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(Communicated by I. Franjić)

Abstract. One of the many inequalities that superquadratic functions satisfy is the parallelogram
inequality

f (u+ v)+ f (u− v) � 2 f (u)+2 f (v).

In this paper, we present Cauchy means for superquadratic functions and other mean value the-
orems. We show also positive semi-definiteness, log-convexity, exponential convexity of certain
set of functions.

1. Introduction

Let E be a nonempty set and L be a linear class of real valued functions f : E →R

having the properties:

f ,g ∈ L =⇒ (a f +bg) ∈ L, ∀a,b ∈ R, (L1)

1 ∈ L i.e., f (t) = 1 for all t ∈ E =⇒ f ∈ L. (L2)

An isotonic linear functional is a functional A : L → R having the properties:

A(α f + βg) = αA( f )+ βA(g) for f ,g ∈ L,α,β ∈ R, (A is linear). (A1)

f ∈ L, f (t) � 0 on E =⇒ A( f ) � 0 (A is isotonic). (A2)

If A(1) = 1 we say that A is normalized functional. (A3)

DEFINITION A. [2, Definition 2.1] A function ϕ : [0,∞) → R is superquadratic
provided that for all x � 0 there exists a constant C(x) such that

ϕ(y)−ϕ(x)−ϕ(|y− x|) � C(x)(y− x) (1.1)

for all y � 0. We say that ϕ is subquadratic if −ϕ is a superquadratic function. We say
that ϕ is strictly superquadratic function if for x �= y , x,y �= 0, there is strict inequal-
ity in (1.1). We say that ϕ is strictly subquadratic if −ϕ is a strictly superquadratic
function (see [7]).

The following lemma is proved in [2, Lemma 3.1].
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LEMMA A. Suppose ϕ : [0,∞)→R is continuously differentiable and ϕ(0) � 0 .

If ϕ ′ is superadditive or x �→ ϕ ′(x)
x is increasing, then ϕ is superquadratic.

We want to emphasize that using Definition A, it was proved in [1] and [2] that the
parallelogram inequality holds for superquadratic functions and that if the superquadratic
function is also positive, then it is also convex. Therefore in such a case we get refine-
ments of Jensen inequality, Jensen Steffensen inequality and many other inequalities
that hold for convex functions. A very important set of superquadratic functions is the
set of the power functions f (x) = xp, p � 2, x � 0. Thus we get refinements of Hölder
inequality, Hardy inequality and many more inequalities related to power functions.

The following Jensen type inequality is given in [8, Theorem 10].

THEOREM A. Let L satisfy L1 , L2 on a non-empty set E , and let ϕ : [0,∞)→R

be a continuous superquadratic function. Assume that A is an isotonic linear functional
on L with A(1) = 1 . If f ∈ L is non-negative and such that ϕ( f ),ϕ(| f −A( f )|) ∈ L,
then we have

ϕ(A( f )) � A(ϕ( f ))−A(ϕ(| f −A( f )|)). (1.2)

If the function ϕ is subquadratic, then the inequality above is reversed.

DEFINITION B. [3, Definition 1] A function h : (a,b)→ R is exponentially con-
vex if it is continuous and

n

∑
i, j=1

uiu jh(xi + x j) � 0

for all n ∈N and all choices ui ∈ R, i = 1,2, ...,n and xi ∈ (a,b), such that xi+x j ∈
(a,b), 1 � i, j � n.

PROPOSITION A. [3, Proposition 1] Let h : (a,b) → R . The following are equiv-
alent.

(i) h is exponentially convex.
(ii) h is continuous and

n

∑
i, j=1

uiu jh
(xi + x j

2

)
� 0,

for every ui ∈ R and every xi,x j ∈ (a,b), 1 � i, j � n.

(iii) h is continuous and for every xi ∈ (a,b), i = 1,2, ...,n,

det
[
h
(xi + x j

2

)]n
i, j=1

� 0.

