
Journal of
Mathematical

Inequalities

Volume 6, Number 4 (2012), 601–613 doi:10.7153/jmi-06-58
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Abstract. This paper considers bounds for the singular values of a matrix with a row- or column-
singleton if such an element is perturbed. A multiplicative approach to such perturbations may
lead to sharper bounds than the usual additive Weyl bounds. These bounds immediately give
the interlace property for the singular values. These results are used for perturbation bounds if
a tridiagonal matrix with a zero diagonal is perturbed in the last pair of off-diagonal elements.
Such perturbation bounds are then applied to bound perturbations of the eigenvalues and the first
component of the eigenvectors, which has a direct application in the computation of the Gaussian
quadrature formulae for compression splines.

1. Introduction

Many problems of numerical linear algebra lead to either the eigensystem compu-
tation of tridiagonal matrices, or the singular value decomposition (SVD) of bidiagonal
matrices. Usually, the perturbations of such matrices are viewed in the context of com-
putation of the eigenvalues (or singular values) when all nonzero elements of a matrix
are perturbed.

In this paper we consider perturbations of the singular values of matrices with
singletons, if a singleton is the only perturbed element. We say that the element bk,� is
a row-singleton of a matrix B if the k -th row is zero, except at the position (k, �) . The
element bk,� is a column-singleton of B if b�,k is a row-singleton in B∗ .

The first and the last diagonal elements of the bidiagonal matrices are column-
and row-singletons, respectively. Perturbations in singular values of a bidiagonal ma-
trix can be interpreted as perturbations of eigenvalues of the tridiagonal matrix with
zero diagonal elements. Such perturbation can be of great interest in the algorithm for
computation of nodes of the Gaussian quadratures for the compression splines [1] on
the interval [−1,1] .

The compression splines are spanned in each interval by the compression pow-
ers. Compression powers are a basis of functions that consists of polynomials and two
trigonometric functions,

{1,x, . . . ,xm−3,sin(px),cos(px)},
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where m � 2, and p > 0 is a given compression parameter. The compression parameter
p need not be the same in each interval. If p < π , for given n∈ N there exists a unique
Gaussian quadrature formula of order n ,

Q[ f ] =
n

∑
i=1

wi f (xi),

where xi ∈ 〈−1,1〉 are nodes, and wi are positive weights for i = 1, . . . ,n . Such formula
is exact for all functions f that are linear combination of compression powers, i.e.,

{1,x, . . . ,x2n−3,sin(px),cos(px)}.
Typically, the nodes xi and the weights wi can be calculated from the Jacobi matrix

Jn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

α0
√

β1 0 · · · 0√
β1 α1

√
β2

. . .
...

0
√

β2
. . .

. . . 0
...

. . .
. . . αn−2

√
βn−1

0 · · · 0
√

βn−1 αn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (1.1)

The nodes xi of the integration formula are eigenvalues of the Jacobi matrix, while the
weights wi are

wi = β0v
2
1,i,

where v1,i , i = 1, . . . ,n are the first components of the normalized eigenvectors of Jn .
The normalization factor β0 is the integral of the weight function w over the domain
of the integration.

From the symmetry of the nodes in the case of Gaussian quadratures for compres-
sion splines, it follows that

αi = 0, i = 0, . . . ,n−1

in (1.1), while all βi , except βn−1 , are known and equal

βi =
i2

4i2−1
.

Eigenvalues of the tridiagonal matrix are iteratively computed by the Golub–Welsch
algorithm [8], to determine the value of the unknown parameter βn−1 . If the parameter
p is changed, the derived bounds can be used as endpoints of the interval where new
βn−1 lies.

Now supposte that A is tridiagonal Hermitian matrix of order n with zero diagonal
elements and nonzero elements on the superdiagonal. Then A has rank either n , if n is
even or n−1 if n is odd. A behavior of its eigenvalues can be seen as a behavior of the
singular values of matrix B , where

PAPT =
[

0 B
B∗ 0

]
. (1.2)
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If n is even, n = 2s , then B is of order s and

B =

⎡
⎢⎢⎢⎢⎢⎣

b1 b2

b3 b4
. . .

