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NEW SHARP BOUNDS FOR IDENTRIC MEAN IN TERMS
OF LOGARITHMIC MEAN AND ARITHMETIC MEAN

ZHEN-HANG YANG

(Communicated by S. Abramovich)

Abstract. Let x,y >0 with x#y. We give new sharp bounds for identric mean /= e~! (x*/3#)!/ )
in terms of logarithmic mean L = (x—y) /(Inx—Iny) and arithmetic mean A = (x+y) /2:

(305 gam) ! <1< (004 Jam) U0,

where po = 8/5 and po = (In2) /(1 —In2) are the best possible constants.

1. Introduction

The logarithmic and identric means of two positive real numbers x and y with
x # y are defined by

1/(x=y)
xX—y (X
L:L(x,y):m and I=1I(x,y)=e 1(;) ,

respectively. The power mean of order r of the positive real numbers x and y is defined
by

xr+yr

1/r
M, =M, (x,y) = ( ) if r # 0 and My = My(x,y) = \/xy.

The main properties of these means are given in [5]. In particular, the function r —
M, (x,y) (x#y) is continuous and strictly increasing on R. As special cases, the
arithmetic mean and geometric mean are A = A(x,y) = M;(x,y) and G = G(x,y) =
My (x,y) respectively.
There has been many bounds for identric mean in terms of other means. Stolarsky
[16] first established that
L<I<A. (1.1)

A reverse inequality of the the second one of (1.1) was given by Alzer [2]:

20 'A< 1.
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In [17] the author and Pittenger [9] proved that the inequalities
My <1 (1.2)

and
I < Mo (1.3)

hold, respectively, where the constants 2/3 and In2 are the best possible. The follow-
ing reverse inequality of (1.2) is due to Yang [22]:

1< V8e 'Mys. (1.4)
In 1990, Sandor [1 1] gave an improvement of the first inequality of (1.1):
L+A
1>=28 (15)

2

For the bounds for identric mean in terms of arithmetic mean and geometric mean,
Neuman and Sandor [7] first showed that

A+G L 1AEG

<I<4 (1.6)

In [12], Sandor further proved the inequalities

2A+G [2A2 + G2
;L <I< % (1.7)

hold. Alzer and Qiu [3] pointed out that

oA+ (l—a)G<I<BA+(1-B)G (1.8)
hold if and only if o < 2/3 and 8 > 2/e. While Trif [18] derived that for p > 2
inequalities
0A? + (1— )G < I? < BAP+ (1 - B)G? (1.9)
hold if and only if o < (2/e)” and B > 2/3. Recently, Kouba [6] proved that the
inequalities
(247 4+ 16" P < 1< (2474 LG9) '/ (1.10)
hold if and only if p < 6/5 and ¢ > (In3 —1n2) /(1 —1n2).
Other inequalities involving the identric mean can be found in the literature [7],
[10], [12], [13], [14], [15], [21], [22], [23], [24], [25], [26]
The main aim of this paper is to present the sharp bounds for identric mean / in

terms of p-order power means of logarithmic mean L and arithmetic mean A, that is,
determine the best p > 1 such that

pAr\ /P
I> (L ;A ) (1.11)

and its reverse inequality hold for all x,y > 0 with x # y.
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THEOREM 1. For all x,y > 0 with x #y, the inequality (1.11) holds if and only
if p < po=238/5. Moreover, we have

(Lrp0 4+ Lar0) /70 o p < o (Lppo 4 Lapo) /P (1.12)
where ¢o = 213/8¢=1 = 1.13470... is the best possible constant.

THEOREM 2. For all x,y > 0 with x # y, the inequality (1.11) is reversed if and
only if p > po = (In2) /(1 —In2). Moreover, we have

Go (L7 + AP0) /PO < 1 < (LPo 4 AP0) /P (1.13)

where ¢y~ 0.97634 is the best possible constant.

2. Lemmas
To prove our main results, we need the following lemmas.

LEMMA 1. ([19], [1]) Let f,g: [a,b] — R be two continuous functions which are
differentiable on (a,b). Further, let g’ #0 on (a,b). If f'/g  is increasing (or de-
creasing) on (a,b), then so are the functions

LIWfB) 0 fla)
g(x)—g(b) g(x)—gl(a)

LEMMA 2. ([4]) Let a, and b, (n=0,1,2,...) be real numbers and let the power
series A(t) =Y, ant" and B(t) =Y, bt" be convergent for |t| < R. If b, >0 for
n=0,1,2,..., and a,/by is strictly increasing (or decreasing) for n =0,1,2, ..., then
the function t — A(t) /B(t) is strictly increasing (or decreasing) on (0,R).

LEMMA 3. Let M (x,y) be a homogeneous mean of positive arguments x and y.
Then

M(x,y) = VM (¢',e7") @1
where t = $1n(x/y).

