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Abstract. This paper aims to present some inequalities for unitarily invariant norms. In section 2,
we give a refinement of the Cauchy-Schwarz inequality for matrices. In section 3, we obtain an
improvement for the result of Bhatia and Kittaneh [Linear Algebra Appl. 308 (2000) 203-211].
In section 4, we establish an improved Heinz inequality for the Hilbert-Schmidt norm. Finally,
we present an inequality involving positive definite matrix and Hilbert-Schmidt norm. Then we
use it to discuss the conjecture on the Hilbert-Schmidt norm of matrices proposed by Sloane and
Harwit and the conjecture is proved for some special matrices.

1. Introduction

Let Mm,n be the space of m× n complex matrices and Mn = Mn,n . Let Dn be
the collections of all n× n matrices with entries in the interval [0,1] . The conjugate
transpose of A ∈ Mm,n is the matrix A∗ ∈ Mn,m . Let ‖·‖ denote any unitarily invariant
norm on Mn . So, ‖UAV‖ = ‖A‖ for all A∈Mn and for all unitary matrices U,V ∈Mn .
Two classes of such norms are special important. The first is the class of Ky Fan k-norm
‖·‖(k) defined as

‖A‖(k) =
k

∑
j=1

s j (A),k = 1, · · · ,n,

where, s1 (A) � s2 (A) � · · ·� sn−1 (A) � sn (A) are the singular values of A , that is, the

eigenvalues of the positive semidefinite matrix |A| = (AA∗)
1
2 , arranged in decreasing

order and repeated according to multiplicity. The second is the class of Schatten p-
norm ‖·‖p defined as

‖A‖p =

(
n

∑
j=1

sp
j (A)

)1/p

= (tr |A|p)1/p , 1 � p < ∞.

For A = (ai j) ∈ Mn , the norm

‖A‖2 =

√
n

∑
j=1

s2
j (A) =

√√√√( n

∑
i=1

n

∑
j=1

∣∣ai j
∣∣2)=

√
tr |A|2

is also called the Hilbert-Schmidt norm or Frobenius norm (and sometimes written as
‖A‖F for that reason). It plays a basic role in matrix analysis.
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2. Refinement of the Cauchy-Schwarz inequality for matrices

For all A,B∈Mn , any real number r > 0 and every unitarily invariant norm, Horn
and Mathias [2, 3] obtained the following matrix Cauchy-Schwarz inequality

|||A∗B|r||2 � ||(AA∗)r|| · ||(BB∗)r||. (2.1)

Bhatia and Davis [4] (see also [5, p. 267, Theorem IX.5.2]) generalized the in-
equality (2.1) to the following form

|||A∗XB|r||2 � |||AA∗X |r|| · |||XBB∗|r|| (2.2)

for all A,B,X ∈ Mn and any real number r > 0, which is equivalent to

|||A1/2XB1/2|r||2 � |||AX |r|| · |||XB|r|| (2.3)

for positive semidefinite matrices A,B and arbitrary X ∈ Mn .
Let A,B,X ∈ Mn such that A and B are positive semidefinite. Then, for every

unitarily invariant norm and every positive real number r , the function

ϕ (t) = |||AtXB1−t |r|| · |||A1−tXBt |r||
is convex on [0,1] and attains its minimum at t = 1

2 . Consequently, it is decreasing
on
[
0, 1

2

]
and increasing on

[
1
2 ,1
]
. See [6, Theorem 1]. Using the convexity of the

function ϕ (t) , Hiai and Zhan [6] obtained the following inequality

|||A1/2XB1/2|r||2 � |||AtXB1−t|r|| · |||A1−tXBt |r|| � |||AX |r|| · |||XB|r||, (2.4)

which is a refinement of the inequality (2.3).
In this section, we utilize the convexity of the function ϕ (t) to obtain an inequality

for unitarily invariant norms that leads to a refinement of the second inequality in (2.4).
To do this, we need the following lemma on convex function (see [1, Lemma 2.2]).

LEMMA 2.1. Let f be a real valued convex function on an interval [a,b] which
contains (x1,x2) . Then for x1 � x � x2 , we have

f (x) � f (x2)− f (x1)
x2− x1

x− x1 f (x2)− x2 f (x1)
x2− x1

.

THEOREM 2.1. Let A,B,X ∈ Mn such that A and B are positive semidefinite.
For every unitarily invariant norm, every positive real number r and every t satisfying
0 � t � 1 , we have

ϕ (t) � (1−2t0) |||AX |r|| · |||XB|r||+2t0|||A1/2XB1/2|r||2, (2.5)

where t0 = min{t,1− t} .

