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A NOTE ON A CERTAIN BIVARIATE MEAN

EDWARD NEUMAN

(Communicated by S. Abramovich)

Abstract. Weighted arithmetic or geometric means of two bivariate means are used to obtain
lower and upper bounds for a bivariate mean introduced by Neuman and Sándor. Bounds involv-
ing weighted arithmetic means are sharp.

1. Introduction

In recent years a significant progress has been made in theory of bivariate means
with special emphasis on inequalities involving those mens. In particular, means being
the special cases of the Schwab - Borchardt mean, have attracted attention of several
researchers. These iterative means, defined, e.g. in [2], include in particular the loga-
rithmic mean and two Seiffert means defined in [18] and in [19]. In [12] the authors
have introduced another bivariate mean, which is also a special case of the Schwab-
Borchardt mean and denoted the latter by M . In what follows we will denote the mean
under discussion by NS rather then by M , as suggested by an anonymous referee of
this paper. Recall that for x > 0 and y > 0

NS = A
u

sinh −1u
, (1.1)

where
A =

x+ y
2

is the arithmetic mean of x and y and

u =
x− y
x+ y

(1.2)

(see [12, (2.6)]). Clearly |u| < 1.
This mean has been studied extensively in [12], [13] and in [10]. Recently, B.-Y.

Long and Y.-M. Chu (see [8]) have obtained lower and upper bounds for the mean NS
in terms of the generalized logarithmic mean. Inequalities for quotients involving mean
NS are obtained in [15]. It has been shown in [11] that the mean NS is bounded from
above by members of a one-parameter family of bivariate means. The latter are defined
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in terms of inverse Jacobian elliptic functions. We omit further details. Let us mention
also that in [8] the authors called the mean NS the Neuman - Sándor mean.

This paper deals with inequalities which connect mean NS with weighted arith-
metic or geometric means of two other bivariate means. Preliminaries are given in
Section 2. The main results are established in Section 3. For inequalities similar to
those established in this section and involving different means, the interested reader is
referred to [3], [4], [5], [6], [7], and the references therein.

2. Preliminaries

In what follows the letters Q and C will stand for the root-mean-square and for
the contra-harmonic mean, respectively, of x > 0 and y > 0. Recall that

Q =

√
x2 + y2

2
, C =

x2 + y2

x+ y
. (2.1)

It is known that

A < NS < Q < C (2.2)

provided x �= y . The first two inequalities in (2.2) are established in [12, (2.10)] while
the third one follows from the Comparison Theorem for Gini means (see [16]).

It has been demonstrated in [12] that the mean NS is the common limit of two
recursive sequences whose initial terms are equal to Q and A . We omit further details.

All bivariate means which appear in this paper are strict, homogeneous of degree
one and they are monotonic, i.e., they increase (decrease) with an increase (decrease)
of each of their variables.

In the next section we will utilize the following lemmas. The first one (see, e.g.
[17]) reads as follows.

LEMMA 2.1. Suppose that the power series f (x)= ∑∞
n=0 anxn and g(x)= ∑∞

n=0 bnxn

(bn > 0 for all n � 0) both converge for |x| < ∞ . Then the function f (x)/g(x) is
(strictly) increasing (decreasing) for x > 0 if the sequence {an/bn}∞

n=0 is (strictly)
increasing (decreasing).

The second lemma, often called L’Hospital’s - type rule for monotonicity, can be
found, e.g. in [1].

LEMMA 2.2. Let the functions f and g be continuous on [a,b] , differentiable

on (a,b) and such that g′(t) �= 0 on (a,b) . If f ′(t)
/g′(t) is (strictly) increasing (decreas-

ing) on (a,b) , then the functions f (t)− f (b)
g(t)−g(b) and f (t)− f (a)

g(t)−g(a) are also (strictly) increasing

(decreasing) on (a,b) .
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3. Bounds for the mean NS

In this section we will deal with problems of finding sharp bounds for NS , where
the bounding terms are either additive or multiplicative convex combinations of A and
Q or A and C .