The proofs of the following two lemmas are complicated. Some algebraic compu-
tations involved in them are preformed with the aid of built-in computer algebra system
of Scientific Workplace Version 5.5.

LEMMA 4. Let (a,) and (b,) be the sequences defined by

an = —16n° +22n* —3n—1 (2.2)
+3772 (20 — 13n+9) + 27 (40 +2n — 4),
by = 16n* —72n° + 80n* — 35n+ 1 (2.3)

+32}’1—1 (n _ 3) +22n—3 (—4”13 +6n2 —|— 14n+ 16) .

Then b, > 0 and ay /b, is strictly increasing for n > 5.
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Proof. We first prove that b, > 0 for n > 5. Note that
232, > (—dnd 460+ 14n+16)+9 (2)" 7 (n—3).

Using binomial expansion we have

2n—3 e e . . .
(%) > 1+(2n—3)%+(2 3)2(2 4)%4_(2 3)(264)(2 5)%
4 (2n=3)2n=4)(2n-5)(2n-6) 1
24 16°

which yields

232, > (—4n® 460 + 14n+16) +9 (n—3) (1 + (2n —3) 4 2234 1

(2n=3)2n-4)@n=5) | | (2n-3)(2n—4)(21-5)(2n—6) 1
_|_ n n6 n g"’ n n 24}’1 n E)

= 8n —3n* +23625n3—@n2+L41n—‘1‘—é

=35+ (-5 +B2 -5+ BB (n—57 + 12 (n—5)+ %L

> 0.

Hence, b, >0 forn > 5.
Now we show that a, /b, is strictly increasing for n > 5. Since b, > 0, it suffices
to show that

apg1by — apbpy1 > 0.

Straightforward computation and arrangement yield
ani1by —anby = 997" + c667" + cad? + 337" + 2% + ¢4,
where

cg = 3n — n—|—8

ce = _5n5+34 4 3461n3+13463n2—%7n—36

c4 = 4n* +121° +9n2+45n+40

3 = 2g6n6 2368 75+ 800n* — 7600n3+%n2+596

¢ = 72n° —259n — 488" + #2321 y2 29y 44,

c1 = 256n° +64n° — 544n* + 496n> + 4781 — 134n — 8.

For n =5, we have
aps1by — apby 1 = 603187200 > 0.

Hence, it is enough to check that a, 11, —anb,+1 >0 for n > 6.
Clearly, ¢4 > 0 and

c; =n* (256n° — 544) + 64n° + (496n° — 8) +n (4781 — 134) > 0.
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We have forn > 5,
c3 = B8 (n—5)°+ 32 (n—5)° 4 L0 (n — 5)* 4 18430 (j 57’
+45436 (n — 5)* + 49830 (n — 5) 425120
> 0,
2 =72(n—5)°+1901 (n —5)° +20037 (n — 5)* 4 426422 ( 5}
4294007 (n—5)* 4 1489127 (5, _ 5) 4 129644
> 0.

It remains to prove that ¢99%" + c66%* > 0 for n > 6, which is equivalent to
p q

Cc9 (%)2n+66 =9 (%)n +c¢ > 0.
Using binomial expansion again we get
@)= 0+3)"
> 1+t (3)7 4 el (3)°

n(n—1)(n—2)(n— 4 n(n—1)(n—2)(n—3)(n— 5
It 1)(242)( 3) (%) 4 = 1)( 122)(() 3)(n—4) (‘5_‘)7

which yields

co (3)"+es > (3% = W+ 8) x (14+n§+ 2 (3) 4 ebn2) (37

nn— n— n— 4 nin— n— n— n— 5
+( 1)(242)( 3) (%) +( 1)( 12%(() 3)(n—4) (%))

5.5 34 4 341 3 143 2 217
+ (—5” Tgn = ggn +3gn —W”—%)
_ 625 7 6875 6 | 20645 5 11339 4 50207n3

= 36864"" — 36864"" T 36864"0 T 36864"0 — 18432

961 2 463

The above seven degree polynomial can be written as
625 7, 19375 6, 245645 5, 1643189 4
30503 (1 —0)" + 35363 (1 = 6)” + Fg5s (n—6)” + Fges (1 —6)

3126961 3, 377105 2 | 1878053 29125
o843 (n—6)" + g (n—6)" + ~4gos- (n—6) + 7,

which is clearly positive for n > 6.

Consequently, a,1b, — anb,+1 > 0 for n > 5, and thus a, /b, is strictly increas-
ing forn > 5.