. . .
b2s−3 b2s−2

b2s−1

⎤
⎥⎥⎥⎥⎥⎦ , P = [es+1,e1,es+2,e2, . . . ,e2s,es], (1.3)

where ei are vectors of the canonical basis. If n is odd, n = 2s+1, then B is s×(s+1)
matrix and

B =

⎡
⎢⎢⎢⎣

b1 b2

b3 b4
. . .

. . .
b2s−1 b2s

⎤
⎥⎥⎥⎦ , P = [es+1,e1,es+2,e2, . . . ,es+1]. (1.4)

If the singular values of B are ordered decreasingly and denoted by σi ,

σ1 � σ2 � · · · � σs � 0,

it is easy to show that the eigenvalues of A from (1.2) are ±σi , i = 1, . . . ,s if n is even,
and ±σi , i = 1, . . . ,s and 0 if n is odd. Thus, a perturbation of the last off-diagonal
element of A corresponds to a perturbation of the singletons b2s−1 in (1.3) if n is even,
or of b2s in (1.4) if n is odd.

The rest of the paper is organized as follows. In Section 2 we present bounds for
the singular values of a matrix if its singleton is perturbed. The results obtained in
Section 2 are then applied in Section 3 on a symmetric tridiagonal matrix with a zero
diagonal, perturbed on the last off-diagonal element. Together with the bounds from
the sinϑ theorems, bounds for eigenvalues of a perturbed tridiagonal matrix can used
to obtain bounds for the first component of the normalized eigenvector of a perturbed
matrix A′ . In the final section we give some numerical examples which show how tight
the obtained bounds can be.

2. Interlace properties for the singular values of perturbed bidiagonal matrices

Demmel and Kahan [4] showed that small relative perturbations in the entries of
a bidiagonal matrix cause small relative perturbations in its singular values. This re-
sult is extended by Demmel and Gragg [3] to biacyclic matrices, i.e., matrices whose
associated bipartite graph is acyclic.

Suppose that the nontrivial elements of a biacyclic matrix B are denoted by bk,� ,
where (k, �) denote the position of a nontrivial element, while the elements of a per-
turbed matrix B′ are denoted by b′k,� . The singular values of B , B′ are denoted by σi ,
σ ′

i , respectively.

THEOREM 2.1. (Demmel–Gragg) Let B be biacyclic, and let B′ = B+ δB be a
componentwise relative perturbation of B, i.e., b′k,� = αk,�bk,� for all k and � , where
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αk� �= 0 . Then for all singular values

1
1+ η

σi � σ ′
i � (1+ η)σi,

where
η = ∏

bk,� �=0

max{|αk,�|,1/|αk,�|}−1.

To prove the previous Theorem, Demmel and Gragg also proved the following lemma.

LEMMA 2.2. (Demmel–Gragg) Let B be biacyclic, and let B′ = B except for b′k,� ,
where b′k,� = αbk,� , α �= 0 . Then for all singular values

min{|α|,1/|α|}σi � σ ′
i � max{|α|,1/|α|}σi.

In order to prove the modifications of the previous Lemma, we need the following
theorem, given in [9, Theorem 3.3.16], and just for completeness, we present it here.

THEOREM 2.3. Let F,G ∈ Cm×n be given matrices and let q = min{m,n} . The
following inequalities hold for decreasingly ordered singular values of F , G, F + G
and FG∗

(a) σi+ j−1(F +G) � σi(F)+ σ j(G) ,

(b) σi+ j−1(FG∗) � σi(F)σ j(G)

for 1 � i, j � q and i+ j � q+1 . In particular, for j = 1

(c) |σi(F +G)−σi(F)| � σ1(G) , for i = 1, . . . ,q,

(d) σi(FG∗) � σi(F)σ1(G) , for i = 1, . . . ,q.

Now we describe how the perturbation of a singleton in a matrix is reflected in its
singular values.

