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SHARP BOUNDS FOR THE NEUMAN–SÁNDOR MEAN

IN TERMS OF GENERALIZED LOGARITHMIC MEAN

YONG-MIN LI, BO-YONG LONG AND YU-MING CHU

(Communicated by E. Neuman)

Abstract. In this paper, we find the largest value α and least value β such that the double in-
equality Lα (a,b) < M(a,b) < Lβ (a,b) holds for all a,b > 0 with a �= b . Here, M(a,b) and
Lp(a,b) are the Neuman-Sándor and p -th generalized logarithmic means of a and b , respec-
tively.

1. Introduction

For p ∈ R the p -th generalized logarithmic mean Lp(a,b) [1] and Neuman-
Sándor mean M(a,b) [2] of two positive numbers a and b are defined by

Lp(a,b) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[ bp+1−ap+1

(p+1)(b−a) ]
1/p, a �= b, p �= −1, p �= 0,

1
e (

bb

aa )1/(b−a), a �= b, p = 0,

b−a
logb−loga , a �= b, p = −1,

a, a = b

(1.1)

and

M(a,b) =

{
a−b

2sinh−1( a−b
a+b )

, a �= b,

a, a = b,
(1.2)

respectively.
It is well-known that Lp(a,b) is continuous and strictly increasing with respect

to p ∈ R for fixed a,b > 0 with a �= b . Recently, the generalized logarithmic and
Neuman-Sándor means have been the subject of intensive research. In particular, many
remarkable inequalities for the generalized logarithmic mean can be found in the liter-
ature [3-33].

The power mean Mr(a,b) of order r of two positive numbers a and b is defined
by

Mr(a,b) =

{
( ar+br

2 )1/r, r �= 0,
√

ab, r = 0.
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The main properties for Mr(a,b) are given in [34]. In particular, the function
r �→ Mr(a,b) (a �= b) is continuous and strictly increasing on R .

Let H(a,b) = 2ab/(a + b) , G(a,b) =
√

ab , L(a,b) = (b− a)/(logb− loga) ,
I(a,b) = 1/e(bb/aa)1/(b−a) , P(a,b) = (a− b)/[4arctan(

√
a/b)−π ] , T (a,b) = (a−

b)/[2arctan( a−b
a+b)] , A(a,b) = (a+b)/2, and S(a,b) =

√
(a2 +b2)/2 be the harmonic,

geometric, logarithmic, identric, first Seiffert, second Seiffert, arithmetic, and root-
square means of a and b with a �= b , respectively. Then it is known that the inequali-
ties

H(a,b) = M−1(a,b) < G(a,b) = M0(a,b) = L−2(a,b) < L(a,b) = L−1(a,b)
< P(a,b) < I(a,b) = L0(a,b) < A(a,b) = L1(a,b) = M1(a,b) < T (a,b)
< S(a,b) = M2(a,b)

hold for all a,b > 0 with a �= b .
Pittenger [35] proved that the double inequality

Mr1(a,b) � Lp(a,b) � Mr2(a,b) (1.3)

holds for all a,b > 0 with

r1 =

⎧⎪⎪⎨
⎪⎪⎩

min{ p+2
3 , p log2

log(p+1)}, p > −1, p �= 0,

2
3 , p = 0,

min{ p+2
3 ,0}, p � −1,

r2 =

⎧⎪⎪⎨
⎪⎪⎩

max{ p+2
3 , p log2

log(p+1)}, p > −1, p �= 0,

log2, p = 0,

max{ p+2
3 ,0}, p � −1.

Here r1 and r2 are sharp and inequality (1.3) becomes equality if and only if a = b or
p = 1, −2 or −1/2.

The following sharp bounds for H , (G+H)/2, and (A+H)/2 in terms of gen-
eralized logarithmic mean were given in [21]:

H(a,b) < L−5(a,b), (G(a,b)+H(a,b))/2 > L−7/2(a,b),

(A(a,b)+H(a,b))/2 > L−2(a,b)

for all a,b > 0 with a �= b .
Long and Chu [36] found the best possible parameters λ = λ (α) and μ = μ(α)

such that the double inequality

Lλ (a,b) < αA(a,b)+ (1−α)G(a,b) < Lμ(a,b)

holds for any α ∈ (0,1/2)∪ (1/2,1) and all a,b > 0 with a �= b .
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In [37] the authors answered the question: for any α, β , γ ∈ (0,1) with α + β +
γ = 1, what are the greatest value p and the least value q , such that the double inequal-
ity