This completes the proof. [

LEMMA 5. Let fi be the function defined on (0,) by

= In ((sinh?t — %) cosht) — In (¢ (¢ cosht — sinhr))
B In (t cosht) — Insinh¢ ’

fi(t

2.4)

Then f (t) increases from 8/5 to o as t increases from 0 to oo.
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Proof. We first prove the function 7 — f (¢) is strictly increasing on (0,e0). De-
fine

(sinh?t — %) cosh?
t2cosht —tsinht
tcosht
sinht

f(t)=In

)

f3(t) =1n
and notice that

£(0%) = lim f,(t) =0,

t—0t
f3(0%) = lim f3 (1) =0.
Then f (¢) can be written as
f[(t)—f(07)

By Lemma 1, in order to prove that fj is strictly increasing on (0,0), it suffices to
show that the function ,
t
G

f3(1)

fit) =

= fa(1)

is strictly increasing.
Differentiation yields

4 (In ((sinh?¢ —1?) cosht) — In (¢ ( cosht — sinhr)))
% (In(rcosht) — Insinht)

2t(sinh coshr) (sinh474-2¢% sinh 47— 4 cosh 4¢ —2 sinh 2r+ 82 sinh 2r+4¢ cosh 2r—8¢% )
(sinh2r—2r) (12 cosh4¢—t sinh 4 —4¢* cosh 2-+4¢3 sinh 2¢+2¢ sinh 21 —12 —4¢% )

A(r)

falt) =

B(1)

Using “product into sum” formula for hyperbolic functions leads to

A(t) = (t—4¢%) + (26> sinh2¢ — 8¢*sinh 27 — 1¢ cosh2t — £* cosh 2r)
+ (2¢? sinh 47 — ¢ cosh 4z + 4¢° cosh )
+ (—2¢*sinh6¢ + L cosh 6t + 1 cosh 6t ) ,

B(t) = (—t + 8t5> + <— 12—1t2 sinh2r — 127*sinh 27 + Ttcosh2r+ 8 cosh2t>
+ (2¢%sinh4r — 2¢* sinh 4t + ¢ cosh4t) + (4¢%sinh 67 — 37 cosh6t) .

From which we easily obtain the Taylor series of A (¢) and B(z):

A(t)=Y @™ and B(tr)= Y b,
n=35 n=>5
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where
- 22n 1

an = Ty ((220% — 160> =30 — 1) +2""" (4n® +-2n— 4)
+3%72 (20 — 13n49)),

b = 250 (16n* — 7203 +80n% — 350+ 1) + 223 (—4n3 +- 60> + 14n+ 16
(2n)!
+3%71(n—3).
It is clear that
22n 1 N 22n—1 s
an = (Zn) b, = Wbm an/bn = an/bna

where a,,b, are defined by (2.2), (2.3), respectively. By Lemma 4, it is seen that b, >0
and d,/ En is strictly increasing for n > 5, from which and Lemma 2 it follows that
A(r) /B(t) is strictly increasing on (0,e0). This reveals that fy, that is, f3/f3 is also
strictly increasing on (0,c). Thus, by Lemma 1 the function f; is strictly increasing
on (0,).

Limit calculation gives

. 8 .
lim f, (t)= 5 and limf () = oo
which completes the proof. [

LEMMA 6. Let the function t — F, (t) be defined on (0,%0) by

tcosht | | » 1 (sinhz\?
- —1-1 1 1 ) 2.5
F, (1) oy 1—In (2 (cosht)? + 5 . (2.5)
Then
Bpt) _ _5p-8

Jim 5 = (2.6)
1 .
~In2—(1—1In2) ifp>0
P

lim Fp (1) = {oo ifp <0 27

where Fy (t) :=lim,_o F), ().
Proof. Using power series expansion we have
5p—8.4 6
Fy(t) = -4t +0<t ),

which yields (2.6).
To obtain (2.7), we write F), (¢) as

2t l—e ¥ 1 1/ 14+e2\? 1 /1)
F,(t) = ~1 —l——In(=(——) += (-
e pn<2<1—e2’ a\7) )

from which (2.7) easily follows. [




540 ZHEN-HANG YANG

LEMMA 7. Let the function t — F),(t) be defined on (0,%0) by (2.5). Then F), is
strictly increasing with respect to t on (0,0) if and only if p < 8/5.

Proof. Differentiation and simplifying yield
(sinh?z —12) (cosht) (L sinh)” — (2 coshr — ¢sinht) cosh?¢
t (coshtsinh?7) ((Il sinhz)” + cosh”t)

_ (tcoshtfsinht)(llsinht)’) (sinhztftz)cosht _ (tcosht)p
) .

= X - 2
(cosht sinh? t) (( % sinht)p-‘rcosh”t t(t cosht—sinhr) sinhz

Fy () =

Clearly, sinh®7 — 12, rcoshs —sinhz > 0 for 7 > 0, so FI; () can be written as

F)(t) =

tcoshr —sinht) (Lsinhz)”
(tcosht — sinhr) ( sinh?) <ntc0sht> 2.8)

(cosht sinh?7) ((% sinhz)” + coshl’t> sinhz

L ( (sinh? —2) coshe (t‘""’Sht)p) < (i)~ p),

t (tcosht — sinht) sinhz

where fj (7) is defined by (2.4) and L(x,y) is the logarithmic mean of positive numbers
x and y.