THEOREM 2.4. Suppose that row- (column-) singleton bk,� of a matrix B∈ Cm×n

is perturbed such that B′ = B except on position (k, �) , where b′k,� = αbk,� , and α is a
nonzero constant. Then, singular values of B and B′ satisfy

min{1, |α|}σi � σ ′
i � max{1, |α|}σi.
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Proof. Suppose that bk,� is a row-singleton. Then B′ can be written as B′ = DB ,
where

D = diag(Ik−1,α, Im−k). (2.1)

A direct application of Theorem 2.3(d) gives σ ′
i � σ1(D)σi . If |α| � 1 then

σ1(D) = 1, otherwise σ1(D) = |α| ,

σ ′
i � max{1, |α|}σi. (2.2)

Matrices B and B′ can swap roles, i.e., B = D−1B′ . If |α| > 1 then σ1(D−1) = 1,
otherwise σ1(D) = 1/|α| , and Theorem 2.3(d) gives

σi � σ1(D−1)σ ′
i = max{1,1/|α|}σ ′

i . (2.3)

Note that
1

max{1,1/|α|} = min{1, |α|},

and (2.3) can be written as
min{1, |α|}σi � σ ′

i . (2.4)

Now (2.2) and (2.4) complete the proof for a row-singleton.
Suppose that bk,� is a column-singleton. Then B′ can be written as B′ = BΔ ,

where
Δ = diag(I�−1,α, In−�).

Since the singular values of matrix B and B∗ are the same, we have

σi([B′]∗) = σ ′
i � σ1(Δ∗)σi(B∗) = max{1, |α|}σi.

From Theorem 2.3(d), applied on B∗ = Δ−∗[B′]∗ , it follows

min{1, |α|}σi � σ ′
i ,

and that completes the proof. �

If the perturbation in the last theorem is such that |b′k,�| is bigger than |bk,�| , all
the singular values of B′ become bigger, and vice-versa.

THEOREM 2.5. Suppose that row (column)-singleton bk,� of a matrix B ∈ Cm×n

is perturbed such that B′ = B except on position (k, �) , where b′k,� = αbk,� and α is a
nonzero constant.

1. If α < 1 , then singular values of B and B′ satisfy

σi+1 � σ ′
i � σi, (2.5)

for i = 1, . . . ,n, where we adopt the notational convention σn+1 = 0 .
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2. If α � 1 , then singular values of B and B′ satisfy

σi � σ ′
i � σi−1, (2.6)

for i = 1, . . . ,n, where we adopt the notational convention σn+1 = ∞ .

Proof. Note that the right-hand side inequality in (2.5) and the left-hand side in-
equality in (2.6) are consequences of Theorem 2.4.

On the other hand, B can be written as B = B′ +C , where

ci, j =

{
bk,�−b′k,� if i = k and j = �,

0 otherwise.
(2.7)

Note that C is of rank at most one, and

σ1(C) = |bk,�−b′k,�|, σ2(C) = · · · = σn(C) = 0.

By substituting j = 2, F = B′ , and G = C in Theorem 2.3(a), we obtain

σi+1 � σ ′
i + σ2(C) = σ ′

i .

To prove the left-hand side of relation (2.6), B′ can be written as B′ = B−C , where
C is defined by (2.7). By substituting j = 2, F = B , and G = −C in Theorem 2.3(a),
we obtain

σ ′
i+1 � σ ′

i + σ2(−C) = σ ′
i .

By translation of the index i → i−1, we obtain the right-hand side of (2.6). �

From the proof of the previous Theorem, notice that the left-hand side inequality in
(2.5) is obtained by additive perturbation, while the right-hand side of (2.5) is obtained
by multiplicative perturbation. In (2.6) the left-hand side inequality is obtained by
multiplicative, while the right-hand side is obtained by additive perturbation.

Finally, note that (2.5) and (2.6) represent the interlace property for the singular
values of matrices B and B′ . In between any neighboring pair of the singular values of
B lies exactly one singular value of B′ , and vice-versa.