COROLLARY A. [3, 10] If h : (a,b) → (0,∞) is exponentially convex function,
then for all x,y ∈ (a,b) h is a log-convex function:

h(
x+ y

2
) �

√
h(x)h(y).
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REMARK A. In Definition B and Proposition A it is sufficient to require mea-
surability and finiteness almost everywhere in place of continuity because of the fol-
lowing theorem (see [9, 13, p.105, Th.9.1b]): If the function h : (a,b) → R is mea-
surable and finite almost everywhere, h is continuous if also −∞ < h(x) < ∞ and

h
( x+y

2

)
� h(x)+h(y)

2 , a < x,y < b. In this paper we follow the reasoning and the tech-
niques of [3, 4, 5, 6, 12] but here we do it for superquadratic functions. We present here
mean value theorems, show positive semi-definiteness, log-convexity and exponential
convexity of Aϕ = A(ϕ ( f ))−ϕ (A( f ))−A(ϕ (| f −A( f )|)) . We also define Cauchy
mean for superquadratic function and show its monotonicity.

2. Mean value theorems

We start this section by defining the linear functional Aϕ , then using the classical
Cauchy mean value and some properties that lead to superquadracity, we build new
means. In the rest of the section we will use C1(I) to denote the class of functions
having first order continuous derivatives on an interval I and C2(I) to denote the class
of functions having second order continuous derivatives on I .

DEFINITION 1. Let L satisfy properties L1,L2 on a non empty set E and A : L→
R be a functional having properties (A1)− (A3) . Let ϕ : [0,∞) → R, f ∈ L be a non-
negative function with ϕ( f ),ϕ(| f −A( f )|) ∈ L. We define the functional Aϕ : L → R

as:
Aϕ = A(ϕ( f ))−ϕ(A( f ))−A(ϕ(| f −A( f )|)). (2.1)

If ϕ is continuous superquadratic function then by (1.2), Aϕ � 0.
In the following we assume that a function f satisfies conditions, which imply

that if A is strictly positive functional and ϕ is strictly superquadratic function, then
Aϕ > 0. The following lemma is important to prove mean value theorems.

LEMMA 1. Suppose ϕ ∈C2([0,∞)) , −∞ < m � M < ∞ be such that

m �
(

ϕ ′(ξ )
ξ

)′
=

ξ ϕ ′′(ξ )−ϕ ′(ξ )
ξ 2 � M for all ξ > 0. (2.2)

Consider the functions ϕ1,ϕ2 : [0,∞) → R defined as:

ϕ1(x) =
Mx3

3
−ϕ(x) , ϕ2(x) = ϕ(x)− mx3

3
.

Then the functions x �→ ϕ ′
1(x)
x , x �→ ϕ ′

2(x)
x are increasing. If also ϕ(0) = 0 , then ϕi,

i = 1,2 are superquadratic.

Proof. By using inequality (2.2) it is easy to see that the functions x �→ ϕ ′
1(x)
x ,

x �→ ϕ ′
2(x)
x are increasing. Also if ϕ(0) = 0, then by Lemma A we have that ϕi, i = 1,2

are superquadratic. �
By using Lemma 1 we prove the following theorem.
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THEOREM 1. Let ϕ : [0,∞) →R, ϕ(0) = 0 be a function with the assumptions of

Theorem 1 , and assume that A is strictly positive functional. If ϕ ′(x)
x ∈C1(0,∞), then

there exists ξ ∈ (0,∞) such that the following equality holds

Aϕ =
1
3

ξ ϕ ′′(ξ )−ϕ ′(ξ )
ξ 2

(
A( f 3)− (A( f ))3 −A(| f −A( f )|3)) . (2.3)

Proof. Case 1. Suppose that m = min
x∈(0,∞)

(
ϕ ′(x)

x

)′
and M = max

x∈(0,∞)

(
ϕ ′(x)

x

)′
exist.

