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NORMS OF MATRIX OPERATORS ON bvp
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(Communicated by N. Elezović)

Abstract. In this paper we consider the problem of finding norms of certain matrix operators on
sequence space bvp . In fact, we consider these problems for weighted mean, and generalized
Cesaro matrices on sequence space bvp .

1. Introduction

By w , we denote the space of all real or complex valued sequences. Any vector
subspace of w is called a sequence space. We write lp for the space of all p -absolutely
convergent series, with

‖x‖p :=
( ∞

∑
k=1

|xk|p
) 1

p .

For 0 < p < ∞ , the sequence space bvp is defined by:

bvp = {x = (xk) ∈ w :
∞

∑
k=1

|xk − xk−1|p < ∞},

where x0 = 0, with

‖x‖bvp :=
( ∞

∑
k=1

|xk − xk−1|p
) 1

p .

A matrix A = (an,k) defines an operator by Ax = y , where yn =
∞
∑

k=1
an,kxk. Provided

that this defines an operator from a sequence space X into itself, its norm is defined in
the usual way,

‖A‖X := sup
‖x‖X=1

‖Ax‖X .

We will estimate ‖A‖bvp when A is a weighed mean matrix Ma = (mn,k) or a general-
ized Cesaro matrix CN = (bN

n,k) . This matrices are defined as follows:

mnk :=

{
ak
An

, 1 � k � n,

0, otherwise,
(1.1)
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and

bN
n,k =

{
1

n+N , 1 � k � n,

0, otherwise.
(1.2)

Hear An =
n
∑

k=1
ak and a = (an)∞

n=1 is a non negative sequence with a1 > 0.

We summarize the knowledge in the existing literature concerning the upper and
lower bounds of the matrix operators on some sequence spaces. Lyons [10] examined
the lower bound for the Cesaro operator on l2 . Bennett [2] studied the lower bounds
for matrix operators on �p for p � 1. Jameson [5] computed the lower bounds and
norms of operators on Lorentz sequence space d(w,1) . Jameson and Lashkaripour [6,7]
studied norms and lower bounds of certain matrix operators on weighted �p spaces
and Lorentz sequence space. In this paper, we determine the norms of some matrix
operators such as weighted mean, and generalized Cesaro on sequence space bvp .

2. Main result

THEOREM 2.1. Suppose that an � mar for all r � n. Then ||Ma||bvp � m
p−1
p . In

particular, the norms equals 1 when p = 1 (for any m)and when (an) is decreasing
(for any p).

THEOREM 2.2. ||CN ||bvp � 1 for all N and all p � 1 .

To prove Theorems 2.1 and 2.2 we need the following theorem.

SCHUR’S THEOREM. ([4], Theorem 275) suppose that

∞

∑
k=1

|cn,k| � R f or all n,
∞

∑
n=1

|cn,k| � K for all k,

(bounds for row and column sums respectively). Let ||C||p denote the norm of C as an

operator on �p . Then ||C||p � R
p−1
p K

1
p (and ||C||1 � K ).

A lower triangular operator on bvp can be equated to an operator on �p , as follows.
First, note that if a1 +a2 + . . .+ak = Ak , then

n

∑
k=1

akxk =
n

∑
k=1

(An −Ak−1)(xk − xk−1), (2.1)

with x0 = A0 = 0 (reversed Abel summation). Now let yn =
n
∑

k=1
an,kxk and write An,k =

k
∑
j=1

an, j. Also, write

u = (x1,x2− x1,x3− x2, . . .), v = (y1,y2− y1,y3− y2, . . .),

so that ||x||bvp = ||u||p and ||y||bvp = ||v||p. By (2.1),

yn =
n

∑
k=1

(An,n−An,k−1)uk. (2.2)
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If also An,n = 1 for all n , then vn = yn− yn−1 =
n
∑

k=1
cn,kuk , where c1,1 = 1,

cn,k = An−1,k−1−An,k−1. (2.3)

for k � n with n � 2, also cn,1 = 0 for n � 2 and cn,k = 0 for k > n .

Proof of Theorem 2.1. We have An,k = Ak
An

. Note that (An) increases with n , and
hence cn,k � 0. Now consider column sums. For k � 2,

K

∑
n=k

cn,k =
K

∑
n=k

Ak−1

(
1

An−1
− 1

An

)
= Ak−1

(
1

Ak−1
− 1

AK

)
� 1,

hence
∞
∑

n=k
cn,k � 1. For n � 2 the row sum is

n

∑
k=1

cn,k =
n

∑
k=1

Ak−1

(
1

An−1
− 1

An

)
� (n−1)An−1

(
1

An−1
− 1

An

)
= (n−1)

an

An
.

Since an � mar for all r � n, we have mAn � nan, hence the row sum is not greater than

m . By Schur,s theorem , ||Ma||bvp � m
p−1
p . In particular, if p= 1 or (an) is decreasing,

then ||Ma||bvp � 1. Since Max = x ,where x = (1,1,1, . . .) , ||Ma||bvp = 1. �

Proof of Theorem 2.2. Let an,k = 1
n+N for 1 � k � n . By (2.2) ,

yn =
n

∑
k=1

n− k+1
n+N

uk,

hence vn =
n
∑

k=1
cn,kuk with c1,1 = 1

1+N and for n � 2,

cn,k =
n− k+1
n+N

− n− k
n+N−1

= (N + k−1)
(

1
n+N−1

− 1
n+N

)
.

From this it is easily seen that
∞
∑

n=k
cn,k = 1 for all k . Also,

n

∑
k=1

cn,k =
n(n+2N−1)

2(n+N−1)(n+N)
.

This is not greater than 1, and in fact not greater than 1
2 when N = 0 or N � 1.By

applying Schur,s theorem , we get the result. �

COROLLARY 2.3. C0 is a bounded matrix operator from bvp into itself with norm
‖C0‖bvp = 1.

Proof. Again, C0x = x where x = (1,1, . . .) , hence ‖C0‖bvp = 1. �
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