Proof. If 0 � t � 1
2 , then by the convexity of the function ϕ (t) and Lemma 2.1,

we have

ϕ (t) �
ϕ
(

1
2

)−ϕ (0)
1
2 −0

t− 0 ·ϕ ( 1
2

)− 1
2ϕ (0)

1
2 −0

.
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That is,

ϕ (t) � (1−2t)ϕ (0)+2tϕ
(

1
2

)
,

and (2.5) holds.
If 1

2 � t � 1, then by the convexity of the function ϕ (t) and Lemma 2.1, we have

ϕ (t) �
ϕ (1)−ϕ

( 1
2

)
1− 1

2

t −
1
2 ϕ (1)−ϕ

( 1
2

)
1− 1

2

.

That is,

ϕ (t) � (2t−1)ϕ (1)+2(1− t)ϕ
(

1
2

)
,

and again (2.5) holds. This completes the proof. �

Now, we give a simple comparison between the upper bound in (2.4) and (2.5).

|||AX |r|| · |||XB|r||− (1−2t0) |||AX |r|| · |||XB|r||−2t0|||A1/2XB1/2|r||2

= 2t0
(
|||AX |r|| · |||XB|r||− |||A1/2XB1/2|r||2

)
� 0.

So, Theorem 2.1 is a refinement of the second inequality in (2.4).

3. An improvement for the result of Bhatia and Kittaneh

Bhatia and Kittaneh [7] proved that if A,B ∈ Mn are positive semidefinite, then

∥∥∥A3/2B1/2 +A1/2B3/2
∥∥∥� 1

2

∥∥∥(A+B)2
∥∥∥ . (3.1)

Meanwhile, the following inequality

‖AB‖ � 1
4

∥∥∥(A+B)2
∥∥∥ (3.2)

was also proved by Bhatia and Kittaneh [7] for positive semidefinite matrices A,B .
In this section, we first obtain an inequality involving unitarily invariant norms.

After that, we present an improvement of the inequality (3.2) for the Hilbert-Schmidt
norm. To do this, we need the following lemma (see [8, Theorem 2]).

LEMMA 3.1. Let A,B,X ∈ Mn such that A and B are positive semidefinite. If
0 � v � 1 , then ∥∥AvXB1−v

∥∥� ‖AX‖v ‖XB‖1−v .
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THEOREM 3.1. Let A,B,X ∈ Mn such that A and B are positive semidefinite. If
0 � v � 1 , then

4
∥∥AvXB1−v

∥∥2
+
(
‖AX‖2v −‖XB‖2(1−v)

)2
� ‖AX‖4v +‖XB‖4(1−v) +2

∥∥AvXB1−v
∥∥2

.

Proof. By Lemma 3.1, we have

‖AX‖4v +‖XB‖4(1−v)−2
∥∥AvXB1−v

∥∥2 � ‖AX‖4v +‖XB‖4(1−v)−2‖AX‖2v ‖XB‖2(1−v)

=
(
‖AX‖2v −‖XB‖2(1−v)

)2
� 0.

This completes the proof. �
Let A,B,X ∈ Mn such that A and B are positive semidefinite. Note that

‖AX +XB‖2
2 = ‖AX‖2

2 +‖XB‖2
2 +2

∥∥∥A1/2XB1/2
∥∥∥2

2
.

So, taking v = 1 and ‖·‖ = ‖·‖2 in Theorem 3.1, then we have the following result.

COROLLARY 3.1. Let A,B,X ∈ Mn such that A and B are positive semidefinite.
Then

4
∥∥∥A1/2XB1/2

∥∥∥2

2
+(‖AX‖2 −‖XB‖2)

2 � ‖AX +XB‖2
2 .

Now, we give an improvement of the inequality (3.2) for the Hilbert-Schmidt
norm.

THEOREM 3.2. Let A,B ∈ Mn be positive semidefinite. Then√
‖AB‖2

2 +
1
4

(∥∥A3/2B1/2
∥∥

2 −
∥∥A1/2B3/2

∥∥
2

)2 � 1
4

∥∥∥(A+B)2
∥∥∥

2
.

Proof. Taking
X = A1/2B1/2.

