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A SIMPLE PROOF OF OPPENHEIM’S DOUBLE INEQUALITY

RELATING TO THE COSINE AND SINE FUNCTIONS

FENG QI, QIU-MING LUO AND BAI-NI GUO

(Communicated by N. Elezović)

Abstract. In the paper, the authors provide a simple proof of Oppenheim’s double inequality
relating to the cosine and sine functions. In passing, the authors survey this topic.

1. Introduction and main results

In [14], the following problem was posed: For each p > 0 there is a greatest q
and a least r such that

qsinx
1+ pcosx

� x � r sinx
1+ pcosx

(1)

for 0 � x � π
2 . Determine q and r as functions of p .

In [3], it was explicitly obtained that

1. the least value of r required by the problem is

r =
π
2

when p � π
2
−1,

r = p+1 when p � π
2
−1;

2. the required greatest value of q is

q = p+1 when p � 1
2
,

q =
π
2

when p � π
2

.
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In [11, p. 238, 3.4.15], it was listed that

(p+1)sinx
1+ pcosx

� x � (π/2)sinx
1+ pcosx

(2)

for 0 < p � 1
2 and 0 � x � π

2 .
In [17, p. 521, (26)], by Čebyšev’s integral inequality, it was constructed that

sinx
x

� 1+ cosx
2

(3)

and
sinx
x

� 1+2cosx
3

+
xsinx

6
(4)

for 0 < x � π
2 . The inequality (3) can be rewritten as

2sinx
1+ cosx

� x, 0 � x � π
2

. (5)

In [24], it was pointed out that the inequality

3sinx
2+ cosx

< x (6)

was discovered by Nicolaus de Cusa (1401–1464) using certain geometrical construc-
tions. In [23], the inequality (6) was generalized as follows: For a,b,c > 0 such that
2b � c � a+b ,

csinx
a+bcosx

< x, 0 < x <
π
2

. (7)

This is equivalent to the left-hand side inequality in (1) for 2p � q � 1+ p .
In [27, Theorem 7], a complete answer to the above problem was obtained as

follows: Let 0 � x � π
2 and p > 0, then the inequality (1) holds in cases:

1. When 0 < p < 1
2 , we have q = p+1, r = π

2 ;

2. When 1
2 � p < π

2 −1, we have q = 4p(1− p2) , r = π
2 ;

3. When π
2 −1 � p < 2

π , we have q = 4p(1− p2) , r = p+1;

4. When 2
π � p < ∞ , we have q = π

2 , r = p+1.

The aim of this paper is to provide a simple proof of the inequality (1).
Our main results may be recited as the following theorems.

THEOREM 1. For p > 0 and x ∈ (
0, π

2

]
, let

fp(x) =
sinx

x(1+ pcosx)
. (8)
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1. When p � 2
π , the function fp(x) is strictly increasing;

2. When 0 < p � 1
2 , the function fp(x) is strictly decreasing;

3. When 1
2 < p < 2

π , the function fp(x) has a unique maximum;

4. When p � 0 , the reciprocal of fp(x) is strictly increasing.

As straightforward consequences of Theorem 1, the following inequalities may be
derived immediately.

THEOREM 2. If p � 2
π , then

(π/2)sinx
1+ pcosx

� x � (1+ p)sinx
1+ pcosx

, 0 � x � π
2

; (9)

If p � 1
2 , the double inequality (9) reverses; If 1

2 < p < 2
π , then

4p(1− p2)sinx
1+ pcosx

� x � max{π/2,1+ p}sinx
1+ pcosx

. (10)

The constants π
2 and 1+ p in (9) and (10) are the best possible.

2. Simple proofs of Theorems 1 and 2

Now we start to demonstrate our simple proofs of Theorems 1 and 2.

Proof of Theorem 1. A direct differentiation yields

f ′p(x) =
(x− sinxcosx)[p− (sinx− xcosx)/(x− sinxcosx)]

x2(pcosx+1)2

� (x− sinxcosx)[p−h(x)]
(pxcosx+ x)2 , (11)

h′(x) =
2
[
2x2 + xsin(2x)+2cos(2x)−2

]
sinx

[2x− sin(2x)]2

� 2g(x)sinx
[2x− sin(2x)]2

,

g′(x) = 2cos(2x)x+4x−3sin(2x),
g′′(x) = 8(tanx− x)sinxcosx

> 0

on
(
0, π

2

)
. So the function g′(x) is strictly increasing on

(
0, π

2

)
. Further, from g′(0) =

0, it follows that g′(x) > 0 and that g(x) is strictly increasing on
(
0, π

2

)
. Owing to

g(0) = 0, the functions g(x) and h′(x) are positive on
(
0, π

2

)
. As a result, the function

h(x) is strictly increasing on
(
0, π

2

)
. Due to limx→0+ h(x) = 1

2 and h
(π

2

)
= 2

π , it is
concluded that
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1. when p � 2
π , the derivative f ′p(x) is positive on

(
0, π

2

)
, and so the function fp(x)

is strictly increasing on
(
0, π

2

]
;

2. when p � 1
2 , the derivative f ′p(x) is negative on

(
0, π

2

)
, and so the function fp(x)

is strictly decreasing on
(
0, π

2

]
;

3. when 1
2 < p < 2

π , the derivative f ′p(x) has a unique zero on
(
0, π

2

)
, and so the

function fp(x) has a unique maximum on
(
0, π

2

]
.