Using ϕ1 instead of ϕ in (1.2) we get

A(ϕ( f ))−ϕ(A( f ))−A(ϕ(| f −A( f )|))
� M

3

(
A( f 3)− (A( f ))3 −A(| f −A( f )|3)) . (2.4)

Similarly, using ϕ2 instead of ϕ in (1.2) we get

A(ϕ( f ))−ϕ(A( f ))−A(ϕ(| f −A( f )|))
� m

3
(A( f 3)− (A( f ))3 −A(| f −A( f )|3)). (2.5)

As ϕ = x3 is strictly superquadratic, and A is strictly positive therefore

A( f 3)− (A( f ))3−A(| f −A( f )|3 > 0.

By combining inequalities (2.4), (2.5) and using the fact that

m � xϕ ′′(x)−ϕ ′(x)
x2 � M

there exists ξ ∈ (0,∞) such that we get (2.3) .

Case 2. Suppose that m = min
x∈(0,∞)

(
ϕ ′(x)

x

)′
and M = sup

x∈(0,∞)

(
ϕ ′(x)

x

)′
, and assume

that M is not a maximum. In this case ϕ1 is strictly superquadratic. Using ϕ1 instead
of ϕ in (1.2) we get

A(ϕ( f ))−ϕ(A( f ))−A(ϕ(| f −A( f )|))
<

M
3

(
A( f 3)− (A( f ))3 −A(| f −A( f )|3)) . (2.6)

Using ϕ2 instead of ϕ in (1.2) we get

A(ϕ( f ))−ϕ(A( f ))−A(ϕ(| f −A( f )|))
� m

3
(A( f 3)− (A( f ))3 −A(| f −A( f )|3)). (2.7)
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By combining inequalities (2.6), (2.7) and using the fact that

m � xϕ ′′(x)−ϕ ′(x)
x2 < M

there exists ξ ∈ (0,∞) such that we get (2.3) .

Case 3. Suppose that m = inf
x∈(0,∞)

(
ϕ ′(x)

x

)′
and M = max

x∈(0,∞)

(
ϕ ′(x)

x

)′
. The proof is

analogous to the proof in Case 2.

Case 4. Suppose that m = inf
x∈(0,∞)

(
ϕ ′(x)

x

)′
and M = sup

x∈(0,∞)

(
ϕ ′(x)

x

)′
. The proof is

analogous to the proof in Case 2.

In the case where M = ∞ (that is
(

ϕ ′(x)
x

)′
is not bounded above) and m exists,

using just ϕ2 , we obtain

m � xϕ ′′(x)−ϕ ′(x)
x2

in the case of minimum, and strong inequality in the case where m is infimum. The rest
of the proof is as above.

The remaining cases could be treated analogously. �

THEOREM 2. Let ϕ ,ψ : [0,∞) →R, ϕ(0) = ψ(0) = 0 be functions with the as-

sumptions of Theorem 1 , and assume that A is strictly positive functional. If ϕ ′(x)
x ,

ψ ′(x)
x ∈C1(0,∞) , then there exists ξ ∈ (0,∞) such that we have

Aϕ

Aψ
=

ξ ϕ ′′(ξ )−ϕ ′(ξ )
ξ ψ ′′(ξ )−ψ ′(ξ )

, (2.8)

provided the denominators are not equal to zero.

Proof. We consider a function h defined as h = c1ϕ − c2ψ , where c1,c2 are de-
fined by

c1 = Aψ , c2 = Aϕ .

