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(Communicated by N. Elezović)

Abstract. In this paper, we investigate homomorphisms from unital C∗−algebras to unital Ba-
nach algebras and derivations from unital C∗−algebras to Banach A−modules related to a
Cauchy–Jensen functional inequality.

1. Introduction

The authors in the reference [2] have proved that if a mapping f satisfies the
following functional inequality

‖ f (x)+ f (y)+ f (z)‖ �
∥∥∥k f

( x+ y+ z
k

)∥∥∥, k � 3 (1)

in non-Archimedean Banach spaces, then f is additive. During the last decades, a
number of papers have been published on the stability of functional inequalities and
several stability problems associated with functional inequalities have been investigated
by a number of mathematicians, see [1, 3, 4, 8, 9, 10, 11, 15, 16, 17, 18] and references
therein.

In this paper, we expand the functional inequality to the following generalized
Cauchy–Jensen functional inequality

∥∥∥
l

∑
i=1

f (xi)
∥∥∥ �

∥∥∥mf
(∑l

i=1 xi

m

)∥∥∥, (2)

where l � 3,m � 1 are fixed integers such that l > m. It is easy to see that if a mapping
f satisfies the generalized Cauchy–Jensen inequality (2), then f is additive. In fact,
if a mapping f satisfies the generalized Cauchy–Jensen inequality (2), then by setting
xi = 0 for all i = 1, · · · , l, we arrive at |l|‖ f (0)‖ � |m|‖ f (0)‖, which yields f (0) = 0.
Thus, letting xi = 0 for all i = 4, · · · , l, if l � 4, we reduce (2) to (1) with k = m and
hence f is additive.
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Now, by using the generalized Cauchy–Jensen inequality (2), we are going to in-
vestigate the homomorphisms and derivations on unital C∗−algebra. Throughout this
paper, let A be a unital C∗−algebra, U(A) be the set of unitary elements in A . Let B
be a unital Banach algebra and let Inv(B) be the set of invertible elements of B . Let
l � 3,m � 1 be integers. Moreover, we assume that n0 ∈ N is a positive integer and
suppose that T

1
1
no

:= {eiθ ; 0 � θ � 2π
no
}.

2. Homomorphisms

In this section, we establish the homomorphisms from unital C∗−algebras to uni-
tal Banach algebras. We start our work with the following lemma [5].

LEMMA 2.1. Assume that a mapping f : A → B is additive and for each fixed
x ∈ A f (tx) = t f (x) for all t ∈ T1

1
no

. Then f is C-linear.

Now, we introduce our main theorem on homomorphisms from unital C∗−algebras
to unital Banach algebras.

THEOREM 2.2. Assume that a mapping f : A → B with f (0) = 0 satisfies

lim
k→∞

f ((l−1)k1A)
(l−1)k ∈ Inv(B),

and

f ((l−1)kux) = f ((l−1)ku) f (x) (3)

for all u∈U(A),x∈ A, and all k∈N . Suppose that f satisfies the functional inequality

∥∥∥
l

∑
i=1

f (xi)+ f (tx)− t f (x)
∥∥∥ �

∥∥∥mf
(∑l

i=1 xi

m

)∥∥∥+ ϕ(x1, · · · ,xl,x) (4)

for all x1, · · · ,xl,x∈A and all t ∈T1
1
no

, and that there exists a constant L with 0 < L < 1

for which the function ϕ : Al+1 → R+ := [0,∞) satisfies

ϕ
(
(l−1)(x1, · · · ,xl ,x)

)
� L · (l−1)ϕ

(
x1, · · · ,xl ,x

)
(5)

for all x1, · · · ,xl,x ∈ A. Then the mapping f : A → B is a homomorphism.

Proof. Put x = 0 in (4) to get

∥∥∥
l

∑
i=1

f (xi)
∥∥∥ �

∥∥∥mf
(∑l

i=1 xi

m

)∥∥∥+ ϕ(x1, · · · ,xl ,0) (6)

for all x1, · · · ,xl,∈ A .
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Put (x1, · · · ,xl ,x) := (x,−x, · · · ,x,−x︸ ︷︷ ︸
2� l

2 �

,0,0) in (6) where �·� denotes the Gaussian

notation. We have an approximate oddness condition

‖ f (x)+ f (−x)‖ � 1

� l
2�

ϕ(x,−x, · · · ,x,−x︸ ︷︷ ︸
2� l

2 �

,0,0) (7)

for all x ∈ A. Replacing (x1, · · · ,xl,0) := (−x, · · · ,−x,(l−1)x,0) in (6), one leads to