Note that Theorem 2.3(c) is standard Weyl perturbation bound, i.e.,

σi−|b′k −bk| � σ ′
i � σi + |b′k−bk|, i = 1, . . . ,n. (2.8)

In Section 4 we show that, in some cases, the bounds from Theorem 2.4 and Theo-
rem 2.5 can be tighter than the bounds from the relation (2.8).

Obviously, all bounds presented in this section hold for matrices B from (1.3) and
(1.4). Moreover, these bounds hold for the eigenvalues of a matrix A from (1.2).
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3. Perturbation bounds for the first components of eigenvectors

It is quite interesting question how the change of the eigenvalues of a Hermitian
matrix A ∈ R

n×n , caused by the Hermitian perturbation of an−1,n and an,n−1 , reflects
on the change of the eigenvectors of A′ = DT AD .

This problem is solved by the variants of the absolute or relative sinϑ theorems.
We use these theorems to determine the bounds for the first components of the eigenvec-
tors of a symmetric, tridiagonal A (with a zero diagonal) from (1.2). If A is irreducible,
i.e., if the off-diagonal elements of A are nontrivial, the eigenvalues of A are distinct,
and each eigenvector spans the one-dimensional subspace. Therefore it is sufficient to
analyze sinϑi rather than to consider angles between subspaces. For example, matri-
ces generated by three-term recurrence relation for orthogonal polynomials, such as the
Jacobi matrix Jn from (1.1), are irreducible.

The following theorem is proved in [7, Theorem 2.2]. It bounds the angle ϑi

between subspaces spanned by an exact eigenvector and the corresponding perturbed
eigenvector in terms of the relative gap.

THEOREM 3.1. Let A′ = A+δA = DT AD, where D is a nonsingular matrix, and
let

β = ‖D− I‖2, γ = ‖DT D− I‖2, δ = ‖DT D‖2‖D−TD−1 − I‖2.

Then

sinϑi � δ
ρi− γ

+ β ,

where the relative gap ρi is defined by

ρi = min

{
2,min

j �=i

|λ j −λi|
|λi|

}
,

provided that ρi > γ .

For a tridiagonal matrix A with zero diagonal, and perturbed matrix A′ such that
A′ = A except on positions (n− 1,n) and (n,n− 1) , we have the following corollary,
very similar to [7, Corollary 4.4].

COROLLARY 3.2. Let A be a symmetric tridiagonal matrix with a zero diagonal,
and let A′ = A+δA equal A, except for the off-diagonal elements an−1,n = an,n−1 , that
are perturbed to αan−1,n = αan,n−1 for some α �= 0 . Then

sinϑi � δ
ρi− γ

+ β ,

where

β = |α −1|, γ = |α2 −1|, δ = max{α2,1} |α
2−1|
α2 ,

provided that ρi > γ .
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Proof. The proof immediately follows from Theorem3.1, by defining D as in (2.1),

D = diag(In,α).

Then

β = ‖D− I‖2 = |α −1|,
γ = ‖DTD− I‖2 = |α2 −1|,

δ = ‖DTD‖2‖D−T D−1− I‖2 = max{α2,1}
∣∣∣∣ 1
α2 −1

∣∣∣∣ = max{α2,1} |α
2−1|
α2 ,

and that completes the proof. �

REMARK 3.3. For D in the proof of Corollary 3.2, we can take different D’s. For
example, if α > 0, Eisenstat and Ipsen in [7, Corollary 4.4] set

D = diag(. . . ,
√

1/α,
√

α,
√

1/α,
√

α,
√

α)

and obtain

sinϑi � η(1+ η)
ρi−η

+
η
2

, (3.1)

where η = max{α,1/α}−1, provided that ρi > η .
Note that the bound from Corollary 3.2 could be better than the bound in (3.1).

