
Journal of
Mathematical

Inequalities

Volume 6, Number 4 (2012), 673–684 doi:10.7153/jmi-06-65

WILKER AND HUYGENS TYPE INEQUALITIES

FOR THE LEMNISCATE FUNCTIONS

CHAO-PING CHEN

(Communicated by Edward Neuman)

Abstract. In this paper, we establish Wilker and Huygens type inequalities for the Lemniscate
functions.

1. Introduction

The lemniscate, also called the lemniscate of Bernoulli, is the locus of points (x,y)
in the plane satisfying the equation (x2 + y2)2 = x2 + y2 . In polar coordinates (r,θ ) ,
the equation becomes r2 = cos(2θ ) and its arc length is given by the function

arcslx =
∫ x

0

d t√
1− t4

, |x| � 1, (1)

where arcslx is called the arc lemniscate sine function studied by C.F. Gauss in 1797–
1798. Another lemniscate function investigated by Gauss is the hyperbolic arc lemnis-
cate sine function, defined as

arcslhx =
∫ x

0

d t√
1+ t4

, x ∈ R. (2)

Functions (1) and (2) can be found (see [2, p. 259], [3, (2.5)–(2.6)], [10, 11] and [16,
Ch. 1]).

Another pair of lemniscate functions, the arc lemniscate tangent arctl and the
hyperbolic arc lemniscate tangent arctlh, have been introduced in [10, (3.1)–(3.2)].
Therein it has been proven that

arctlx = arcsl

(
x

4
√

1+ x4

)
, x ∈ R (3)

and

arctlhx = arcslh

(
x

4
√

1− x4

)
, |x| < 1 (4)
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(see [10, Prop. 3.1]). It is worth mentioning that all four lemniscate functions can be
expressed in terms of the completely symmetric elliptic integral of the first kind

RF(x,y,z) =
1
2

∫ ∞

0
[(t + x)(t + y)(t + z)]−1/2 d t,

where at most one of the nonnegative variables x;y;z is 0 (see [4, (9.2-1)].
Wilker in [18] proposed two open problems:
(a) Prove that if 0 < x < π/2, then

(
sinx
x

)2

+
tanx

x
> 2 . (5)

(b) Find the largest constant c such that

(
sinx
x

)2

+
tanx

x
> 2+ cx3 tanx .

for 0 < x < π/2.
In [17], inequality (5) was proved, and the following inequality

2+
(

2
π

)4

x3 tanx <

(
sinx
x

)2

+
tanx

x
< 2+

8
45

x3 tanx for 0 < x <
π
2

, (6)

where the constants

(
2
π

)4

and
8
45

are best possible, was also established.

Wilker type inequalities (5) and (6) have attracted much interest of many math-
ematicians and have motivated a large number of research papers involving different
proofs, various generalizations and improvements (cf. [6, 9, 12, 13, 14, 15, 17, 19, 20,
21, 22, 23, 24, 27, 28, 29] and the references cited therein). The inequality (5) is now
known as the first Wilker inequality in the literature [13].

A related inequality which is of interest to us is Huygens inequality [7], which
asserts that

2

(
sinx
x

)
+

tanx
x

> 3 for all 0 < |x| < π
2

. (7)

In [26], Zhu established some new inequalities of the Huygens type for trigonometric
and hyperbolic functions. Baricz and Sándor [1] pointed out that inequalities (5) and
(7) are simple consequences of the arithmetic-geometric mean inequality together with
the well-known Lazarević-type inequality [8, p. 238]

(cosx)1/3 <
sinx
x

for all 0 < |x| < π
2

,

or equivalently,

(
sinx
x

)2 tanx
x

> 1 for all 0 < |x| < π
2

. (8)
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Wu and Srivastava [19, Lemma 3] established another inequality

( x
sinx

)2
+

x
tanx

> 2 for all 0 < |x| < π
2

, (9)

which is now known as the second Wilker inequality in the literature [13].
In [5], Chen and Cheung showed that the first Wilker inequality (5), Huygens

inequality (7), Lazarević-type inequality (8) and the second Wilker inequality (9) can
be grouped into the following inequality chain:

(sinx/x)2 + tanx/x
2

>
2(sinx/x)+ tanx/x

3
>

3

√(
sinx
x

)2 tanx
x

> 1

>
2

1/(sinx/x)2 +1/(tanx/x)
, 0 < |x| < π

2
, (10)

in terms of the arithmetic, geometric and harmonic means.
Recently, Zhu [25] established a hyperbolic version of the first Wilker inequality