‖(l−1) f (−x)+ f ((l−1)x)‖ � ϕ(−x, · · · ,−x,(l−1)x,0) (8)

for all x ∈ A . Associating (7) with (8) yields
∥∥∥ f (x)− f ((l−1)x)

(l−1)

∥∥∥ � Ψ(x) :=
1

� l
2�

ϕ(x,−x, · · · ,x,−x︸ ︷︷ ︸
2� l

2 �

,0,0) (9)

+
1

l−1
ϕ(−x, · · · ,−x,(l−1)x,0)

for all x ∈ A . Thus, it follows from (9) and (5) that for all nonnegative integers k and j
with j > k � 0 and x ∈ A

∥∥∥ f ((l−1)kx)
(l−1)k − f ((l−1)k+ jx)

(l−1)k+ j

∥∥∥ �
k+ j−1

∑
i=k

∥∥∥ f ((l−1)ix)
(l−1)i − f ((l−1)i+1x)

(l−1)i+1

∥∥∥

�
k+ j−1

∑
i=k

1
(l−1)i Ψ

(
(l−1)ix

)

�
k+ j−1

∑
i=k

LiΨ(x),

which tends to zero as k→∞. Hence the sequence
{

f ((l−1)kx)
(l−1)k

}
is Cauchy for all x∈A,

and so we can define a function h1 : A → B by

h1(x) = lim
k→∞

f ((l−1)kx)
(l−1)k

, x ∈ A.

It follows from (6) and (5) that

1
(l−1)k

∥∥∥
l

∑
i=1

f
(
(l−1)kxi

))∥∥∥ � 1
(l−1)k

∥∥∥mf
( 1

m

l

∑
i=1

(l−1)kxi

)∥∥∥

+
1

(l−1)k ϕ
(
(l−1)kx1, · · · ,(l−1)kxl,0

)

� 1
(l−1)k

∥∥∥mf
( 1

m

l

∑
i=1

(l−1)kxi

)∥∥∥
+Lkϕ(x1, · · · ,xl ,x,0)
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for all k ∈ N and all x1, · · · ,xl ∈ A. Taking k → ∞ in the last relation, we see that

∥∥∥
l

∑
i=1

h1(xi)
∥∥∥ �

∥∥∥mh1

(∑l
i=1 xi

m

)∥∥∥

for all x1, · · · ,xl ∈ A. This implies that the mapping h1 is additive. It follows from (3)
that

h1(ux) = lim
k→∞

f ((l−1)kux)
(l−1)k

= lim
k→∞

f ((l−1)ku)
(l−1)k

f (x) = h1(u) f (x) (10)

for all u ∈U(A) and all x ∈ A .
On the other hand, since h1 is additive, it follows from (10) that

h1(ux) =
h1(u((l−1)kx))

(l−1)k = h1(u)
f ((l−1)kx)

(l−1)k

for all u∈U(A) and all x ∈ A . By letting k → ∞ in the last inequality above, we obtain

h1(ux) = h1(u)h1(x) (11)

for all u ∈U(A) and all x ∈ A . By putting u := 1A in (10) and (11), we conclude that

h1(x) = h1(1Ax) = h1(1A) f (x) = h1(1A)h1(x)

for all x ∈ A . Then since h1(1A) ∈ Inv(B) by hypothesis, we have

f (x) = h1(x)

for all x ∈ A , and so the mapping f is additive. Put x1 = x2 = · · · = xl = 0 in (4) to get

‖ f (tx)− t f (x)‖ � ϕ(0,0, · · · ,0,x)

for all x ∈ A and all t ∈ T1
1
no

, we can show that f (tx) = t f (x) for all x ∈ A and all

t ∈ T1
1
no

. Then, it follows that the additive mapping f is C− linear [5].

Now, let x ∈ A be an arbitrary element. Then by Theorem 4.1.7 of [12], x is a
finite linear combination of unitary elements, i.e., x = ∑n

j=1 c ju j, (c j ∈ C,u j ∈U(A)).
Since f is C− linear, it follows from (11) that

f (xa) = f ((
n

∑
j=1

c ju j)a) =
n

∑
j=1

c j f (u ja) =
n

∑
j=1

c jh1(u ja) =
n

∑
j=1

c jh1(u j)h1(a)

=
n

∑
j=1

c j f (u j) f (a) = f (
n

∑
j=1

c ju j) f (a) = f (x) f (a)

for all a ∈ A . This means that f is a homomorphism from A into B . �
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REMARK 2.1. We note that if, in addition, |l + 1− t| > m and L(l − 1) < 1 in
Theorem 2.2, then f (0) = 0. Indeed, apply the functional inequality (5) for x = x1 =
· · · = xl = 0 to get

ϕ(0, · · · ,0) � L(l−1)ϕ(0, · · · ,0),

which implies ϕ(0, · · · ,0) = 0 because of L(l−1) < 1 and l � 3. Then, it follows from
(4) that

|l +1− t|‖ f (0)‖� m‖ f (0)‖,
and therefore, we get f (0) = 0.