Lp(a,b) < Aα(a,b)Gβ (a,b)Hγ(a,b) < Lq(a,b)

holds for all a,b > 0 with a �= b?
Neuman and Sándor [2, 38] established that

P(a,b) < A(a,b) < M(a,b) < T (a,b),

P(a,b)M(a,b) < A2(a,b),

A(a,b)T (a,b) < M2(a,b) < (A2(a,b)+T2(a,b))/2

for all a,b > 0 with a �= b .
Let 0 < a,b � 1/2 with a �= b , a′ = 1−a and b′ = 1−b . Then the following Ky

Fan inequalities

G(a,b)
G(a′,b′)

<
L(a,b)
L(a′,b′)

<
P(a,b)
P(a′,b′)

<
A(a,b)
A(a′,b′)

<
M(a,b)
M(a′,b′)

<
T (a,b)
T (a′,b′)

were presented in [2].
It is the aim of this paper to find the best possible generalized logarithmic mean

bounds for the Neuman-Sándor Mean M(a,b) .

2. Main result

In order to establish our main result we need the following Lemma 2.1.

LEMMA 2.1. The equation

(p+1)1/p = 2log(1+
√

2) = 2sinh−1(1)

has an unique solution p = p0 = 1.8435 . . . .

Proof. Let

g(p) =
{

(p+1)1/p, p ∈ (−1,0)∪ (0,+∞),
e, p = 0.

(2.1)

Then it is not difficult to verify that the function g is continuous and strictly de-
creasing from (−1,+∞) onto (1,+∞) . Therefore, Lemma 2.1 follows easily from the
continuity and monotonicity of g together with the facts that g(1.8435) = 1.762751 . . .
> 2log(1+

√
2) = 1.762747 . . . and g(1.8436) = 1.762730 . . . < 2log(1+

√
2) . �



570 Y.-M. LI, B.-Y. LONG AND Y.-M. CHU

THEOREM 2.2. The double inequality

Lp0(a,b) < M(a,b) < L2(a,b)

holds for all a,b > 0 with a �= b, where p0 = 1.8435 . . . is the unique solution of the
equation (p+1)1/p = 2log(1+

√
2) , and Lp0(a,b) and L2(a,b) are the best possible

lower and upper generalized logarithmic mean bounds for the Neuman-Sándor mean
M(a,b) , respectively.

Proof. From (1.1) and (1.2) we clearly see that both M(a,b) and Lp(a,b) are
symmetric and homogenous of degree 1. Without loss of generality, we assume that
b = 1 and a = x > 1.

Firstly, we prove that inequality Lp0(x,1) < M(x,1) holds for all x > 1. From
(1.1) and (1.2) one has

logLp0(x,1)− logM(x,1)

=
1
p0

log
xp0+1−1

(p0 +1)(x−1)
− log

x−1

2sinh−1( x−1
x+1 )

. (2.2)

Let

f (x) =
1
p0

log
xp0+1−1

(p0 +1)(x−1)
− log

x−1

2sinh−1( x−1
x+1 )

. (2.3)

Then simple computations and Lemma 2.1 lead to

lim
x→1+

f (x) = 0, (2.4)

lim
x→+∞

f (x) = log

[
2log(1+

√
2)

(p0 +1)1/p0

]
= 0, (2.5)

f ′(x) =
(p0 +1)(xp0 −1) f1(x)

p0(x−1)(xp0+1−1)sinh−1( x−1
x+1 )

, (2.6)

where

f1(x) =
√

2p0(x−1)(xp0+1−1)
(p0 +1)(x+1)(xp0 −1)

√
1+ x2

− sinh−1
(

x−1
x+1

)
,

lim
x→1+

f1(x) = 0, (2.7)

lim
x→+∞

f1(x) =
√

2p0

p0 +1
− sinh−1(1) = 0.0354 . . . > 0, (2.8)

f ′1(x) =
√

2 f2(x)
(p0 +1)(x+1)2(xp0 −1)2(1+ x2)3/2

, (2.9)

where

f2(x) = (p0 −1)x2p0+3− x2p0+2 +(p0−1)x2p0+1− (2p0 +1)x2p0

−p2
0x

p0+4 +(p2
0 + p0 +2)xp0+3 +(2− p0)xp0+2 +(2− p0)xp0+1
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+(p2
0 + p0 +2)xp0 − p2

