA 6. Let the function t �→ Fp (t) be defined on (0,∞) by

Fp (t) =
t cosh t
sinh t

−1− 1
p ln

(
1
2 (cosh t)p + 1

2

(
sinht

t

)p)
. (2.5)

Then

lim
t→0+

Fp(t)
t4

= − 5p−8
360 , (2.6)

lim
t→∞

Fp (t) =
{ 1

p ln2− (1− ln2) if p > 0
∞ if p � 0

, (2.7)

where F0 (t) := limp→0 Fp (t) .

Proof. Using power series expansion we have

Fp (t) = − 5p−8
360 t4 +O

(
t6
)

,

which yields (2.6).
To obtain (2.7), we write Fp (t) as

Fp (t) =
2t

e2t −1
− ln

1− e−2t

2
−1− 1

p
ln

(
1
2

(
1+ e−2t

1− e−2t

)p

+
1
2

(
1
t

)p)
,

from which (2.7) easily follows. �
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LEMMA 7. Let the function t �→ Fp (t) be defined on (0,∞) by (2.5). Then Fp is
strictly increasing with respect to t on (0,∞) if and only if p � 8/5 .

Proof. Differentiation and simplifying yield

F ′
p (t) =

(
sinh2 t− t2

)
(cosht)

( 1
t sinh t

)p− (t2 cosh t− t sinht
)
coshp t

t
(
cosh t sinh2 t

)(( 1
t sinh t

)p + coshp t
)

=
(t cosht−sinh t)( 1

t sinh t)p

(cosh t sinh2 t)(( 1
t sinht)p

+coshp t) ×
(

(sinh2 t−t2)cosht
t(t cosht−sinh t) − ( t cosh t

sinht

)p
)

.

Clearly, sinh2 t− t2, t cosht − sinht > 0 for t > 0, so F ′
p (t) can be written as

F ′
p (t) =

(t cosht − sinht)
(

1
t sinh t

)p

(
cosht sinh2 t

)((
1
t sinht

)p + coshp t
) ×

(
ln

t cosh t
sinh t

)
(2.8)

×L

((
sinh2 t− t2

)
cosht

t (t cosh t− sinht)
,

(
t cosht
sinh t

)p
)
× ( f1 (t)− p) ,

where f1 (t) is defined by (2.4) and L(x,y) is the logarithmic mean of positive numbers
x and y .

Necessity. If Fp is strictly increasing on (0,∞) , then F ′
p (t) > 0, hence

lim
t→0+

F ′
p (t)
t3

� 0. (2.9)

On the other hand, applying L’Hospital rule to the right hand of (2.6) we get

lim
t→0+

Fp(t)
t4

= lim
t→0+

F ′
p (t)
4t3

= − 5p−8
360 . (2.10)

(2.9) and (2.10) lead to p � 8/5.

Sufficiency. Suppose that p � 8/5. We now prove that F ′
p (t) > 0. Since t cosht−

sinht > 0 and ln t cosht
sinht > 0 for t > 0, it needs to show that ( f1 (t)− p) > 0. By Lemma

5, we have

f1 (t) =
ln
((

sinh2 t− t2
)
cosht

)− ln(t (t cosh t− sinht))
ln(t cosht)− lnsinht

>
8
5
,

that is, f1 (t)− p > 0 for t > 0.
Our required result follows. �



NEW SHARP BOUNDS FOR IDENTRIC MEAN 541

3. Proofs of Main Results

Proof of Theorem 1. By symmetry, we assume that x > y > 0. We have

I
(
et ,e−t)= exp(t cotht−1) , A

(
et ,e−t)= cosht, L

(
et ,e−t)=

sinh t
t

,

where t = 1
2 ln(x/y) > 0. Due to Lemma 3, in order to prove that the inequality (1.11)

holds if and only if p � 8/5, it is enough to show that

t cotht−1 > 1
p ln
(

1
2 (cosht)p + 1

2

(
sinht

t

)p
)

, (3.1)

that is, Fp (t) > 0 holds for all t > 0 if and only if p � 8/5, where Fp (t) is defined by
(2.5).