REMARK 2.2. Suppose that a mapping f : A → B with f (0) = 0 satisfies

lim
k→∞

f ((l−1)k1A)
(l−1)k ∈ Inv(B)

and the functional inequalities (3) jointly with (4) for which the function ϕ : Al+1 →R+

satisfies
∞

∑
i=0

ϕ
(
(l−1)i(x1, · · · ,xl ,x)

)
(l−1)i < ∞

for all x1, · · · ,xl ,x ∈ A instead of the condition (5). Then it follows from a similar
argument to Theorem 2.2 that the mapping f is a homomorphism from A into B .

COROLLARY 2.3. Let 0 < r < 1 and θ > 0 . If a mapping f : A→ B with f (0) =
0 satisfies the equation (3),

lim
k→∞

(l−1)−k f ((l−1)k1A) ∈ Inv(B),

and the following functional inequality

∥∥∥
l

∑
i=1

f (xi)+ f (tx)− t f (x)
∥∥∥ �

∥∥∥mf
(∑l

i=1 xi

m

)∥∥∥+ θ
( l

∑
i=1

‖xi‖r +‖x‖r
)

for all x1, · · · ,xl,x∈A and all t ∈T1
1
no

, then the mapping f : A→B is a homomorphism.

COROLLARY 2.4. Let θ > 0 . If a mapping f : A → B with f (0) = 0 satisfies the
equation (3),

lim
k→∞

(l−1)−k f ((l−1)k1A) ∈ Inv(B),

and the following functional inequality

∥∥∥
l

∑
i=1

f (xi)+ f (tx)− t f (x)
∥∥∥ �

∥∥∥mf
(∑l

i=1 xi

m

)∥∥∥+ θ

for all x1, · · · ,xl,x ∈ A and all t ∈ T1
1
no

. Then f : A → B is a homomorphism.
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The following theorem is an alternative result of Theorem 2.2.

THEOREM 2.5. Assume that a mapping f : A → B satisfies

lim
k→∞

(l−1)k f ((l−1)−k1A) ∈ Inv(B)

and

f ((l−1)−kux) = f ((l−1)−ku) f (x) (12)

for all u∈U(A),x∈ A, and all k∈N . Suppose that f satisfies the functional inequality
(4) and that there exists a constant L with 0 < L < 1 for which the function ϕ : Al+1 →
R+ satisfies

(l−1)ϕ
(
x1, · · · ,xl,x

)
� Lϕ

(
(l−1)(x1, · · · ,xl ,x)

)
(13)

for all x1, · · · ,xl,x ∈ A. Then the mapping f is a homomorphism from A into B.

Proof. It follows from the inequality (9) that
∥∥∥(l−1)k f

( x
(l−1)k

)
− (l−1)k+ j f

( x
(l−1)k+ j

)∥∥∥

�
k+ j−1

∑
i=k

(l−1)i+1Ψ
( x

(l−1)i+1

)
�

k+ j−1

∑
i=k

Li+1Ψ(x),

which tends to zero as k → ∞.
The remaining part of the proof is similar to the corresponding part of the proof of

Theorem 2.2. �

REMARK 2.3. We note that f (0) = 0 in Theorem 2.5 and in the following Re-
mark 2.4 because the conditions (13) or (14) yields

ϕ(0, · · · ,0) � L
l−1

ϕ(0, · · · ,0), or
∞

∑
i=0

(l−1)iϕ(0, · · · ,0) < ∞,

and ϕ(0, · · · ,0) = 0, and so f (0) = 0 in the sequel.