On the other hand, when p � 0, a direct differentiation gives

d
dx

[
1

fp(x)

]
= (1− xcotx)(pcotx+ cscx)− px

> (1− xcotx)
(

p
x

+
1
x

)
− px

=
1− xcotx+ p(1− x2− xcotx)

x
> 0,

where 1− xcotx > 0 and 1− x2 − xcotx < 0 on
(
0, π

2

)
. This means that the recip-

rocal of fp(x) is strictly increasing on
(
0, π

2

)
for p � 0. The proof of Theorem 1 is

complete. �

Proof of Theorem 2. It is easy to see that

lim
x→0+

fp(x) =
1

1+ p
and fp

(
π
2

)
=

2
π

.

By Theorem 1, it follows that

1. when p � 2
π , we have

1
1+ p

<
sinx

x(1+ pcosx)
� 2

π
(12)

on
(
0, π

2

]
, which may be rewritten as the inequality (9);

2. when p � 1
2 , the inequality (12) reverses;

3. when 1
2 < p < 2

π , we have

sinx
x(1+ pcosx)

> min

{
1

1+ p
,
2
π

}

on
(
0, π

2

)
, which may be rearranged as the right-hand side inequality in (10).

The left-hand side inequality in (10) can be deduced by the same argument as
in [27, p. 60]. The proof of Theorem 2 is complete. �
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3. Remarks

After proving our theorems, we give several remarks on them.

REMARK 1. For p � 1
2 , the reversed version of the inequality (9) may be rewritten

as
2(1+ pcosx)

π
<

sinx
x

� (1+ pcosx)
1+ p

, 0 < x � π
2

. (13)

Integrating on both sides of (13) gives

1+
2
π

p <

∫ π/2

0

sinx
x

dx <
π +2p
1+ p

, p � 1
2
.

Hence, taking p = 1
2 in the above inequality leads to

1.31 · · · = 1+
1
π

<
∫ π/2

0

sinx
x

dx <
2(π +1)

3
= 2.76 · · · . (14)

Similarly, if integrating and letting p = 2
π in (9), then

1.34 · · ·= 4+ π2

2(2+ π)
<

∫ π/2

0

sinx
x

dx < 1+
(

2
π

)2

= 1.40 · · · . (15)

REMARK 2. For 1
2 < p < 2

π , the inequality (10) may be rearranged as

min

{
2
π

,
1

1+ p

}
(1+ pcosx) � sinx

x
� 1+ pcosx

4p(1− p2)
, 0 < x � π

2
. (16)

As done in Remaek 1, integrating gives

min

{
2
π

,
1

1+ p

}(
p+

π
2

)
<

∫ π/2

0

sinx
x

dx <
2p+ π

8p
(
1− p2

) ,
1
2

< p <
2
π

.

Maximizing the lower bound and minimizing the upper bound in the above double
inequality reduce to

1.36 · · · = 2

(
1− 1

π

)
<

∫ π/2

0

sinx
x

dx <
2p0 + π

8p0
(
1− p2

0

) = 1.37 · · · , (17)

where
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p0 =
π
4

{
cos

[
1
3

arctan

(
4
√

π2−4
π2−8

)]
+
√

3 sin

[
1
3

arctan

(
4
√

π2−4
π2−8

)]
−1

}

= 0.52 · · · .
Comparing inequalities (14), (15) and (17) shows that the inequality (10) or (16)

is more accurate in whole.
The inequality (17) improves inequalities

1.33 · · · = 4
3

<

∫ π/2

0

sinx
x

dx <
π +1

3
= 1.38 · · · (18)

and ∫ π/2

0

sinx
x

dx >
π +5

6
= 1.35 · · · (19)

obtained in [17, p. 521, (32)] and [20].

REMARK 3. In [11, p. 247, 3.4.31], it was listed that the inequality

arcsinx >
6
(√

1+ x −√
1− x

)
4+

√
1+ x +

√
1− x

>
3x

2+
√

1− x2
(20)

holds for 0 < x < 1. It was also pointed out in [11, p. 247, 3.4.31] that these inequalities
are due to R. E. Shafer, but no a related reference is provided. By now we do not know
the very original source of inequalities in (20).