Then
h′

x
= c1

ϕ ′

x
− c2

ψ ′

x
∈C1(0,∞),

after a short calculation we obtain that Ah = 0 and using Theorem 1 with ϕ = h we
have

(
c1(ξ ϕ ′′(ξ )−ϕ ′(ξ ))− c2(ξ ψ ′′(ξ )−ψ ′(ξ ))

)×
× (A( f 3)− (A( f ))3 −A(| f −A( f )|3))= 0. (2.9)

As ϕ = x3 is strictly superquadratic, and A is strictly positive therefore

A( f 3)− (A( f ))3−A(| f −A( f )|3 > 0.
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We conclude that
c2

c1
=

ξ ϕ ′′(ξ )−ϕ ′(ξ )
ξ ψ ′′(ξ )−ψ ′(ξ )

=
Aϕ

Aψ
,

provided that denominator is not zero. This completes the proof. �

Theorem 2 enables us to define new means. Set

K(ξ ) =
ξ ϕ ′′(ξ )−ϕ ′(ξ )
ξ ψ ′′(ξ )−ψ ′(ξ )

and suppose that K is invertible, then

ξ = K−1
(

Aϕ

Aψ

)

is a new mean.
By using the following definition of generalized mean we give the next result.

DEFINITION 2. [11, p. 107] Let L satisfy properties L1,L2 on a non-empty
set E , A be positive linear and normalized functional ( that is, A satisfies conditions
(A1)− (A3)) on L, and let g ∈ L. Then for strictly monotone continuous function α
such that α ◦ g ∈ L, the generalized mean of g with respect to the positive functional
A and the function α is defined by

Mα(g,A) = α−1(A(α ◦ g)). (2.10)

Using Theorem 2 we get that the following theorem holds for Mα (g,A) :

THEOREM 3. Let α,β ,γ : (0,∞) → R be strictly monotone functions. Let f :
E → R be a function such that f (t) ∈ (0,∞), f orall t ∈ E. Let α,β ,γ ∈C2(0,∞), and
(α◦γ−1)′(x)

x , (β◦γ−1)′(x)
x ∈C1(0,∞) with α ◦ γ−1(0) = 0, β ◦ γ−1(0) = 0 , then

α(Mα ( f ,A))−α(Mγ ( f ,A))−α(Mα(γ−1(|γ ◦ f − γ(Mγ( f ,A))|),A))
β (Mα( f ,A))−β (Mγ( f ,A))−β (Mβ (γ−1(|γ ◦ f − γ(Mγ( f ,A))|),A))

=
γ(η)(α ′′(η)γ ′(η)−α ′(η)γ ′′(η))−α ′(η)(γ ′(η))2

γ(η)(β ′′(η)γ ′(η)−β ′(η)γ ′′(η))−β ′(η)(γ ′(η))2

holds for some η in the image of f provided that denominators are not zero.

Proof. We select the functions ϕ and ψ so that ϕ = α ◦ γ−1, ψ = β ◦ γ−1 and
f = γ ◦ f , by making these substitutions in equation (2.8) we have that there exists an
ξ such that

α(Mα ( f ,A))−α(Mγ ( f ,A))−α(Mα(γ−1(|γ ◦ f − γ(Mγ( f ,A))|),A))
β (Mα( f ,A))−β (Mγ( f ,A))−β (Mβ (γ−1(|γ ◦ f − γ(Mγ( f ,A))|),A))
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=
ξ (α ′′(γ−1(ξ ))γ ′(γ−1(ξ ))−α ′(γ−1(ξ ))γ ′′(γ−1(ξ )))−α ′(γ−1(ξ ))(γ ′(γ−1(ξ )))2

ξ (β ′′(γ−1(ξ ))γ ′(γ−1(ξ ))−β ′(γ−1(ξ ))γ ′′(γ−1(ξ )))−β ′(γ−1(ξ ))(γ ′(γ−1(ξ )))2
.