(
sinhx

x

)2

+
tanhx

x
> 2 , x �= 0 . (11)

Neuman and Sándor [13] gave generalizations and extensions of the inequalities (5)–
(9) to the case of hyperbolic functions. Chen and Cheung [5] showed the following
inequality chain:

(sinhx/x)2 + tanhx/x
2

>
2(sinhx/x)+ tanhx/x

3
>

3

√(
sinhx

x

)2 tanhx
x

> 1

>
2

1/(sinhx/x)2 +1/(tanhx/x)
, x �= 0 , (12)

in terms of the arithmetic, geometric and harmonic means.
Very recently, Chen and Cheung [5] established Wilker and Huygens type inequal-

ities for inverse trigonometric and inverse hyperbolic functions.
In this paper, we establish Wilker and Huygens type inequalities for the lemniscate

functions.

2. Lemmas and Propositions

It is known that the binomial coefficients(
a
n

)
=

a(a−1) · · ·(a−n+1)
n!

=
Γ(1+a)

n! ·Γ(1+a−n)
=

(−1)nΓ(n−a)
n! ·Γ(−a)

,

where Γ denotes the gamma function.
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LEMMA 1. (i) For |x| < 1 ,

arcslx =
∞

∑
n=0

Γ(n+ 1
2 )√

π(4n+1) ·n!
x4n+1. (13)

(ii) Let p � 0 be an integer. Then for 0 < x < 1 ,

2p−1

∑
k=0

(−1)kuk(x) < arctlx <
2p

∑
k=0

(−1)kuk(x), (14)

where

uk(x) =
Γ(k+ 3

4 )
Γ( 3

4 ) · (4k+1) · k!x
4k+1.

Proof. We note that 1/
√

1− t4 can be expressed in series form as follows:

1√
1− t4

=
∞

∑
n=0

(− 1
2

n

)
(−1)nt4n =

∞

∑
n=0

Γ(n+ 1
2 )√

π ·n!
t4n, |t| < 1.

Consequently, for |x| < 1,

arcslx =
∫ x

0

1√
1− t4

d t =
∞

∑
n=0

Γ(n+ 1
2 )√

π(4n+1) ·n!
x4n+1.

Elementary calculations reveal that for |x| < 1,

(arctlx)′ =
d
d x

∫ x/
4
√

1+x4

0

1√
1− t4

d t =
1

(1+ x4)3/4

=
∞

∑
n=0

(− 3
4

n

)
x4n =

∞

∑
n=0

(−1)n Γ(n+ 3
4 )

Γ( 3
4 ) ·n!

x4n.

Consequently, for |x| < 1,

arctlx =
∞

∑
n=0

(−1)n Γ(n+ 3
4 )

Γ( 3
4 ) · (4n+1) ·n!

x4n+1 =
∞

∑
n=0

(−1)nun(x), (15)

where

un(x) =
Γ(n+ 3

4)
Γ( 3

4 ) · (4n+1) ·n!
x4n+1.
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We find that, for 0 < x < 1 and m � 0,

u2m(x)−u2m+1(x) =
(

1
8m+1

− 8m+3
4(8m+5)(2m+1)

x4
)

Γ(2m+ 3
4 )

Γ( 3
4) · (2m)!

x8m+1 > 0,

since

1
8m+1

>
8m+3

4(8m+5)(2m+1)
>

8m+3
4(8m+5)(2m+1)

x4

for 0 < x < 1 and m � 0. Hence, it follows that for 0 < x < 1 and p � 1,

arctlx =
(
u0(x)−u1(x)

)
+

(
u2(x)−u3(x)

)
+ · · · >

2p−1

∑
k=0

(−1)kuk(x).

We find that, for 0 < x < 1 and m � 1,

u2m−1(x)−u2m(x) =
(

1
8m−3

− 8m−1
8m(8m+1)

x4
)

Γ(2m− 1
4)

Γ( 3
4) · (2m−1)!

x8m−3 > 0,

since

1
8m−3

>
8m−1

8m(8m+1)
>

8m−1
8m(8m+1)

x4

for 0 < x < 1 and m � 1. Hence, it follows that for 0 < x < 1 and p � 0,

arctlx = u0(x)−
(
u1(x)−u2(x)

)− (
u3(x)−u4(x)

)−·· · <
2p

∑
k=0

(−1)kuk(x).