In the first part of the short paper [6], the inequality between the very ends of (20)
was recovered and an upper bound for the arc sine function was also established as

3x

2+
√

1− x2
� arcsinx � πx

2+
√

1− x2
, 0 � x � 1. (21)

Therefore, we call (21) Shafer-Fink’s double inequality for the arc sine function.
In [10], the right-hand side inequality in (21) was improved to

arcsinx � πx/(π −2)
2/(π −2)+

√
1− x2

, 0 � x � 1. (22)

As done in [27], by taking t = sinx in Theorem 2, inequalities in (21), (22), and
the following Shafer-Fink type inequalities may be derived readily:

π(4−π)x
2/(π −2)+

√
1− x2

� arcsinx, 0 � x � 1; (23)

πx/2

1+
√

1− x2
� arcsinx, 0 � x � 1. (24)

All corresponding bounds in (21), (22), (23), and (24) are not included each other.



OPPENHEIM’S INEQUALITY RELATING TO COSINE AND SINE FUNCTIONS 651

Above-mentioned fact strongly shows us that Oppenheim type inequalities and
Shafer-Fink type inequalities can be converted to each other.

REMARK 4. For 1
2 < p < 2

π , let

Px(p) =
p(1− p2)
1+ pcosx

, 0 < x <
π
2

.

Then a straightforward calculation gives

1−3p2−2p3 < (1+ pcosx)2P′
x(p) = 1−3p2−2p3 cosx < 1−3p2.

This implies that

1. when 2
π > p �

√
3

3 the function p �→ Px(p) is decreasing;

2. when 1
2 < p <

√
3

3 the function p �→ Px(p) attains its maximum 1
4 sec3

(
x
3

)
at the

point
[
cos

( 2
3x

)− 1
2

]
secx for 0 < x < π

2 .

Combining this with the fact that the function p �→ 1+p
1+pcosx is increasing, we derive

from the inequality (10) the following double inequalities for 0 < x < π
2 :

8sinx

3
(√

3 + cosx
) < x <

π sinx
2+(π −2)cosx

, (25)

sinxsec3
(

x
3

)
< x <

π sinx
2+(π −2)cosx

. (26)

Similarly, from (9) and its revision, we deduce the following sharp double inequal-
ities for 0 < x < π

2 :

π2 sinx
2(π +2cosx)

< x <
(π +2)sinx
π +2cosx

, (27)

π sinx
2+ cosx

> x >
3sinx

2+ cosx
. (28)

The famous software MATHEMATICA 7.0 shows that the lower bound in the in-
equality (26) is better than the corresponding ones in (25) and (28), but the left-hand
side inequalities in (26) and (27) are not contained each other. Furthermore, the upper
bound in (26) is better than the corresponding ones in (27) and (28). Accordingly, the
best and sharp double inequality deduced from Theorem 2 may be stated as

max

{
π2 sinx

2(π +2cosx)
,sinxsec3

(
x
3

)}
< x <

π sinx
2+(π −2)cosx

(29)

or

max

{
2(π +2cosx)

π2 ,cos3
(

x
3

)}
>

sinx
x

>
2+(π −2)cosx

π
(30)
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for 0 < x < π
2 . Replacing sinx by t in (29) gives

max

{
π2t

2
(
π +2

√
1− t2

) ,t sec3
(

arcsint
3

)}
< arcsint

<
πt

2+(π −2)
√

1− t2
, 0 < t <

π
2

. (31)

The right-hand side inequality in (31) is a recovery of the inequality (22) in [10].

REMARK 5. Recently, some new Shafer-Fink type inequalities and generaliza-
tions of Oppenheim’s inequality are procured in [2, 8, 15, 19, 28].

For more information on this topic, please refer to [7, 22, 25, 26], [21, Sections 1.7,
7.5 and 7.6], and closely related references therein.

REMARK 6. In [1, 16], the following L’Hôpital rule for monotonicity was estab-
lished: Let f (x) and g(x) be continuous functions on [a,b] and differentiable on (a,b)
such that g′(x) �= 0 on (a,b) . If f ′(x)

g′(x) is increasing (or decreasing respectively) on

(a,b) , then the functions f (x)− f (b)
g(x)−g(b) and f (x)− f (a)

g(x)−g(a) are also increasing (or decreasing

respectively) on (a,b) . This conclusion has been employed in a lot of literature such
as [9, 12, 13] and closely related references therein. This conclusion can also be utilized
to prove the increasing monotonicity of the function h(x) in the proof of Theorem 1 as
follows.

Let h1(x) = sinx− xcosx and h2(x) = x− sinxcosx on
[
0, π

2

]
. Then

h′1(x) = xsinx, h′2(x) = 2sin2 x,

and so
h′1(x)
h′2(x)

=
x

2sinx

is strictly increasing on
(
0, π

2

)
. Consequently, the function

h(x) =
h1(x)
h2(x)

=
h1(x)−h1(0)
h2(x)−h2(0)

,

defined in (11), is strictly increasing on
(
0, π

2

)
.

REMARK 7. We note that our approach used in Section 2 is simpler and more
elementary than those in [2, 3, 4, 6, 10, 15, 27, 28] and closely related references therein.

REMARK 8. It is noted that there are some applications in [5] of this type of in-
equalities obtained in [10].

REMARK 9. A trivial remark is that the surname “Oppenheim” was mistaken for
“Oppeheim” in [27].

REMARK 10. This paper is a slightly modified version of the preprint [18].
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