Hence by setting γ−1(ξ ) = η , we have that there exists an η in the image of f such
that

α(Mα ( f ,A))−α(Mγ ( f ,A))−α(Mα(γ−1(|γ ◦ f − γ(Mγ( f ,A))|),A))
β (Mα( f ,A))−β (Mγ( f ,A))−β (Mβ (γ−1(|γ ◦ f − γ(Mγ( f ,A))|),A))

=
γ(η)(α ′′(η)γ ′(η)−α ′(η)γ ′′(η))−α ′(η)(γ ′(η))2

γ(η)(β ′′(η)γ ′(η)−β ′(η)γ ′′(η))−β ′(η)(γ ′(η))2 . �

Theorem 3 enable us to define new means. Set

F(η) =
γ(η)(α ′′(η)γ ′(η)−α ′(η)γ ′′(η))−α ′(η)(γ ′(η))2

γ(η)(β ′′(η)γ ′(η)−β ′(η)γ ′′(η))−β ′(η)(γ ′(η))2

and when F is invertible, then

η = F−1
(

α(Mα( f ,A))−α(Mγ ( f ,A))−α(Mα(γ−1(|γ ◦ f − γ(Mγ( f ,A))|),A))
β (Mα( f ,A))−β (Mγ( f ,A))−β (Mβ (γ−1(|γ ◦ f − γ(Mγ( f ,A))|),A))

)
.

Since η is in the image of f , then we have min
t∈E

f (t) � η � max
t∈E

f (t) , i.e. we get a new
mean.

Now we give definition of generalized power mean and use in the above theorem
to give new mean.

DEFINITION 3. [11, p. 108] The generalized power mean of g with respect to the
normalized positive linear functional A is defined by

Mr(g,A) =
{

(A(gr))
1
r , r �= 0

exp(A(logg)), r = 0
. (2.11)

Now we can deduce corresponding results for the generalized power mean.

COROLLARY 1. Suppose that all the conditions of Theorem 3 are satisfied. Then
for r, l,s ∈ R+ such that r �= l;r, l �= 2s, we have that

Mr
r ( f ,A)−Mr

s ( f ,A)−Mr
r (| f s −Ms

s( f ,A)| 1
s ,A)

Ml
l ( f ,A)−Ml

s( f ,A)−Ml
l (| f s −Ms

s( f ,A)| 1
s ,A)

=
r(r−2s)
l(l−2s)

ηr−l (2.12)

holds for some η in the image of f , provided that the denominators are not zero.
Therefore we have a new mean.
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Proof. If we set α(t) = tr,β (t) = tl,γ(t) = ts in Theorem 3, we get assertion
(2.12) . Since η is in the image of f , (2.12) suggests a new mean which satisfies

min f (t) �
(

l(l−2s)
r(r−2s)

Mr
r ( f ,A)−Mr

s ( f ,A)−Mr
r (| f s −Ms

s( f ,A)| 1
s ,A)

Ml
l ( f ,A)−Ml

s( f ,A)−Ml
l (| f s −Ms

s( f ,A)| 1
s ,A)

) 1
r−l

� max f (t), r, l,s ∈ R+,r �= l,2s. �

From (2.12) it follows that we can define a new mean M[s]
r,l ( f ,A) as:

M[s]
r,l ( f ,A) =

(
l(l−2s)
r(r−2s)

Mr
r ( f ,A)−Mr

s ( f ,A)−Mr
r (| f s −Ms

s( f ,A)| 1
s ,A)

Ml
l ( f ,A)−Ml

s( f ,A)−Ml
l (| f s −Ms

s( f ,A)| 1
s ,A)

) 1
r−l

, (2.13)

for r, l,s ∈ R+, r �= l ; r, l �= 2s.
For some other cases of r, l,s we apply the following conditions that we call (A4) :

lim
t→t0

A( f t ) = A( f t0), (A4)

lim
Δt→0

A
(
f t+Δt

)−A( f t )
Δt

= A( f t log f )

and we get the following definition of M[s]
r,l for more cases of r, l,s ∈ R+.

DEFINITION 4. Let L satisfy properties L1,L2 on a non-empty set E , A be a
positive linear functional on L with (A3) and let (A4) be valid. Then for r, l,s ∈ R+
we define Cauchy-type mean of f with respect to the positive linear functional A for
r �= l, r �= 2s, l �= 2s by (2.13) .