REMARK 2.4. Suppose that a mapping f : A → B satisfies the equation (12),

lim
k→∞

(l−1)k f ((l−1)−k1A) ∈ Inv(B),

and the functional inequality (6) for which the function ϕ : Al+1 → R
+ satisfies

∞

∑
i=0

(l−1)iϕ
( 1

(l−1)i (x1, · · · ,xl ,x)
)

< ∞ (14)

for all x1, · · · ,xl,x ∈ A instead of the condition (13). Then f is a homomorphism from
A into B .
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COROLLARY 2.6. Let r > 1 and θ > 0 . If a mapping f : A → B satisfies the
equation (12),

lim
k→∞

(l−1)k f ((l−1)−k1A) ∈ Inv(B),

and the following functional inequality

∥∥∥
l

∑
i=1

f (xi)+ f (tx)− t f (x)
∥∥∥ �

∥∥∥mf
(∑l

i=1 xi

m

)∥∥∥+ θ
( l

∑
i=1

‖xi‖r +‖x‖r
)

for all x1, · · · ,xl ,x ∈ A and all t ∈ T1
1
no

. Then the mapping f : A → B is a homomor-

phism.

3. Derivations

In this section, we assume that X is a Banach A−module. We use the results of
Section 2 to investigate the derivations from A into X .

THEOREM 3.1. Assume that a mapping f : A → X with f (0) = f (1A) = 0 satis-
fies

f ((l−1)kux) = f ((l−1)ku)x+(l−1)ku f (x) (15)

for all u∈U(A),x∈ A, and all k∈N . Suppose that f satisfies the functional inequality
(4) and that there exists a constant L with 0 < L < 1 for which the function ϕ : Al+1 →
R+ satisfies (5). Then f : A → X is a derivation.

Proof. It is easy to show that X ⊕1 A is a unital Banach algebra equipped with the
following �1−norm

‖(x,a)‖ = ‖x‖+‖a‖, (a ∈ A,x ∈ X) ,

and the product

(x1,a1)(x2,a2) = (x1 ·a2 +a1 · x2,a1a2), (a1,a2 ∈ A,x1,x2 ∈ X).

We refer the readers to [6, 7] for details. We define a mapping ϕ f : A → X ⊕1 A by
a 	→ ( f (a),a) . Then it is easy to show that ϕ f (1A) = (0,1A) = 1X⊕1A ∈ Inv(X ⊕1 A) .

It follows from (15) that

ϕ f ((l−1)kux) = ( f ((l−1)kux),(l−1)kux)

= ( f ((l−1)ku)x+(l−1)ku f (x),(l−1)kux)
= ( f ((l−1)ku),(l−1)ku)( f (x),x)
= ϕ f ((l−1)ku)ϕ f (x)

for all u ∈U(A),x ∈ A , and all k ∈ N . Thus, the mapping ϕ f : A → X ⊕1 A satisfies
(3).
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By using (4), we have

∥∥∥
l

∑
i=1

ϕ f (xi)+ ϕ f (tx)− tϕ f (x)
∥∥∥ =

∥∥∥
l

∑
i=1

( f (xi),xi)+ ( f (tx),tx)− t( f (x),x)
∥∥∥

=
∥∥∥

l

∑
i=1

f (xi)+ f (tx)− t f (x)
∥∥∥+

∥∥∥
l

∑
i=1

(xi)
∥∥∥

�
∥∥∥mf

(∑l
i=1 xi

m

)∥∥∥+
∥∥∥

l

∑
i=1

(xi)
∥∥∥+ ϕ(x1, · · · ,xl,x)

=
∥∥∥mϕ f

(∑l
i=1 xi

m

)∥∥∥+ ϕ(x1, · · · ,xl ,x)

for all x1, · · · ,xl,x ∈ A and all t ∈ T1
1
no

. This means that ϕ f : A → X ⊕1 A satisfies the

functional inequality (4). Therefore, by Theorem 2.2, the mapping ϕ f : A → X ⊕1 A is
a homomorphism from A into X ⊕1 A .

On the other hand, it is easy to see that f is a derivation from A into X if and only
if ϕ f : A → X ⊕1 A is a homomorphism from A into X ⊕1 A (see [7]). Thus f : A → X
is a derivation. �

By the same reasoning as above and by using Theorem 2.5, we can prove the
following theorem.

THEOREM 3.2. Assume that a mapping f : A → X with f (0) = f (1A) = 0 satis-
fies

f ((l−1)−kux) = f ((l−1)−ku)x+(l−1)−ku f (x) (16)

for all u∈U(A), x∈A, and all k∈N . Suppose that f satisfies the functional inequality
(4) and that there exists a constant L with 0 < L < 1 for which the function ϕ : Al+1 →
R+ satisfying (13). Then the mapping f : A → X is a derivation.
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