This completes the proof of Lemma 1. �

PROPOSITION 1. For 0 < |x| < 1 , we have

( x
arcslx

)2
+

x
arctlx

< 2. (16)

Proof. It follows from (13) that for 0 < |x| < 1,

(
arcslx

x

)2

=
(

1+
1
10

x4 +
1
24

x8 +
5

208
x12 + · · ·

)2

= 1+
1
5
x4 +

7
75

x8 +
11
195

x12 + · · ·

> 1+
1
5
x4 +

7
75

x8. (17)
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It follows from (14) that for 0 < |x| < 1,

1− 3
20

x4 <
arctlx

x
< 1. (18)

By using inequalities (17) and (18), we find for 0 < |x| < 1,

( x
arcslx

)2
+

x
arctlx

−2 <
1

1+ 1
5x4 + 7

75x8
+

1

1− 3
20x4

−2

=
x4(−75−50x4 +42x8)

(75+15x4 +7x8)(20−3x4)
< 0,

since

−75−50t +42t2 < 0 for 0 < t < 1.

The proof is complete. �

LEMMA 2. (i) Let p � 0 be an integer. Then for 0 < x < 1 ,

2p−1

∑
k=0

(−1)kvk(x) < arcslhx <
2p

∑
k=0

(−1)kvk(x), (19)

where

vk(x) =
Γ(k+ 1

2)√
π(4k+1) ·n!

x4k+1.

(ii) For |x| < 1 , we have

arctlhx =
∞

∑
n=0

Γ(n+ 3
4)

Γ( 3
4 ) · (4n+1) ·n!

x4n+1. (20)

Proof. We note that 1/
√

1+ t4 can be expressed in series form as follows:

1√
1+ t4

=
∞

∑
n=0

(−1)n Γ(n+ 1
2 )√

π ·n!
t4n, |t| < 1.

Consequently, for |x| < 1,

arcslhx =
∫ x

0

1√
1+ t4

d t =
∞

∑
n=0

(−1)n Γ(n+ 1
2)√

π(4n+1) ·n!
x4n+1 =

∞

∑
n=0

(−1)nvn(x),

where

vn(x) =
Γ(n+ 1

2 )√
π(4n+1) ·n!

x4n+1.
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We find that, for 0 < x < 1 and m � 0,

v2m(x)− v2m+1(x) =
(

1
8m+1

− 4m+1
2(8m+5)(2m+1)

x4
)

Γ(2m+ 1
2 )√

π · (2m)!
x8m+1 > 0,

since

1
8m+1

>
4m+1

2(8m+5)(2m+1)
>

4m+1
2(8m+5)(2m+1)

x4

for 0 < x < 1 and m � 0. Hence, it follows that for 0 < x < 1 and p � 1,

arcslhx =
(
v0(x)− v1(x)

)
+

(
v2(x)− v3(x)

)
+ · · ·>

2p−1

∑
k=0

(−1)kvk(x).

We find that, for 0 < x < 1 and m � 1,

v2m−1(x)− v2m(x) =
(

1
8m−3

− 4m−1
4m(8m+1)

x4
)

Γ(2m− 1
2 )√

π · (2m−1)!
x8m−3 > 0,

since

1
8m−3

>
4m−1

4m(8m+1)
>

4m−1
4m(8m+1)

x4

for 0 < x < 1 and m � 1. Hence, it follows that for 0 < x < 1 and p � 0,

arcslhx = v0(x)−
(
v1(x)− v2(x)

)− (
v3(x)− v4(x)

)−·· · <
2p

∑
k=0

(−1)kvk(x).

Elementary calculations reveal that for |x| < 1,

(arctlhx)′ =
d
d x

∫ x/
4
√

1−x4

0

1√
1+ t4

d t =
1

(1− x4)3/4
=

∞

∑
n=0

Γ(n+ 3
4 )

Γ( 3
4 ) ·n!

x4n.

Consequently, for |x| < 1,

arctlhx =
∞

∑
n=0

Γ(n+ 3
4)

Γ( 3
4 ) · (4n+1) ·n!

x4n+1.

This completes the proof of Lemma 2. �
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PROPOSITION 2. For 0 < |x| < 1 , we have

x
arcslhx

+
( x

arctlhx

)2
< 2. (21)

Proof. It follows from (19) for 0 < x < 1,

1− 1
10

x4 <
arcslhx

x
< 1− 1

10
x4 +

1
24

x8. (22)

It follows from (20) for 0 < x < 1,(
arctlhx

x

)2

=
(

1+
3
20

x4 +
7
96

x8 + · · ·
)2

= 1+
3
10

x4 +
101
600

x8 + · · ·

> 1+
3
10

x4. (23)

By using inequalities (22) and (23), we find for 0 < |x| < 1,

x
arcslhx

+
( x

arctlhx

)2−2 <
1

1− 1
10x4

+
1

1+ 3
10x4

−2

= − 2x4(10−3x4)
(10− x4)(10+3x4)

< 0.