Denoting d = | f s −Ms
s ( f ,A)| 1

s , we get in the limiting cases:

M[s]
l,l ( f ,A) = exp

(
A( f l log f )−Ml

s( f ,A) logMs( f ,A)−A(dl logd)
Ml

l ( f ,A)−Ml
s( f ,A)−Ml

l (d,A)
− 2(l− s)

l(l−2s)

)
,

M[s]
l,2s( f ,A) = M[s]

2s,l( f ,A)

=

(
2s(Ml

l ( f ,A)−Ml
s( f ,A)−Ml

l (d,A))
l(l−2s)(A( f 2s log f )−M2s

s ( f ,A) logMs( f ,A)−A(d2s logd))

) 1
l−2s

,

M[s]
2s,2s( f ,A) = exp

(
A( f 2s(log f )2)−M2s

s ( f ,A)(logMs( f ,A))2 −A(d2s(logd)2)
2(A( f 2s log f )−M2s

s ( f ,A) logMs( f ,A)−A(d2s logd))
− 1

2s

)
.
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3. Positive-semidefiniteness, exponential convexity and log-convexity

In the following we assume that the linear functional A satisfies (A4) .

LEMMA 2. Consider the function ϕk for k > 0 defined as

ϕk(x) =

⎧⎨
⎩

xk

k(k−2) , k �= 2,

x2

2 logx, k = 2.
. (3.1)

Then, with the convention 0 log 0 = 0 , ϕk is superquadratic.

Proof. Since ϕk(0) = 0 and (ϕ ′
k(x)
x )′ = xk−3 > 0 for x > 0, by Lemma A, ϕk is

superquadratic. �

THEOREM 4. For Aϕs defined by using Lemma 2 in (2.1) we have

a) for n ∈ N, pi ∈ R+, i = 1, ...,n, the matrix A =
[
Aϕ pi+p j

2

]n

i, j=1

, is a positive

semi-definite matrix.
b) the function s �→ Aϕs , s ∈ R+, is exponentially convex.
c) if Aϕs is positive then the function s �→ Aϕs is log-convex that is for r < s < t

where r,s, t ∈ R+ we have

(Aϕs)
t−r � (Aϕr)

t−s(Aϕt )
s−r. (3.2)

Proof. Define the function F(x) =
n
∑

i, j=1
uiu jϕpi j(x) , where pi j = pi+p j

2 . Then,

(
F ′(x)

x

)′
=

n

∑
i, j=1

uiu j

(
ϕ ′

pi j
(x)

x

)′
=

(
n

∑
i=1

uix
pi−3

2

)2

� 0

and F(0) = 0. This implies that F is superquadratic, so using this F in the place of ϕ
in (2.1) we have

AF =
n

∑
i, j=1

uiu jAϕpi j
� 0. (3.3)

Hence the matrix A =
[
Aϕ pi+p j

2

]n

i, j=1

is positive semi-definite.

b) Since after some computation we have lim
s→2

Aϕs = Aϕ2 so the function s �→
Aϕs , s ∈ R+ is continuous on R+ , then by (3.3) and Proposition 1, we have that the
function s �→ Aϕs , s ∈ R+ is exponentially convex.

c) As Aϕs is positive and s �→ Aϕs , s ∈ R+ is continuous, then by Corollary 1 we
have s �→ Aϕs is log-convex and we get (3.2) . �

In the next corollary and two theorems we suppose that the functional Aϕs is such
that continuity property of Theorem 4. b) is satisfied on an appropriate interval.
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COROLLARY 2. Let dk = A( f k)− (A( f ))k −A(| f −A( f )|k), k > 0 , k �= 2 , and
d2 = A( f 2 log f )− (A( f ))2 logA( f )−A(| f −A( f )|2 log | f −A( f )|).