0x
p0−1− (2p0 +1)x3 +(p0−1)x2

−x+ p0−1,

f2(1) = 0, (2.10)

lim
x→+∞

f2(x) = +∞, (2.11)

f ′2(x) = (p0 −1)(2p0 +3)x2p0+2 −2(p0 +1)x2p0+1 +(p0−1)(2p0 +1)x2p0

−2p0(2p0 +1)x2p0−1− p2
0(p0 +4)xp0+3 +(p2

0 + p0 +2)(p0 +3)xp0+2

+(2− p0)(p0 +2)xp0+1 +(2− p0)(p0 +1)xp0 + p0(p2
0 + p0 +2)xp0−1

−p2
0(p0−1)xp0−2−3(2p0 +1)x2 +2(p0−1)x−1,

f ′2(1) = 0, (2.12)

lim
x→+∞

f ′2(x) = +∞, (2.13)

f ′′2 (x) = 2(p0−1)(2p0 +3)(p0 +1)x2p0+1−2(p0 +1)(2p0 +1)x2p0

+2p0(p0−1)(2p0 +1)x2p0−1−2p0(2p0 +1)(2p0−1)x2p0−2

−p2
0(p0 +4)(p0 +3)xp0+2 +(p2

0 + p0 +2)(p0 +3)(p0 +2)xp0+1

+(2− p0)(p0 +2)(p0 +1)xp0 + p0(2− p0)(p0 +1)xp0−1

+p0(p2
0 + p0 +2)(p0−1)xp0−2 − p2

0(p0 −1)(p0−2)xp0−3

−6(2p0 +1)x+2(p0−1),
f ′′2 (1) = 0, (2.14)

lim
x→+∞

f ′′2 (x) = +∞, (2.15)

f ′′′2 (x) = 2(p0−1)(2p0 +3)(p0 +1)(2p0 +1)x2p0

−4p0(p0 +1)(2p0 +1)x2p0−1

+2p0(p0−1)(2p0 +1)(2p0−1)x2p0−2

−4p0(2p0 +1)(2p0−1)(p0−1)x2p0−3

−p2
0(p0 +4)(p0 +3)(p0 +2)xp0+1

+(p2
0 + p0 +2)(p0 +3)(p0 +2)(p0 +1)xp0

+p0(2− p0)(p0 +2)(p0 +1)xp0−1

+p0(2− p0)(p0 +1)(p0−1)xp0−2

+p0(p2
0 + p0 +2)(p0−1)(p0−2)xp0−3

−p2
0(p0−1)(p0−2)(p0−3)xp0−4 −6(2p0 +1),

f ′′′2 (1) = 0, (2.16)

lim
x→+∞

f ′′′2 (x) = +∞, (2.17)

f (4)
2 (x) = p0x

p0−5 f3(x), (2.18)

where

f3(x) = 4(p0−1)(2p0 +3)(p0 +1)(2p0 +1)xp0+4

−4(p0 +1)(2p0 +1)(2p0−1)xp0+3
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+4(p0−1)2(2p0 +1)(2p0−1)xp0+2

−4(2p0 +1)(2p0−1)(p0−1)(2p0−3)xp0+1

−p0(p0 +4)(p0 +3)(p0 +2)(p0 +1)x5

+(p2
0 + p0 +2)(p0 +3)(p0 +2)(p0 +1)x4

+(2− p0)(p0 +2)(p0 +1)(p0−1)x3

−(p0 +1)(p0−1)(p0−2)2x2

+(p2
0 + p0 +2)(p0−1)(p0−2)(p0−3)x

−p0(p0−1)(p0−2)(p0−3)(p0−4),
f3(1) = 24(p0−2)(p0 +1) < 0, (2.19)

lim
x→+∞

f3(x) = +∞, (2.20)

f ′3(x) = 4(p0−1)(2p0 +3)(p0 +1)(2p0 +1)(p0 +4)xp0+3

−4(p0 +1)(2p0 +1)(2p0−1)(p0 +3)xp0+2

+4(p0−1)2(2p0 +1)(2p0−1)(p0 +2)xp0+1

−4(2p0 +1)(2p0−1)(p0−1)(2p0−3)(p0 +1)xp0

−5p0(p0 +4)(p0 +3)(p0 +2)(p0 +1)x4

+4(p2
0 + p0 +2)(p0 +3)(p0 +2)(p0 +1)x3

+3(2− p0)(p0 +2)(p0 +1)(p0−1)x2

−2(p0 +1)(p0−1)(p0−2)2x

+(p2
0 + p0 +2)(p0−1)(p0−2)(p0−3),

f ′3(1) = 12p0(p0−2)(p0 +1)(8p0 +5) < 0, (2.21)