Necessity. If F), is strictly increasing on (0,), then F}, (r) > 0, hence

F(t
lim p3( )
t—0+t 1

> 0. (2.9)

On the other hand, applying L’Hospital rule to the right hand of (2.6) we get

/
li Fpt) _ - FP(I) _ 5p-8
im 2~ = lim == -
=0t ! -0+ 413

(2.10)

(2.9) and (2.10) lead to p < 8/5.

Sufficiency. Suppose that p < 8/5. We now prove that F), () > 0. Since ¢ coshr —

sinhz > 0 and In 282 > 0 for t > 0, it needs to show that (f; () — p) > 0. By Lemma
5, we have

In ((sinh?7 — %) cosh) — In (¢ (¢ cosht — sinhr))

8
fit) = In (¢ cosht) — Insinh? - 5’

thatis, fi (1) —p >0 forz > 0.
Our required result follows. [
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3. Proofs of Main Results

Proof of Theorem 1. By symmetry, we assume that x >y > 0. We have

I(e,e™") =exp(rcotht — 1), A(e,e™") =cosht, L(e,e™)= SiI;ht)

where ¢t = 1 51In(x/y) > 0. Due to Lemma 3, in order to prove that the inequality (1.11)
holds if and only if p < 8/3, it is enough to show that

reothr — 1> Lin (4 (coshr)” + 4 (s2e)"), (3.1)

t

that is, F}, () > 0 holds for all 7 > 0 if and only if p < 8/5, where F, (1) is defined by
(2.5).

Necessity. If F,, (t) > 0 holds for all 7 > 0, then by Lemma 6 we have

lnnt~>0Jr FP() = _% 20,
hmt_me( )=3In2—(1-In2)>0if p>0

or

hthO Fy) = _% = Oa
lim;_eo F, ():oo}OifpéO.

Solving the inequalities for p yields p < 8/5.

Sufficiency. If p < 8/5, then from Lemma 7 it is seen that F), is increasing with
respect to 7, hence we get
F,(t) > lim F, (1) =0,

t—0t

which completes the proof of sufficiency.
By the monotonicity of F,,, where po = 8/5 and note that (2.7), we find that

1
0= 111(1)1 Fp, (1) < Fp, (1) < tlimeO (t)=—In2—(1—1n2),
1= - po

that is, inequalities (1.12) hold, and ¢y = exp (% In2—(1-— 1n2)> =213/8,~1 is clearly
the best possible constant. [

Proof of Theorem 2. In order to prove that the reverse inequality in (1.11) holds
if and only p > po = (In2) /(1 —1n2), it suffices to show that F}, (r) < 0 holds for all
t >0 if and only if p > po, where F), is defined by (2.5).

Necessity. If F},(t) < 0 holds for all > 0, then by Lemma 6 we have

llmt_>0+ Fp() = —% < 07
hmt_me( )= 5In2—(1-1In2) <O0if p >0,
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which yields p > (In2) /(1 —1n2) = py.

Sufficiency. Suppose that p > po. Since the function p — F), (¢) is decreasing, so
it needs to check that F), (r) < 0 holds for p = py.
From the proof of Lemma 6 it is easy to see that

sgnFy (1) = sgn (fi (t) —p), 3.2)

where fi (t) and F), (t) are defined by (2.4) and (2.5), respectively. By Lemma 4 f; (¢)
increases from 8/5 to oo as ¢ increases from 0 to o, and then, the function 7 +—
(f1(¢) — po) is also increasing. Since
8 In2
li )=o) ==— ——
Hlf(g(fl( ) —Po) 5 1T-m <O
hm(fl (l)—ﬁo) =

[—o0

hence there is a unique number 7y € (0,0) such that

fi(t)—po=0,

and f (1) — po < 0 for ¢ € (0,19) and f () — po > 0 for ¢ € (#9,°). From (3.2) which,
in turn, implies that Fj (1) <0 for 7 € (0,79) and Fj () >0 for ¢ € (ty, ), conse-
quently,

Fyo (f0) < Fp, (1) < li%LFﬁo (t) =0forz € (0,10),
11—

1
Fp, (to) < Fp, (1) < tlimF,;O (t)=—=—In2— (1 —1n2) =0forz € (19,0),
that is, Fj (fo) < Fj, (1) <0 for 1 € (0,00).

Solving the equation f (t) — pp = 0 by using mathematical computer software we
find that 1 = 1y ~ 2.5444821555, and

Fp, (t0) & —2.3940 x 1072, & = exp (Fj, (to)) ~ 0.97634,

which prove the sufficiency and the inequalities (1.13). O
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