For example, if λ = 1/2 then

β =
1
2
, γ =

3
4
, δ = 3, η = 1,

The bound from Corollary 3.2 gives

sinϑi � 3
ρi−3/4

+
1
2
, (3.2)

while the bound from (3.1) gives

sinϑi � 2
ρi−1

+
1
2
. (3.3)

Note that the bound in (3.2) is valid for ρi > 3/4, while the bound from (3.3) is valid for
ρi > 1. Moreover, even if both inequalities are well-defined, (3.2) gives better bound
than (3.3) if ρi < 3/2.

There are numerous other possibilities how to bound sinϑi . For example, Dhillon
and Parlett in [6, Theorem 1] cite the following theorem of Temple from the 1930s.

THEOREM 3.4. Let A = AT be a real matrix that has a simple eigenvalue λi with
normalized eigenvector vi . For any unit vector w and a scalar μ , closer to λi than to
any other eigenvalue,

|sin�(vi,w)| � ‖Aw− μw‖2

gap(μ)
,
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where gap(μ) = min{|λ j − μ | : λ j �= λi, λ j ∈ spectrum(A)} . In addition, the error in
the eigenvalue is bounded by the residual norm, i.e.,

|μ −λi| � ‖Aw− μw‖2.

In Theorem 3.4, one should use the Kato–Temple (see for example [2]) inequality
to estimate the spectrum. In this case,

|μ −λi| � min

{‖Aw− μw‖2
2

gap(μ)
,‖Aw− μw‖2

}
.

Instead of any normalized vector w and any scalar μ , closer to λi than to any other
eigenvalue, we can take the eigenpair (λ ′

i ,v
′
i) of matrix A′ = DAD , for D diagonal and

sufficiently close to the identity matrix. In this case we obtain

|sin�(vi,v
′
i)| �

‖Av′i−λ ′
i v

′
i‖2

gap(λi)
=

‖Av′i−DADv′i‖2

gap(λi)
� ‖A−DAD‖2

gap(λi)
.

Theorem 3.4 is in [5, 6] also used to prove that the algorithm MRRR applied to the
symmetric indefinite factorization of a tridiagonal matrix A , A = LDLT , can compute
numerically orthogonal approximation of the eigenvectors at the cost of O(n2) .

Now, we can bound the first component of the eigenvectors of the symmetric tridi-
agonal matrix A′ with zero diagonal elements. Interpreted in terms of the integration
formula, this bounds are in fact perturbation bounds for weights in the integration for-
mula.

PROPOSITION 3.5. Suppose that vi is the unit eigenvector of A, and v′i is the
unit eigenvector of A′ . If the angle ϑi , between subspaces spanned by vi and v′i , is
bounded, i.e., if 0 � sinϑi � ζ , where

ζ �
v2
1,i

1+ v2
1,i

, (3.4)

then the nonnegative first component v′1,i of the eigenvector v′i is bounded by√
1− ζ 2v1,i − ζ � v′1,i � v1,i + ζ . (3.5)

Proof. Suppose that vi is the unit eigenvector of A , and v′i is the unit eigenvector
of A′ . Then, in the viv

′
i plane, v′i can be written as

v′i = cosϑivi + sinϑiz,

where z is a unit vector orthogonal to vi in the viv
′
i plane. We can always take nonnega-

tive first component of the normalized eigenvector vi (if vi is a unit eigenvector, −vi is
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also a unit eigenvector). Since ϑi is the angle between subspaces, then 0 � ϑi � π/2.
Thus, if the right-hand sides in Corollary 3.2 and Remark 3.3 are denoted by ζ , i.e., if
0 � sinϑi � ζ , then 1 � cosϑi �

√
1− ζ 2 . Furthermore, the first component z1 of the

unit vector z satisfy −1 � z1 � 1. The absolute value of the first component v′1,i of v′i
can be bounded from above

|v′1,i| � cosϑiv1,i + sinϑi |z1| � v1,i + ζ . (3.6)

On the other hand, we have

v′1,i = cosϑiv1,i + sinϑiz1 �
√

1− ζ 2v1,i − sinϑi �
√

1− ζ 2v1,i − ζ . (3.7)

If ζ is small enough, i.e., if
√

1− ζ 2v1,i−ζ � 0, or in other words, if (3.4) holds, from
(3.7) we have

|v′1,i| �
√

1− ζ 2v1,i− ζ .