By applying Theorem 4 . c) we get

(i) For s > 4 :

A( f s) � (A( f ))s +A(| f −A( f )|s)+
s(s−2)

3
(3d4/8d3)s−3d3, (3.4)

(ii) For 0 < s < 2 :

A( f s) � (A( f ))s +A(| f −A( f )|s)− s(2− s)
3

(8d3/3d4)3−sd3, (3.5)

(iii) For 1 < s < 2 :

A( f s) � (A( f ))s +A(| f −A( f )|s)+s(s−2)A(| f −A( f )|)
(

d2

2A(| f −A( f )|)
)s−3

,

(3.6)

(iv) For 2 < s < 3 :

A( f s) � (A( f ))s +A(| f −A( f )|s)+
s(s−2)

3
(2d3/3d2)s−2d2, (3.7)

(v) For 3 < s < 4 :

A( f s) � (A( f ))s +A(| f −A( f )|s)+
s(s−2)

3
(3d4/8d3)s−3d3. (3.8)

EXAMPLE. Let y � x � 0 and

d4 =
x4 + y4

2
−
(

x+ y
2

)4

−
(

y− x
2

)4

=
3
8

(y− x)2 (y+ x)2

d3 =
x3 + y3

2
−
(

x+ y
2

)3

−
(

y− x
2

)3

=
(y− x)2 (y+2x)

4

Then for s > 4

ds =
xs + ys

2
−
(

x+ y
2

)s

−
(

y− x
2

)s

� s(s−2)
3

d3

(
3d4

8d3

)s−3

=
s(s−2)

3

(
32 (y+ x)2

42 (y+2x)

)s−3
(y− x)2 (y+2x)

4

By computing directly d5 we get from the above inequality

7y3 +14y2x+11yx2 +8x3

16
� 5

34 (y+ x)4

210 (y+ x)
.
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If 0 < s < 2 and y � x � 0 then

xs + ys

2
−
(

x+ y
2

)s

−
(

y− x
2

)s

� −s(s−2)
3

(
82 (y+2x)
32 (y+ x)2

)3−s
(y− x)2 (y+2x)

4
.

Therefore for s = 1 the following holds:

−(y− x) � − 1
3 ·4

(
82

32

)2 (y+2x)3 (y− x)2

(y+ x)4
.

In the following theorem we give result analogous to refinement of Holder’s inequality
for superquadratic functions given in [2].

THEOREM 5. Let L satisfy conditions L1 ,L2 and A satisfy conditions (A1),(A2)
on a set E . Let 1 < p < 2, 1

p + 1
q = 1, if f ,g > 0 and f p , gq , f g , f g , log f g1−q ,

f 2g2−q ∈ L then we have

1
p(p−2)

((
(A(gq))

1
q (A( f p)−A(|h|p))

) 1
p

)p

− (A( f g))p

� 1
2

(A(g|h|))2−p ·
(

A( f 2g2−q log( f g1−q))A(gq)

− (A( f g))2 log
A( f g)
A(gq)

−A(gq)A(g2−q|h|2) log(g1−q|h|)
)p−1

, (3.9)

where h = | f − A( f g)
A(gq) |. For p > 2 the above inequality is reversed.

Proof. In Theorem 4. c) take r = 1,s = p,t = 2 so that, 1 < p < 2, then we have

(Aϕp)
1 � (Aϕ1)

2−p(Aϕ2)
p−1.

By setting A( f ) = A(w f )
A(w) we get

1
p(p−2)

⎛
⎝A(wf p)

A(w)
−
(

A(wf )
A(w)

)p

−
A(w| f − A(w f )

A(w) |p)
A(w)

⎞
⎠

� 1
2

⎛
⎝A(w| f − A(w f )

A(w) |)
A(w)

⎞
⎠

2−p

×

×
⎛
⎝A(wf 2 log f )

A(w)
−
(

A(wf )
A(w)

)2

log
A(wf )
A(w)

−
A(w| f− A(w f )

A(w) |2)
A(w)

log

(
| f−A(wf )

A(w)
|
)⎞⎠

p−1

.

