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Abstract. In this paper, we obtain a lower bound for the smallest singular value of nonsingu-
lar matrices which is better than the bound presented by Yu and Gu [Linear Algebra Appl.
252(1997)25-38]. Meanwhile, we give some numerical examples which will show the effec-
tiveness of our result.

1. Introduction

Let Mn be the space of n× n complex matrices. Let σi (i = 1, · · · ,n) be the
singular values of A ∈ Mn and suppose that σ1 � σ2 � · · · � σn−1 � σn � 0. For
A = [ai j] ∈ Mn , the Frobenius norm of A is defined by

‖A‖F =

(
n

∑
i, j=1

∣∣ai j
∣∣2)1/2

.

The relationship between the Frobenius norm and singular values is

‖A‖2
F = σ2

1 + σ2
2 + · · ·+ σ2

n .

It is well known that lower bounds for the smallest singular value σn of a nonsin-
gular matrix A ∈ Mn have many potential theoretical and practical applications [1–2].

Let A ∈ Mn be nonsingular. Yu and Gu [3] obtained a lower bound for σn as
follows:

σn � l = |detA| ·
(

n−1

‖A‖2
F

)(n−1)/2

> 0. (1.1)

The inequality (1.1) is also shown in [11].
In this paper, we obtain a lower bound for the smallest singular value of nonsin-

gular matrices. It is better than (1.1). Meanwhile, we give some numerical examples
which will show the effectiveness of our result.
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2. Main result

THEOREM 2.1. Let A ∈ Mn be nonsingular. Then

σn � |detA| ·
(

n−1

‖A‖2
F − l2

)(n−1)/2

. (2.1)

Proof. Let

K =
σ2

1

p1

σ2
1

q1
· · · σ2

k

pk

σ2
k

qk
σ2

k+1 · · ·σ2
n−1, 1 � k � n−1. (2.2)

where

1
pi

+
1
qi

= 1, pi > 0, qi > 0, i = 1, · · · ,k.

By the arithmetic-geometric mean inequality and (2.2), we have

K �
(
‖A‖2

F −σ2
n

n+ k−1

)n+k−1

. (2.3)

Note that (2.2) can be rewritten as follows:

K =
σ2

1

σ2
n

∏k
i=2 σ2

i ∏k
i=1

1
piqi

|det(A)|2 , (2.4)

where for k = 1, ∏k
i=2 σ2

i = 1. It follows from (2.3) and (2.4) that

σ2
1

σ2
n

� ∏k
i=1 piqi

∏k
i=2 σ2

i

· 1

|det(A)|2 ·
(
‖A‖2

F −σ2
n

n+ k−1

)n+k−1

. (2.5)

By (1.1) and (2.5), we have

σ2
1

σ2
n

� ∏k
i=1 piqi

∏k
i=2 σ2

i

· 1

|det(A)|2 ·
(
‖A‖2

F − l2

n+ k−1

)n+k−1

. (2.6)

For each k (1 � k � n−1) , we define

f (p1, · · · , pk,q1, · · · ,qk) = ∏k
i=1 piqi,

where
1
pi

+
1
qi

= 1, pi > 0, qi > 0.
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The relationship above suggests that we study the following optimization problem:

⎧⎪⎨
⎪⎩

min f (p1, · · · , pk,q1, · · · ,qk)

s.t.

{ 1
pi

+ 1
qi

= 1
pi > 0, qi > 0, 1 � i � k.

Let

L(p1, · · · , pk,q1, · · · ,qk,λ1, · · · ,λk) = ∏k
i=1 piqi +∑k

i=1 λi

(
1
pi

+
1
qi

−1

)
.

We search for the stationary points of L . We have

∂L
∂ p j

= ∏k
i=1,i�= j pi ∏k

i=1 qi− λ j

p2
j

= 0, 1 � j � k,

∂L
∂q j

= ∏k
i=1,i�= j qi ∏k

i=1 pi − λ j

q2
j

= 0, 1 � j � k.

Thus, we obtain p j = q j = 2, 1 � j � k . Therefore

min f (p1, · · · , pk,q1, · · · ,qk) = 4k. (2.7)

It follows from (2.6) and (2.7) that

σ1

σn
� 2k

∏k
i=2 σi

· 1
|detA| ·

(
‖A‖2

F − l2

n+ k−1

)(n+k−1)/2

. (2.8)

Putting k = n−1 in (2.8), we have

σ1

σn
� 2n−1

∏n−1
i=2 σi

· 1
|detA| ·

(
‖A‖2

F − l2

2(n−1)

)n−1

.

That is

1
σ2

n
� 1

|detA|2 ·
(
‖A‖2

F − l2

n−1

)n−1

.

Hence

σn � |detA| ·
(

n−1

‖A‖2
F − l2

)(n−1)/2

.

This completes the proof. �



628 LIMIN ZOU

3. Numerical examples

There are many lower bounds for the smallest singular value in the literature [4–
10]. They are different from (1.1) and (2.1). These bounds are incomparable.

In this section, we give some numerical examples to show that (2.1) is better than
Theorem 2 of [4], Theorem 3.1 of [5], and Theorem 4.1 of [6] in some cases.

EXAMPLE 3.1. [4] Let

A =
[

10 2
−2 2

]
.

We calculate that the true value of the smallest singular value of A is σ2 (A) = 2.3246.
By Theorem 2 of [4], we have

σ2 � 2.0000.

By Theorem 3.1 of [5], we have

σ2 � 2.3217.

By (2.1), we have
σ2 � 2.3217.

EXAMPLE 3.2. [4] Let

A =

⎡
⎣10 1 2

2 20 3
20 1 10

⎤
⎦ .

It is not difficult to calculate that the determinant of A is 1214. We calculate that the
true value of the smallest singular value of A is σ3 = 2.4909. By Theorem 2 of [4], we
have

σ3 � 0.6227.

By Theorem 3.1 of [5], we have

σ3 � 2.0694.

By (2.1), we have
σ3 � 2.3961.

EXAMPLE 3.3. [4] Let

A =

⎡
⎣ 0.75 0.5 0.4

0.5 1 0.6
0 0.5 1

⎤
⎦ .

Obviously, A is an upper Hessenberg matrix. It is not difficult to calculate that the
determinant of A is 0.3750. We calculate that the true value of the smallest singular
value of A is σ3 = 0.2977. By Theorem 2 of [4], we have

σ3 � 0.0560.
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By (2.3), Theorem 4.1 and (2.6) of [6], we have

σ3 � 0.1500.

By Theorem 3.1 of [5], we have

σ3 � 0.1547.

By (2.1), we have
σ3 � 0.1977.
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