lim
x→+∞

f ′3(x) = +∞, (2.22)

f ′′3 (x) = 2(p0 +1) f4(x), (2.23)

where

f4(x) = 2(p0−1)(2p0 +3)(2p0 +1)(p0 +4)(p0 +3)xp0+2

−2(2p0 +1)(2p0−1)(p0 +3)(p0 +2)xp0+1

+2(p0−1)2(2p0 +1)(2p0−1)(p0 +2)xp0

−2p0(2p0 +1)(2p0−1)(2p0−3)(p0−1)xp0−1

−10p0(p0 +4)(p0 +3)(p0 +2)x3

+6(p2
0 + p0 +2)(p0 +3)(p0 +2)x2

+3(2− p0)(p0 +2)(p0−1)x− (p0−1)(p0−2)2,

f4(1) = 2(8p5
0 +18p4

0 +29p3
0−102p2

0−148p0 +3)
= −113.1306 . . . < 0, (2.24)

lim
x→+∞

f4(x) = +∞, (2.25)

f ′4(x) = 2(p0−1)(2p0 +3)(2p0 +1)(p0 +4)(p0 +3)(p0 +2)xp0+1
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−2(2p0 +1)(2p0−1)(p0 +3)(p0 +2)(p0 +1)xp0

+2p0(p0−1)2(2p0 +1)(2p0−1)(p0 +2)xp0−1

−2p0(2p0 +1)(2p0−1)(2p0−3)(p0−1)2xp0−2

−30p0(p0 +4)(p0 +3)(p0 +2)x2

+12(p2
0 + p0 +2)(p0 +3)(p0 +2)x

+3(2− p0)(p0 +2)(p0−1),
f ′4(1) = p0(96p4

0 +146p3
0 +43p2

0−801p0−900)
= −381.6533 . . . < 0, (2.26)

lim
x→+∞

f ′4(x) = +∞, (2.27)

f ′′4 (x) = 2(p0−1)(2p0 +3)(2p0 +1)(p0 +4)(p0 +3)(p0 +2)(p0 +1)xp0

−2p0(2p0 +1)(2p0−1)(p0 +3)(p0 +2)(p0 +1)xp0−1

+2p0(p0−1)3(2p0 +1)(2p0−1)(p0 +2)xp0−2

+2p0(2p0 +1)(2p0−1)(2p0−3)(p0−1)2(2− p0)xp0−3

−60p0(p0 +4)(p0 +3)(p0 +2)x
+12(p2

0 + p0 +2)(p0 +3)(p0 +2)
> 2(p0−1)(2p0 +3)(2p0 +1)(p0 +4)(p0 +3)(p0 +2)(p0 +1)xp0

−2p0(2p0 +1)(2p0−1)(p0 +3)(p0 +2)(p0 +1)xp0

−60p0(p0 +4)(p0 +3)(p0 +2)xp0

= 2(p0 +3)(p0 +2)(4p5
0 +20p4

0 +27p3
0−41p2

0−154p0−12)
= 1864.7110 . . . > 0 (2.28)

for x > 1.
Inequality (2.28) implies that f ′4 is strictly increasing in [1,+∞) . Then inequality

(2.26) and equation (2.27) together with the monotonicity of f ′4 lead to the conclu-
sion that there exists x1 > 1, such that f4 is strictly decreasing in [1,x1] and strictly
increasing in [x1,+∞) .

From inequality (2.24) and equation (2.25) together with the piecewise monotonic-
ity of f4 we clearly see that there exists x2 > x1 > 1, such that f4 < 0 in [1,x2) and
f4 > 0 in (x2,+∞) . Then equation (2.23) implies that f ′3 is strictly decreasing in [1,x2]
and strictly increasing in [x2,+∞) .

Inequality (2.21) and equation (2.22) together with the piecewise monotonicity of
f ′3 show that there exists x3 > x2 > 1, such that f3 is strictly decreasing in [1,x3] and
strictly increasing in [x3,+∞) .

From (2.18)–(2.20) and the piecewise monotonicity of f3 we clearly see that there
exists x4 > x3 > 1, such that f ′′′2 is strictly decreasing in [1,x4] and strictly increasing
in [x4,+∞) .

It follows from equations (2.16) and (2.17) together with the piecewise monotonic-
ity of f ′′′2 that there exists x5 > x4 > 1, such that f ′′2 is strictly decreasing in [1,x5] and
strictly increasing in [x5,+∞) .