Then, by Corollary 3.1, we have

4‖AB‖2
2 +
(∥∥∥A3/2B1/2

∥∥∥
2
−
∥∥∥A1/2B3/2

∥∥∥
2

)2
�
∥∥∥A3/2B1/2 +A1/2B3/2

∥∥∥2

2
. (3.3)

It follows from (3.1) and (3.3) that

4‖AB‖2
2 +
(∥∥∥A3/2B1/2

∥∥∥
2
−
∥∥∥A1/2B3/2

∥∥∥
2

)2
� 1

4

∥∥∥(A+B)2
∥∥∥2

2
.

That is, √
‖AB‖2

2 +
1
4

(∥∥A3/2B1/2
∥∥

2 −
∥∥A1/2B3/2

∥∥
2

)2 � 1
4

∥∥∥(A+B)2
∥∥∥

2
.

This completes the proof. �
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4. Improved Heinz inequality for matrices

Bhatia and Davis proved in [9] that if A,B,X ∈ Mn such that A and B are positive
semidefinite and if 0 � v � 1, then

∥∥∥A1/2XB1/2
∥∥∥�

∥∥∥∥AvXB1−v +A1−vXBv

2

∥∥∥∥�
∥∥∥∥AX +XB

2

∥∥∥∥ .

Kittaneh and Manasrah [10] proved that if A,B,X ∈ Mn such that A and B are
positive semidefinite, then

2
∥∥∥A1/2XB1/2

∥∥∥
2
+a2 � ‖AX +XB‖2 , (4.1)

where a =
√‖AX‖2 −

√‖XB‖2 . This is a refinement of arithmetic-geometric mean
inequality for the Hilbert-Schmidt norm. Inequality (4.1) is equivalent to the following
inequality

4
∥∥∥A1/2XB1/2

∥∥∥2

2
+4a2

∥∥∥A1/2XB1/2
∥∥∥

2
+a4 � ‖AX +XB‖2

2 , (4.2)

where a =
√‖AX‖2−

√‖XB‖2 .
By (4.1), Kittaneh and Manasrah [10] obtained an improvement of the Heinz in-

equality for the Hilbert-Schmidt norm which can be stated as follows:∥∥AvXB1−v +A1−vXBv
∥∥

2 +2v0a
2 � ‖AX +XB‖2 , (4.3)

where v0 = min{v,1− v} and a =
√‖AX‖2 −

√‖XB‖2 .
By (4.2), we will give another improvement of the Heinz inequality for the Hilbert-

Schmidt norm. To do this, we need the following lemma (see [5, p. 265]).

LEMMA 4.1. Let A,B,X ∈Mn such that A and B are positive semidefinite. Then,
for each unitarily invariant norm, the function

g(v) =
∥∥AvXB1−v +A1−vXBv

∥∥
is a continuous convex function on [0,1] and attains its minimum at v = 1

2 . Moreover,
g(v) is twice differentiable on (0,1) .

THEOREM 4.1. Let A,B,X ∈ Mn such that A and B are positive semidefinite. If
0 � v � 1 , then∥∥AvXB1−v +A1−vXBv

∥∥2
2 +8v0a

2
∥∥∥A1/2XB1/2

∥∥∥
2
+2v0a

4 � ‖AX +XB‖2
2 , (4.4)

where v0 = min{v,1− v} and a =
√‖AX‖2−

√‖XB‖2 .

Proof. Let

f (v) = ‖AX +XB‖2
2 −
∥∥AvXB1−v +A1−vXBv

∥∥2
2 = ‖AX +XB‖2

2−g2 (v) .
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Define

ψ (v) =
f (v)
v0

, 0 < v < 1.

That is,

ψ (v) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f (v)
v

, 0 < v � 1
2
,

f (v)
1− v

,
1
2

� v < 1.

So, we have

ψ ′ (v) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−2vg(v)g′ (v)− f (v)
v2 , 0 < v <

1
2
,

−2(1− v)g(v)g′ (v)+ f (v)
(1− v)2 ,

1
2

< v < 1.

and

ψ ′
−

(
1
2

)
= −4 f

(
1
2

)
� 0, ψ ′

+

(
1
2

)
= 4 f

(
1
2

)
� 0.

Consider the following two functions

ω1 (v) = −2vg(v)g′ (v)− f (v) , 0 � v � 1
2

and

ω2 (v) = −2(1− v)g(v)g′ (v)+ f (v) ,
1
2

� v � 1.

Then, we have

ω1 (0) = ω2 (1) = 0,ω1

(
1
2

)
= −ω2

(
1
2

)
= − f

(
1
2

)
� 0.

Meanwhile, we obtain

ω ′
1 (v) = −2v

((
g′ (v)

)2 +g(v)g′′ (v)
)

� 0, 0 � v � 1
2
,

and

ω ′
2 (v) = −2(1− v)

((
g′ (v)

)2 +g(v)g′′ (v)
)

� 0,
1
2

� v � 1.

