
Journal of
Mathematical

Inequalities

Volume 6, Number 4 (2012), 615–623 doi:10.7153/jmi-06-59

SOME INEQUALITIES FOR UNITARILY INVARIANT NORMS

XINGKAI HU

Abstract. This paper aims to present some inequalities for unitarily invariant norms. In section 2,
we give a refinement of the Cauchy-Schwarz inequality for matrices. In section 3, we obtain an
improvement for the result of Bhatia and Kittaneh [Linear Algebra Appl. 308 (2000) 203-211].
In section 4, we establish an improved Heinz inequality for the Hilbert-Schmidt norm. Finally,
we present an inequality involving positive definite matrix and Hilbert-Schmidt norm. Then we
use it to discuss the conjecture on the Hilbert-Schmidt norm of matrices proposed by Sloane and
Harwit and the conjecture is proved for some special matrices.
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