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SOME SHARP INEQUALITIES INVOLVING

RECIPROCALS OF THE SEIFFERT AND OTHER MEANS
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Abstract. In the paper, by establishing the monotonicity of some functions involving the sine and
cosine functions, we find some new sharp inequalities involving the reciprocals of the Seiffert,
contra-harmonic, arithmetic, geometric and root-square means of two positive real numbers a
and b with a �= b .

1. Introduction

Let C = a2+b2

a+b , A = a+b
2 , G =

√
ab , S =

√
a2+b2

2 be the contra-harmonic, arith-
metic, geometric and root-square means of two positive real numbers a and b with
a �= b .

For a,b > 0 with a �= b , the first Seiffert mean P and the second Seiffert mean T
(see [11], [12, eq. (2.4)] and [13], respectively) are defined as follows

P = A
t

arcsint
, (1.1)

T = A
t

arctant
. (1.2)

where

t =
a−b
a+b

. (1.3)

Recently, the Seiffert’s mean has been the subject of intensive research.
In [6], the authors proved that inequality

αS+(1−α)A < T < βS+(1−β )A (1.4)

holds for all a,b > 0 with a �= b if and only if α � 4−π
(
√

2−1)π and β � 2
3 .

In [20], the double inequality

1
2
(A+G) < P <

2
3
A+

1
3
G
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for all a,b > 0 with a �= b was given.
In [14], the following inequality

P >
3AG

A+2G
,

which is equivalent to
1
P

<
1
3

1
G

+
2
3

1
A

, (1.5)

for all a,b > 0 with a �= b was given.
For more information on this topic, please refer to [4-10, 15-19].
In the paper, by establishing the monotonicity of some functions involving the sine

and cosine functions, we find some new sharp inequalities involving reciprocals of the
Seiffert, contra-harmonic, arithmetic, geometric, and root-square means of two positive
real numbers a and b with a �= b .

2. Lemmas

For establishing the monotonicity of some functions involving the sine and cosine
functions, we need some lemmas below.

LEMMA 2.1. The Bernoulli numbers B2n for n ∈ N have the property

(−1)n−1B2n = |B2n|, (2.1)

where the Bernoulli numbers Bi for i � 0 are defined by

x
ex −1

=
∞

∑
i=0

Bi

i!
xi = 1− x

2
+

∞

∑
i=1

B2i
x2i

(2i)!
, |x| < 2π . (2.2)

Proof. In [3, p. 16 and p. 56], it is listed that for q � 1

ζ (2q) = (−1)q−1 (2π)2q

(2q)!
B2q

2
, (2.3)

where ζ is the Riemann zeta function defined by

ζ (s) =
∞

∑
n=1

1
ns . (2.4)

From (2.3), the formula (2.1) follows. �

LEMMA 2.2. ([1, p. 75, 4.3.70]) For 0 < |x| < π ,

cotx =
1
x
−

∞

∑
n=1

22n|B2n|
(2n)!

x2n−1. (2.5)
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LEMMA 2.3. For 0 < |x| < π ,

1

sin2 x
=

1
x2 +

∞

∑
n=1

22n(2n−1)|B2n|
(2n)!

x2(n−1). (2.6)

Proof. Since
1

sin2 x
= csc2 x = − d

dx
(cotx),

the formula (2.6) follows from differentiating (2.5). �

LEMMA 2.4. For 0 < |x| < π , we have

cosx

sin3 x
=

1
x3 −

∞

∑
n=2

(2n−1)(n−1)22n|B2n|
(2n)!

x2n−3. (2.7)

Proof. The equality (2.7) follows from combination of

cosx

sin3 x
= −1

2

(
1

sin2 x

)′

with Lemma 2.3. �

LEMMA 2.5. [2, p. 292, Lemma 1] Let f and g be continuous on [a,b] and dif-

ferentiable in (a,b) such that g′(x) �= 0 in (a,b) . If f ′(x)
g′(x) is increasing (or decreasing)

in (a,b) , then the functions f (x)− f (b)
g(x)−g(b) and f (x)− f (a)

g(x)−g(a) are also increasing (or decreasing)
in (a,b) .

3. Some trigonometric inequalities

For finding some new sharp inequalities involving the Seiffert, contra-harmonic,
arithmetic, geometric, and root-square means of two positive real numbers a and b
with a �= b , we need the following monotonicity of some functions involving the sine
and cosine functions.

THEOREM 1. For x ∈ (0,π/2) , the function

h1(x) =
cosx(x− sinxcosx)

sin3 x
(3.1)

is strictly decreasing and satisfies

lim
x→0+

h1(x) =
2
3

and lim
x→π/2−

h1(x) = 0. (3.2)
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Proof. The function h1(x) may be rewritten as

h1(x) =
xcosx

sin3 x
− 1

sin2 x
+1

for x ∈ (0,π/2) . By using (2.6) and (2.7), we have

h1(x) =
1
x2 −

∞

∑
n=2

22n(2n−1)(n−1)
(2n)!

|B2n|x2n−2− 1
x2 −

∞

∑
n=1

22n(2n−1)
(2n)!

|B2n|x2n−2 +1

= −
∞

∑
n=1

n(2n−1)22n

(2n)!
|B2n|x2n−2 +1.