Putting w = gq, f = f g1−q , after some calculation we get the inequality (3.9) . �
When log f is convex we see that [6, Lemma 1.3]:
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LEMMA 3. Let f be log-convex function and x1 � y1,x2 � y2,x1 �= x2,y1 �= y2 .
Then the following inequality is valid

(
f (x2)
f (x1)

) 1
x2−x1 �

(
f (y2)
f (y1)

) 1
y2−y1

.

In the following we assume that Aψ is continuous for ψ = ϕk,φt .

THEOREM 6. Let t,r,u,v ∈ R+ be such that t � v,r � u. Then we have

M[s]
t,r � M[s]

v,u.

Proof. As Aϕt is log-convex, Lemma 3 implies that for t,r,u,v ∈ R+ such that
t � v,r � u, t �= r, v �= u we have,

(
Aϕt

Aϕr

) 1
t−r

�
(

Aϕv

Aϕu

) 1
v−u

. (3.10)

By substitution f = f s, t = t
s , r = r

s , u = u
s , v = v

s , and from the continuity of Aϕt

we get our result for u = r , v = t ; u = r , t �= v ; u �= r , t = v . �

LEMMA 4. Let us define the function

φt (x) =

{
txetx−etx+1

t3
, t �= 0,

x3

3 , t = 0.

Then
(

φ ′
t (x)
x

)′
= etx > 0, and φt(0) = 0. Therefore φt is superquadratic.

THEOREM 7. Theorem 4 is still valid if we set ϕs = φs.

Proof. See the proof of Theorem 4. �

DEFINITION 5. Let L satisfy properties L1,L2 on a non-empty set E , A be a
positive linear functional on L with (A3) and let (A4) be valid. Let t,r ∈ R+ and
f t , f r , log f , (log f )2, (log f )3,(log f )4 ∈ L for t,r ∈ R+. Then we define Cauchy-
type mean of f with respect to the positive linear functional A, M̃t,r( f ,A) by

M̃t,r( f ,A)

=
(

r3(tA( f t log f )−Mt
t −Mt

0 log(Mt
0)+Mt

0− tA(bexp(tb))+A(exp(tb))−1)
t3(rA( f r log f )−Mr

r −Mr
0 log(Mr

0)+Mr
0− rA(bexp(rb))+A(exp(rb))−1)

) 1
t−r

t �= r where Mr( f ,A) = Mr, and b = | log( f
M0

)|.
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In the limiting case when l goes to r we have

M̃r,r( f ,A)

= exp

(
r(A( f r(log f )2)−Mr

0(log(M0))2 −A(b2 exp(rb)))
(rA( f r log f )−Mr

r −Mr
0 log(Mr

0)+Mr
0− rA(bexp(rb))+A(exp(rb))−1)

− 3
r

)
.

When r goes to 0 we have

M̃0,0( f ,A) = exp

(
3(A

(
(log f )4

)− (log(M0))4 −A(b4))
8(A((log f )3)− (log(M0))3 −A(b3))

)
.

THEOREM 8. Let t,r,u,v ∈ R+ be such that t � v, r � u. Then

M̃t,r � M̃v,u.

Proof. As Aφt is log-convex function, Lemma 3 implies that for t,r,u,v ∈ R+
such that t � v,r � u, t �= r, v �= u we get,

(
Aφt

Aφr

) 1
t−r

�
(

Aφv

Aφu

) 1
v−u

.

From the continuity of Aφt we get our result for u = r, v = t ; u = r, t �= v ;u �= r, t =
v . �
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[13] W. SIERPIŃSKI, Sur les fonctions convexes mesurables, Fund. Math. 1 (1920), 125–128.

(Received April 29, 2011) S. Abramovich
University of Haifa

Department of Mathematics
Haifa, Israel

e-mail: abramos@math.haifa.ac.il

G. Farid
Department of Mathematics

GC University Faisalabad
Pakistan

e-mail: faridphdsms@hotmail.com

J. Pečarić
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