Equations (2.14) and (2.15) together with the piecewise monotonicity of f ′′2 lead
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to the conclusion that there exists x6 > x5 > 1, such that f ′2 is strictly decreasing in
[1,x6] and strictly increasing in [x6,+∞) .

From equations (2.12) and (2.13) together with the piecewise monotonicity of f ′2
we clearly see that there exists x7 > x6 > 1, such that f2 is strictly decreasing in [1,x7]
and strictly increasing in [x7,+∞) .

It follows from equations (2.9)–(2.11) and the piecewise monotonicity of f2 that
there exists x8 > x7 > 1, such that f1 is strictly decreasing in (1,x8] and strictly in-
creasing in [x8,+∞) .

From (2.6)–(2.8) and the piecewise monotonicity of f1 we conclude that there
exists x9 > x8 > 1, such that f is strictly decreasing in (1,x9] and strictly increasing in
[x9,+∞) .

Therefore, Lp0(x,1) < M(x,1) for x > 1 follows from equations (2.2)–(2.5) and
the piecewise monotonicity of f .

Secondly, we prove that inequality L2(x,1) > M(x,1) holds for all x > 1.
From (1.1) and (1.2), we have

logL2(x,1)− logM(x,1)

=
1
2

log
x2 + x+1

3
− log(x−1)+ log

[
2sinh−1

(
x−1
x+1

)]
. (2.29)

Let

F(x) =
1
2

log
x2 + x+1

3
− log(x−1)+ log

[
2sinh−1

(
x−1
x+1

)]
. (2.30)

Then simple computations lead to

lim
x→1+

F(x) = 0, (2.31)

F ′(x) =
(x+1)G(x)

2(x3−1)sinh−1( x−1
x+1 )

, (2.32)

where

G(x) =
2
√

2(x3 −1)
(x+1)2

√
1+ x2

−3sinh−1
(

x−1
x+1

)
,

G(1) = 0, (2.33)

G′(x) =
√

2(x−1)4

(x+1)3(1+ x2)3/2
> 0 (2.34)

for x > 1.
Equation (2.33) and inequality (2.34) imply that

G(x) > 0 (2.35)

for x > 1. Then equation (2.32) and inequality (2.35) lead to the conclusion that F is
strictly increasing in (1,+∞) .
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Therefore, L2(x,1) > M(x,1) for x > 1 follows from equations (2.29)–(2.31) and
the monotonicity of F .

Next, we prove that L2(a,b) is the best possible upper generalized logarithmic
mean bound for the Neuman-Sándor mean M(a,b) .

For any 0 < ε < 2 and x > 0, from (1.1) and (1.2) one has

L2−ε(1+ x,1)−M(1+ x,1)=
[
(1+ x)3−ε −1

(3− ε)x

]1/(2−ε)

− x

2sinh−1( x
2+x )

. (2.36)

Letting x → 0 and making use of Taylor expansion, we get

[
(1+ x)3−ε −1

(3− ε)x

]1/(2−ε)

− x

2sinh−1( x
2+x )

=
[
1+

2− ε
2

x+
(2− ε)(1− ε)

6
x2 +o(x2)

]1/(2−ε)

− x

x− 1
2x2 + 5

24x3 +o(x3)

=
[
1+

1
2
x+

1− ε
24

x2 +o(x2)
]
−

[
1+

1
2
x+

1
24

x2 +o(x2)
]

= − ε
24

x2 +o(x2). (2.37)

Equations (2.36) and (2.37) imply that for any 0 < ε < 2 there exists δ = δ (ε) >
0, such that L2−ε(1+ x,1) < M(1+ x,1) for x ∈ (0,δ ) .

Finally, we prove that Lp0(a,b) is the best possible lower generalized logarithmic
mean bound for the Neuman-Sándor mean M(a,b) .

For any ε > 0 and x > 1, from (1.1) and (1.2) together with Lemma 2.1 one has

lim
x→+∞

log

[
Lp0+ε(x,1)

M(x,1)

]

= lim
x→+∞

[
1

p0 + ε
log

xp0+ε+1−1
(p0 + ε +1)(x−1)

− log
x−1

2sinh−1( x−1
x+1 )

]

= log

[
2sinh−1(1)

]
− 1

p0 + ε
log(p0 + ε +1)

=
1
p0

log(p0 +1)− 1
p0 + ε

log(p0 + ε +1)

> 0. (2.38)

Inequality (2.38) implies that for any ε > 0 there exists X = X(ε) > 1, such that
Lp0+ε(x,1) > M(x,1) for x ∈ (X ,+∞) . �
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