Necessity. If Fp (t) > 0 holds for all t > 0, then by Lemma 6 we have{
limt→0+

Fp(t)
t4

= − 5p−8
360 � 0,

limt→∞ Fp (t) = 1
p ln2− (1− ln2) � 0 if p > 0

or {
limt→0+

Fp(t)
t4

= − 5p−8
360 � 0,

limt→∞ Fp (t) = ∞ � 0 if p � 0.

Solving the inequalities for p yields p � 8/5.

Sufficiency. If p � 8/5, then from Lemma 7 it is seen that Fp is increasing with
respect to t , hence we get

Fp (t) > lim
t→0+

Fp (t) = 0,

which completes the proof of sufficiency.
By the monotonicity of Fp0 where p0 = 8/5 and note that (2.7), we find that

0 = lim
t→0+

Fp0 (t) < Fp0 (t) < lim
t→∞

Fp0 (t) =
1
p0

ln2− (1− ln2) ,

that is, inequalities (1.12) hold, and c0 = exp
(

1
p0

ln2− (1− ln2)
)

= 213/8e−1 is clearly

the best possible constant. �

Proof of Theorem 2. In order to prove that the reverse inequality in (1.11) holds
if and only p � p̃0 = (ln2)/(1− ln2) , it suffices to show that Fp (t) < 0 holds for all
t > 0 if and only if p � p̃0 , where Fp is defined by (2.5).

Necessity. If Fp (t) < 0 holds for all t > 0, then by Lemma 6 we have{
limt→0+

Fp(t)
t4

= − 5p−8
360 � 0,

limt→∞ Fp (t) = 1
p ln2− (1− ln2) � 0 if p > 0,
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which yields p � (ln2)/(1− ln2) = p̃0 .

Sufficiency. Suppose that p � p̃0 . Since the function p �→ Fp (t) is decreasing, so
it needs to check that Fp (t) < 0 holds for p = p̃0 .

From the proof of Lemma 6 it is easy to see that

sgnF ′
p (t) = sgn ( f1 (t)− p) , (3.2)

where f1 (t) and Fp (t) are defined by (2.4) and (2.5), respectively. By Lemma 4 f1 (t)
increases from 8/5 to ∞ as t increases from 0 to ∞ , and then, the function t �→
( f1 (t)− p̃0) is also increasing. Since

lim
t→0+

( f1 (t)− p̃0) =
8
5
− ln2

1− ln2
< 0,

lim
t→∞

( f1 (t)− p̃0) = ∞,

hence there is a unique number t0 ∈ (0,∞) such that

f1 (t)− p̃0 = 0,

and f1 (t)− p̃0 < 0 for t ∈ (0,t0) and f1 (t)− p̃0 > 0 for t ∈ (t0,∞) . From (3.2) which,
in turn, implies that F ′̃

p0
(t) < 0 for t ∈ (0,t0) and F ′̃

p0
(t) > 0 for t ∈ (t0,∞) , conse-

quently,

Fp̃0 (t0) � Fp̃0 (t) < lim
t→0+

Fp̃0 (t) = 0 for t ∈ (0, t0) ,

Fp̃0 (t0) � Fp̃0 (t) < lim
t→∞

Fp̃0 (t) =
1
p̃0

ln2− (1− ln2) = 0 for t ∈ (t0,∞) ,

that is, Fp̃0 (t0) � Fp̃0 (t) < 0 for t ∈ (0,∞) .
Solving the equation f1 (t)− p̃0 = 0 by using mathematical computer software we

find that t = t0 ≈ 2.5444821555, and

Fp̃0 (t0) ≈−2.3940×10−2, c̃0 = exp
(
Fp̃0 (t0)

)≈ 0.97634,

which prove the sufficiency and the inequalities (1.13). �
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