Theorems 3.1 and 3.3, established below, provide a generalization of the two-sided
inequality

Q
1
3 A

2
3 < NS <

1
3
Q+

2
3
A

which follows from [12, (2.8), (3.10)].
Throughout the sequel we will always assume that variables x and y of utilized

bivariate means are not equal. This in turn implies that the quantity u defined in (1.2)
is not equal to zero. For the later use let us note that with u = sinh t the inequality
|u|< 1 implies |t| < t∗ , where t∗ = ln(

√
2+1) = 0.8814... . One can easily verify that

sinh t∗ = 1.
Our first result reads as follows.

THEOREM 3.1. The inequality

αQ+(1−α)A < NS < βQ+(1−β )A (3.1)

holds true if and only if 0 � α � 1− t∗

(
√

2−1)t∗
= 0.3249... and 1 � β � 1

3
.

Proof. Let us rewrite (3.1) as

α <
NS−A
Q−A

< β . (3.2)

It follows from (1.2) and (2.1) that

Q = A
√

1+u2. (3.3)

Substituting (1.1) and (3.3) into (3.2) we obtain

α <
u− sinh −1u

(sinh −1u)
√

1+u2− sinh −1u
< β .

With u = sinh t the last two-sided inequality can be written as

α < ϕ(t) < β , (3.4)

where

ϕ(t) =
sinh t− t
t cosh t− t

(3.5)

(|t| < t∗) . Since the function ϕ(t) is an even function, it suffices to investigate its
behavior on the interval (0,t∗) . Using power series sinh t = ∑∞

n=0 t2n+1/(2n+1)! and
cosht = ∑∞

n=0 t2n/(2n)! we can express (3.5) as follows
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ϕ(t) = ∑∞
n=1 t2n+1/(2n+1)!
∑∞

n=1 t2n+1/(2n)!
.

With an = 1/(2n+1)! and bn = 1/(2n)! we have an/bn = (2n)!/(2n+1)! = 1/(2n+
1) . Thus the sequence {an/bn}∞

n=1 is strictly decreasing and so is the function ϕ(t) ,
where the last statement follows from Lemma 2.1. This in turn implies that

lim
t→(t∗)−

ϕ(t) =
1− t∗

(
√

2−1)t∗

and

lim
t→0+

ϕ(t) =
1
3
.

This in conjunction with (3.4) gives the asserted result. �
In the next theorem we give a counterpart of Theorem 3.1 for the following means

{A, NS, C}.

THEOREM 3.2. The two-sided inequality

αC+(1−α)A < NS < βC+(1−β )A (3.6)

is satisfied if and only if 0 � α � 1− t∗

t∗
= 0.1345... and 1 � β � 1

6
.

Proof. We will follow, to some extend, lines introduced in the proof of Theorem
3.1. First we divide each member of (3.6) by A and next rearrange terms to obtain

α <

NS
A

−1

C
A
−1

< β .

Use of (1.1) together with C/A = 1+u2 followed by a substitution u = sinh t (|t|< t∗)
gives

α < ϕ(t) < β , (3.7)

where

ϕ(t) =
sinh t− t
t(sinh t)2 . (3.8)

Differentiation yields

(sinh t)3

cosht
ϕ ′(t) = 2− sinh t

t
− sinh t

t
tanh t

t
=: g(t). (3.9)

We will show now that g(t) < 0 for t ∈ (0,t∗) . To this aim we will utilize the left
inequality in

(cosht)
1
3 <

sinh t
t

<
2+ cosht

3
(3.10)
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(see, e.g., [9], [14]), which is due to Lazarević. It is easy to see that the latter inequality
is equivalent to the following one

1 <

(
sinh t

t

)(
sinh t

t
tanh t

t

)
.

Extracting square roots and next applying inequality of the arithmetic and geometric
means we obtain

1 <

√(
sinh t

t

)(
sinh t

t
tanh t

t

)
<

1
2

(
sinh t

t
+

sinh t
t

tanh t
t

)
.