The proof is complete. �

3. Main results

THEOREM 1. For 0 < |x| < 1 , we have(
arcslx

x

)2

+
arctlx

x
> 2 (24)

and

2

(
arcslx

x

)
+

arctlx
x

> 3. (25)

Proof. Inequality (16) can be rewritten as

2

1/(arcslx/x)2 +1/(arctlx/x)
> 1 , 0 < |x| < 1,

that is to say, the harmonic mean of

(
arcslx

x

)2

and
arctlx

x
is greater than 1. By

using the arithmetic–geometric–harmonic mean inequality, we get, for 0 < |x| < 1,

(arcslx/x)2 + arctlx/x
2

>

√(
arcslx

x

)2 (
arctlx

x

)

>
2

1/(arcslx/x)2 +1/(arctlx/x)
> 1 , (26)
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and

2(arcslx/x)+ arctlx/x
3

>
3

√(
arcslx

x

)2 (
arctlx

x

)
> 1 . � (27)

REMARK 1. For 0 < |x| < 1, we have, by (26),

(arcslx/x)2 + arctlx/x
2

− 2(arcslx/x)+ arctlx/x
3

=
1
6

[
2

(
arcslx

x

)2

+
(

arcslx
x

)2

+
arctlx

x
−4

(
arcslx

x

)]

>
1
6

[
2

(
arcslx

x

)2

+2−4

(
arcslx

x

)]

=
1
3

(
1− arcslx

x

)2

> 0,

which shows that inequality (25) is sharper than inequality (24).

Theorem 2 below establishes a sharp result of inequality (24), which presents an
analogue of the first inequality in (6).

THEOREM 2. For 0 < |x| < 1 , we have

2+
1
20

x3 arctlx <

(
arcslx

x

)2

+
arctlx

x
. (28)

The constant 1
20 is best possible.

Proof. By (17) and (18), we have for 0 < |x| < 1,

(
arcslx

x

)2

+
arctlx

x
−2− 1

20
x3 arctlx >

1
20

x3(x− arctlx)+
7
75

x8 > 0.

Elementary calculations reveal that

lim
x→0+

(
arcslx

x

)2

+
arctlx

x
−2

x3 arctlx
=

1
20

.

Hence, inequality (28) holds with best possible constant 1
20 . �

There is no strict comparison between the representation
(arcslhx/x)2 + arctlhx/x

2
and constant 1. Now we ask: Can the arithmetic mean of arcslhx/x and (arctlhx/x)2

be compared with constant 1? Theorem 3 gives an affirmative answer.
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THEOREM 3. For 0 < |x| < 1 , we have

arcslhx
x

+
(

arctlhx
x

)2

> 2 (29)

and
arcslhx

x
+2

(
arctlhx

x

)
> 3. (30)

Proof. Inequality (21) can be rewritten as

2

1/(arcslhx/x)+1/(arctlhx/x)2
> 1 , 0 < |x| < 1 ,

that is to say, the harmonic mean of
arcslhx

x
and

(
arctlhx

x

)2

is greater than 1. By

using the arithmetic–geometric–harmonic mean inequality, we get, for 0 < |x| < 1,

arcslhx/x+(arctlhx/x)2

2
>

√(
arcslhx

x

)(
arctlhx

x

)2

>
2

1/(arcslhx/x)+1/(arctlhx/x)2 > 1 , (31)

and

arcslhx/x+2(arctlhx/x)
3

>
3

√(
arcslhx

x

)(
arctlhx

x

)2

> 1 . � (32)

REMARK 2. For 0 < |x| < 1, we have, by (31),

arcslhx/x+(arctlhx/x)2

2
− arcslhx/x+2(arctlhx/x)

3

=
1
6

[
arcslhx

x
+

(
arctlhx

x

)2

+2

(
arctlhx

x

)2

−4

(
arctlhx

x

)]

>
1
6

[
2+2

(
arctlhx

x

)2

−4

(
arctlhx

x

)]

=
1
3

(
1− arctlhx

x

)2

> 0,

which shows that inequality (30) is sharper than inequality (29).

Finally, we propose the following conjecture.
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CONJECTURE 1. For 0 < |x| < 1 , we have

2+
1
5
x3 arctlhx <

arcslhx
x

+
(

arctlhx
x

)2

. (33)

The constant 1
5 is best possible.
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