So the function h1(x) is strictly decreasing on (0,π/2) .
The limits in (3.2) may be concluded from L’Hôspital rule and standard argument.

The proof of Theorem 1 is complete. �

THEOREM 2. For x ∈ (0,π/2) , the function

h2(x) =
cosx(x− sinx)
sinx(1− cosx)

(3.3)

is strictly decreasing, with

lim
x→0+

h2(x) =
1
3

and lim
x→π/2−

h2(x) = 0. (3.4)

Proof. It is obvious that

h2(x) = 1+
f1(x)
f2(x)

,

where
f1(x) = xcotx−1 and f2(x) = 1− cosx.

Easy computations give

f ′1(x)
f ′2(x)

=
sinxcosx− x

sin3 x
� f3(x)

f4(x)

and
f ′3(x)
f ′4(x)

= − 2
3cosx

.

Since 1
cosx is increasing on

(
0, π

2

)
, the function

f ′3(x)
f ′4(x)

is strictly decreasing on
(
0, π

2

)
.

Hence, By Lemma 2.5 and the continuity of h2(x) at x = π
2 , we see that h2(x) is strictly

decreasing on (0,π/2) .
The limits in (3.4) can be deduced from L’Hôspital rule and standard argument.

The proof of Theorem 2 is complete. �
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4. New inequalities involving Seiffert and other means

In this section we will find some new sharp inequalities involving reciprocals of the
Seiffert, contra-harmonic, arithmetic, geometric, and root-square means of two positive
real numbers a and b with a �= b .

THEOREM 3. The double inequality

α
G

+
(1−α)

A
<

1
P

<
β
G

+
(1−β )

A
(4.1)

holds for all a,b > 0 with a �= b if and only if α = 0 and β � 1
3 .

Proof. The double inequality (4.1) is the same as

α <
A
P −1
A
G −1

< β .

Without loss of generality, we assume that a > b > 0. Put t = a−b
a+b . Then t ∈ (0,1) and

A
P −1
A
G −1

=
arcsin t

t −1√
1

1−t2
−1

.

Let t = sinθ for θ ∈ (
0, π

2

)
. Then

A
P −1
A
G −1

=
θ

sinθ −1
1

cosθ −1
=

cosθ (θ − sinθ )
sinθ (1− cosθ )

.

By Theorem 2, we obtain Theorem 3. �

THEOREM 4. The double inequality

α
A

+
(1−α)

C
<

1
T

<
β
A

+
(1−β )

C
(4.2)

holds for all a,b > 0 with a �= b if and only if α � π
2 −1 and β � 2

3 .

Proof. It is sufficient to show

α <
A
T − A

C

1− A
C

< β .

Without loss of generality, we assume that a > b > 0. Let t = a−b
a+b . Then t ∈ (0,1) and

A
T − A

C

1− A
C

=
arctan t

t − 1
1+t2

1− 1
1+t2

.
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Let t = tanθ for θ ∈ (
0, π

4

)
. Then

A
T − A

C

1− A
C

=
θ

tanθ − cos2 θ
sin2 θ

=
cosθ (θ − sinθ cosθ )

sin3 θ
.

By Theorem 1 and h1
(π

4

)
= π

2 −1 , we obtain Theorem 4. �

THEOREM 5. The double inequality

α
A

+
(1−α)

S
<

1
T

<
β
A

+
(1−β )

S
(4.3)

holds for all a,b > 0 with a �= b if and only if α � π−2
√

2
4−2

√
2

and β � 1
3 .

Proof. The inequality (4.3) is equivalent to

α <
A
T − A

S

1− A
S

< β .

Without loss of generality, we assume that a > b > 0. Let t = a−b
a+b . Then t ∈ (0,1) and

A
T − A

S

1− A
S

=
arctan t

t −
√

1
1+t2

1−
√

1
1+t2

.

Let t = tanθ for θ ∈ (
0, π

4

)
. Then

A
T − A

S

1− A
S

=
θ

tanθ − cosθ
1− cosθ

=
cosθ (θ − sinθ )
sinθ (1− cosθ )

. (4.4)

By Theorem 2 and h2
(π

4

)
= π−2

√
2

4−2
√

2
, we obtain Theorem 5. �

REMARK 4.1. E. Neuman pointed out that (1.5), a special case of Theorem 3 for
β = 1

3 follows from the inequality

(
A2G

) 1
3 < P, (4.5)

(see [12]) by taking reciprocals and next using the inequality of arithmetic and geomet-
ric means. Similarly, using

(
S2A

)1/3
< T, (4.6)

(see [12]) one obtains

1
T

<
2
3

1
S

+
1
3

1
A

. (4.7)

The well known fact that G < P < A and A < T < S is utilized to claim that β � 1
3

is an optimal value in Theorems 3 and 5.
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