Thus, {
ψ ′ (v) � 0, 0 < v < 1

2 ,
ψ ′ (v) � 0, 1

2 < v < 1.

It follows from the continuity of ψ (v) and the symmetry of ψ (v) about v = 1
2 that

ψ (v) attains its minimum at v = 1
2 . So, by (4.2), we have

ψ (v) � 2

(
‖AX +XB‖2

2 −4
∥∥∥A1/2XB1/2

∥∥∥2

2

)
� 2

(
4a2
∥∥∥A1/2XB1/2

∥∥∥
2
+a4

)
.
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Thus,

∥∥AvXB1−v +A1−vXBv
∥∥2

2 +8v0a
2
∥∥∥A1/2XB1/2

∥∥∥
2
+2v0a

4 � ‖AX +XB‖2
2 .

This completes the proof. �

It should be noticed that neither (4.3) nor (4.4) is in general better than the other.

5. On a conjecture concerning the Hilbert-Schmidt norm of matrices

In this section, we shall mainly adopt the notation and terminology in [14]. For
convenience, recall that. The spectral radius of a square matrix A is the nonnegative
real number

ρ (A) Δ= max{|λ | : λ is an eigenvalue of A} .

A Hadamard matrix is a square matrix with entries equal to ±1 whose rows and
hence columns are mutually orthogonal. In other words, a Hadamard matrix of order
n is a {1,−1} -matrix A satisfying AAT = nI , where I is the identity matrix [11, p.
126].

In 1976, Sloane and Harwit [12] made the following conjecture. See also [11, p.
130].

CONJECTURE. If A is a nonsingular matrix of order n all of whose entries are in
the interval [0,1] , then

2n
n+1

�
∥∥A−1

∥∥
2 .

Equality holds if and only if A is an S-matrix.

An S -matrix of order n is a {0,1}-matrix formed by taking a Hadamard matrix
of order n+1 in which the entries in the first row and column are 1, changing 1’s to 0’s
and -1’s to 1’s, and deleting the first row and column [11, p. 130].

This problem arose from weighing designs in optics and statistics. Recently, the
conjecture was proved for some special matrices and the following results were ob-
tained.

THEOREM 5.1. [13] Let A ∈ Dn be a positive definite matrix and suppose that

ρ (A) �
√

2
4 n. Then

2n
n+1

�
∥∥A−1

∥∥
2 .

THEOREM 5.2. [14] Let A be a nonsingular matrix of order n and suppose that
the modulus of entries of A is from [0,1] . If

‖A‖2 �
√

n3 +n2−n−1
n

,
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then
2n

n+1
�
∥∥A−1

∥∥
2 .

From the Cauchy-Schwarz inequality, we have the following inequality

n
‖A‖2

�
∥∥A−1

∥∥
2 .

So, if

‖A‖2 � n+1
2

,

then, we have
2n

n+1
�
∥∥A−1

∥∥
2 .

In this section, if A is a positive definite matrix of order n , we first obtain a lower
bound for

∥∥A−1
∥∥

2 . Then we use it to discuss the conjecture on the Hilbert-Schmidt
norm of matrices proposed by Sloane and Harwit and the conjecture is proved for some
special matrices. To do this, we need the following lemma.

LEMMA 5.1. If A is a positive definite matrix of order n, then

n2 � trA · trA−1.

Proof. By the harmonic-arithmetic inequality. �

THEOREM 5.3. If A is a positive definite matrix of order n, then

n
√

n
trA

�
∥∥A−1

∥∥
2 .

Proof. Using the Cauchy–Schwarz inequality, we have

(trA)2 � n‖A‖2
2 .

That is,
trA �

√
n‖A‖2 .

So,
trA−1 �

√
n
∥∥A−1

∥∥
2 . (5.1)

By Lemma 5.1 and (5.1), we have

n
√

n
trA

�
∥∥A−1

∥∥
2 .

This completes the proof. �
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COROLLARY 5.1. If A ∈ Dn is a positive definite matrix, then

2n
n+1

�
∥∥A−1

∥∥
2 .

Proof. Since A ∈ Dn , we have

trA � n.

So, by Theorem 5.3, we obtain

2n
n+1

�
√

n � n
√

n
trA

�
∥∥A−1

∥∥
2 .

This completes the proof. �
Obviously Corollary 5.1 is a refinement of Theorem 5.1.
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