Thus g(t) < 0. This in conjunction with (3.9) gives ϕ ′(t) < 0 and in consequence that
ϕ(t) is strictly decreasing on (0,t∗) . This in turn implies that

lim
t→0+

ϕ(t) =
1− t∗

t∗

and

lim
t→(t∗)−

ϕ(t) =
1
6
.

Making use of (3.7) we conclude that in order for the inequalities (3.6) to be valid it is

necessary and sufficient that 0 � α � 1− t∗

t∗
= 0.1345... and 1 � β � 1

6
. �

We shall now prove two inequalities which can be regarded as the complementary
results to those contained in Theorems 3.1 and 3.2. To be more specific, the weighted
arithmetic means bounding NS will be now replaced by the weighted geometric means
of two other means. We have the following.

THEOREM 3.3. The following simultaneous inequality

QαA1−α < NS < Qβ A1−β (3.11)

holds true if 0 � α � 1
3

and 1 � β � ln((2+
√

2)/3)
ln
√

2
= 0.3732... .

Proof. First we write (3.11) in the form

(
Q
A

)α
<

NS
A

<

(
Q
A

)β
. (3.12)

Making use of (1.1) and (3.2) we have Q/A =
√

1+u2 = cosht and NS/A = u/sinh −1u
= sinh t/t , where u = sinh t (|t|< t∗) . Taking logarithms of each part of (3.12) we can
rewrite the latter as

α < ϕ(t) < β , (3.13)
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where

ϕ(t) =
ln

(
NS
A

)

ln

(
Q
A

) =
ln

(
sinh t

t

)
ln(cosh t)

. (3.14)

Making use of (3.10) and (3.14) we obtain

1
3

< ϕ(t) < ψ(t), (3.15)

where

ψ(t) = ln

(
2+ cosht

3

)
/ ln(cosh t) =: f (t)/g(t).

Hence
f ′(t)
g′(t)

=
cosh t

2+ cosht
= 1− 2

2+ cosht
.

This shows that the function f ′(t)/g′(t) is strictly increasing on the interval (0,t∗) .
Making use of Lemma 2.2 we conclude that the function ψ(t) is also strictly increas-

ing on the same interval. Thus ψ(t) � ψ(t∗) =
ln((2+

√
2)/3)

ln
√

2
= 0.3732... . This in

conjunction with (3.15) yields the asserted result. �
We close this section with the following.

THEOREM 3.4. The following inequality

CαA1−α < NS < Cβ A1−β (3.16)

is valid if 0 � α � 1
6

and 1 � β � ln((2+
√

2)/3)
ln2

= 0.1865... .

Proof. It follows from (3.16) that

α <

ln

(
NS
A

)

ln

(
C
A

) < β . (3.17)

One can easily verify that the identity
C
A

=
(

Q
A

)2

holds true. Making use of appropri-

ate formulas used in the proof of Theorem 3.3 we obtain
NS
A

=
sinh t

t
and

C
A

= cosh2 t .

This in conjunction with (3.17) yields

α < λ (t) < β ,

where λ (t) =
ϕ(t)
2

and ϕ(t) is the same as in the proof of Theorem 3.3. Thus the

upper bound for α and the lower bound for β are equal the half of the corresponding
bounds in Theorem 3.3. The assertion now follows. �
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[16] ZS. PÁLES, Inequalities for sums of powers, J. Math. Anal. Appl. 131 (1988), 265–270.
[17] S. PONNUSAMY, M. VUORINEN, Asymptotic expansions and inequalities for hypergeometric func-

tions, Mathematika 44 (1997), 43–64.
[18] H.-J. SEIFFERT, Problem 887, Nieuw. Arch. Wisk. 11 (1993), 176.
[19] H.-J. SEIFFERT, Aufgabe 16, Würzel 29 (1995), 87.

(Received February 6, 2012) Edward Neuman
Department of Mathematics, Mailcode 4408

Southern Illinois University
1245 Lincoln Drive

Carbondale, IL 62901
USA

e-mail: edneuman@siu.edu

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com