To conclude, if ζ satisfies (3.4), from (3.6) and (3.7) it follows (3.5). �

4. Numerical examples

In this section we present a few numerical examples that show how good the new
bounds are. To ensure the accuracy of the computed eigenvalues, they are computed
symbolically by Wolfram Mathematica and then rounded to 16 digits. Our bounds are
especially good for the smallest singular value of a matrix.

EXAMPLE 4.1. Suppose that

B =

⎡
⎢⎢⎣

1 1
1 1

1 1
10−2

⎤
⎥⎥⎦ ,

ΔB = diag(0,0,0,10−3) , and B′ = B+ ΔB . The smallest singular value of B is

σ4 ≈ 0.004999781256152754,

while the smallest singular value of B′ is

σ ′
4 ≈ 0.005499708853659211.

Note that α = 10/11 and from Theorem 2.4 we obtain the following bounds

0.004999781256152754= σ4 � σ ′
4 � ασ4 = 0.005499759381768030,

that is better than the bounds from (2.8),

0.003999781256152754= σ4 −10−3 � σ ′
4 � σ4 +10−3 = 0.005999781256152754.
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Teorem 2.5 can be useful if B has two very close singular values.

EXAMPLE 4.2. Suppose that

B =

⎡
⎢⎢⎣

1 10−3

1 10−3

1 10−3

10−2

⎤
⎥⎥⎦ ,

ΔB = diag(0,0,0,−10−3) , and B′ = B+ ΔB . The two largest singular values of B are

σ1 ≈ 1.000707356616978, σ2 ≈ 1.000000500024877,

while the largest singular value of B′ is

σ ′
1 ≈ 1.000707356614608.

Since α = 9/10, from Theorem 2.5 we obtain

1.000000500024877= σ2 � σ ′
1 � σ1 = 1.000707356616978

that is better than the Weyl bound (2.8)

0.9997073566169783= σ1 −10−3 � σ ′
1 � σ1 +10−3 = 1.001707356616978.

Our final example is connected to the Gaussian quadrature formula for compres-
sion splines.

EXAMPLE 4.3. Suppose that the matrix A of order 6 is a matrix in the process of
the computation of the Gaussian integration formula for compression splines,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
√

β1√
β1 0

√
β2√

β2
√

β3√
β3 0

√
β4√

β4 0
√

β5√
β5 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

where

βi =
i2

4i2−1
, i = 1, . . . ,4,

with
√

β5 = 1/2 in some step of the computation. If we denote the positive eigenvalues
of A by λ1 > λ2 > λ3 , and the corresponding negative eigenvalues by λ−i = −λi , we
have

λ1 = 0.9320990567449202,

λ2 = 0.6600705085369154,

λ3 = 0.2379272646969216.



612 SANJA SINGER

If β5 is perturbed such that
√

β ′
5 =

√
β5 + 10−3 then α = 501/500, and positive

eigenvalues of A′ are

λ ′
1 = 0.9322455780588768,

λ ′
2 = 0.6605223882455808,

λ ′
3 = 0.2382025774989347.

Theorem 2.4 gives tight upper bounds for positive (and lower bounds for negative)
eigenvalues,

λ1 � λ ′
1 � αλ1 = 0.9339632548584101,

λ2 � λ ′
2 � αλ2 = 0.6613906495539892,

λ3 � λ ′
3 � αλ3 = 0.2384031192263154.

Now we can also look for the bounds for the first component of the eigenvectors.
If we take, for example, λ2 , then the bound from Remark 3.3 is

sinϑ2 � 0.412120439695105.

If we know the first component v1,2 = 0.4249189651634649 of the eigenvector that
corresponds to λ2 , from (3.5) if follows

0.4190252340367909� |v′1,2| � 0.4308053346443175,

while the exact value is v′1,2 = ±0.4248361559047488.
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