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SHARP BOUNDS FOR THE NEUMAN–SÁNDOR MEAN

IN TERMS OF GENERALIZED LOGARITHMIC MEAN

YONG-MIN LI, BO-YONG LONG AND YU-MING CHU

Abstract. In this paper, we find the largest value α and least value β such that the double in-
equality Lα (a,b) < M(a,b) < Lβ (a,b) holds for all a,b > 0 with a �= b . Here, M(a,b) and
Lp(a,b) are the Neuman-Sándor and p -th generalized logarithmic means of a and b , respec-
tively.
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[28] B. MOND, C. E. M. PEARCE AND J. PEČARIĆ, The logarithmic mean is a mean, Math. Commun. 2,
1 (1997), 35–39.

[29] P. KAHLIG AND J. MATKOWSKI, Functional equations involving the logarithmic mean, Z. Angew.
Math. Mech. 76, 7 (1996), 385–390.
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