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SOME GEOMETRIC INEQUALITIES OF RADON –– MITRINOVIĆ

D. M. BĂTINEŢU-GIURGIU AND NECULAI STANCIU

(Communicated by J. Pečarić)

Abstract. Some Mitrinović type inequalities for general convex polygons are presented. The
main tool in the proofs is the Radon inequality.

1. Introduction

Inequality of J. Radon has the statement:

If n ∈ N∗ , m ∈ R+ , xk ∈ R+ , yk ∈ R∗
+ , ∀k = 1,n , Xn =

n
∑

k=1
xk , Yn =

n
∑

k=1
yk , then:

n

∑
k=1

xm+1
k

ym
k

� Xm+1
n

Ym
n

(R)

Equality holds if and only if there exists t ∈ R∗
+ such that xk = tyk , ∀k = 1,n .

Inequality of Dragoslav S. Mitrinović has the statement:
In any triangle with perimeter 2p , circumscribed of circle C(I;r) occurs the in-

equality
p � 3r

√
3 (M)

Equality holds if and only if the triangle is equilateral.

2. Results

The purpose of this article is to establish some geometric inequalities (other then
[1]) on (M)-type, in convex polygons, used the (R)-inequality.

For any convex polygon A1A2...An,n � 3 we denoted by S the area of the polygon,
by 2p the perimeter of the polygon, by ak the side of the length [AkAk+1]

(
k = 1,n

)
,

An+1 ≡ A1 , and for any point M from inside the polygon we denoted Tk = prAKAK+1M ,
dk = MTk , Sk = area [AkMAk+1] , ∀k = 1,n , and uk = μ (∠AkMAk+1) , vk = μ (∠AkMTk) ,
wk = μ (∠TkMAk+1) the measures of angles ∠AkMAk+1 , ∠AkMTk , respectively
∠TkMAk+1 in radians.
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LEMMA. If A,B,A �= B are points in the same plane and M /∈ AB, T = prABM ,
d = MT , then:

AB
d

=
AB
MT

� 2tg
u
2
,

where u = μ(∠AMB) is the measure of the angle ∠AMB in radians.

Proof. We denoted v = μ(∠AMT ) and w = μ(∠TMB) .
We have the following possibilities:

i) T ∈ (AB) . In this case tgv = AT
MT and tgw = TB

MT , so

AB
d

=
AB
MT

=
AT +TB

MT
= tgv+ tgw.

Since the function f :
[
0, π

2

]→ R+ , f (x) = tgx , is convex on
[
0, π

2

]
it follows by

Jensen’s inequality that

AB
d

= tgv+ tgw � 2tg
v+w

2
= 2tg

u
2
.

ii) T ≡ A . In this case tgw = AB
d , and tgv = AT

d = TT
d = 0. Also we have:

tgu = tgw, so AB
d = tgu = tg2

(
u
2

)
= 2 tg u

2
1− tg2 u

2
� 2tg u

2 ⇔ tg 3 u
2 � 0, which is true.

iii) T ≡ B .This case is analogous with ii).Hence the conclusion follows.

iv) A ∈ (TB) . We have tgv = TA
MT = TA

d and tgw = tg(u+ v) = TB
MT = TB

d .
Hence,

AB
d

=
TB−TA

d
= tg(u+ v)− tgv � tgu

⇔ tgu+ tgv
1− tgu tgv

− tgu− tgv � 0 ⇔ tgu tgv( tgu+ tgv) � 0,

which is true.
Therefore, AB

d � tgu � 2tg u
2 .

v) B ∈ (AT ) . This case is analogous with iv). Hence the conclusion follows.
And we are done

THEOREM 1. If A1A2...An (n � 3) is a convex polygon and M is a point inside
this polygon, then:

n

∑
k=1

ak

dk
� 2n tg

π
n

(1)

Proof. By lemma we have:

ak

dk
� 2tg

uk

2
, ∀k = 1,n
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and then
n

∑
k=1

ak

dk
� 2

n

∑
k=1

tg
uk

2
.

Since the function f :
[
0, π

2

] → R+ , f (x) = tg x
2 , is convex on

[
0, π

2

]
by Jensen’s

inequality follows that:

n

∑
k=1

tg
uk

2
� n tg

(
1
2n

n

∑
k=1

uk

)
= n tg

2π
2n

= n tg
π
n

. �

OBSERVATION 1.1. If the polygon A1A2...An is circumscribed in the circle C(I;r)
and M ≡ I , then: dk = r , ∀k = 1,n , and (1) becomes:

1
r

n

∑
k=1

ak =
2p
r

� 2n tg
π
n
⇔ p � nr tg

π
n

(1′)

OBSERVATION 1.2. The inequality (1) is a generalization of the (M)-inequality,
and if the polygon is the triangle ABC (1) becomes:

a
da

+
b
db

+
c
dc

� 6tg
π
3

= 6
√

3 (1′′)

and if M ≡ I , then we obtain the (M)-inequality.

THEOREM 2. If A1A2...An (n � 3) is a convex polygon, M is a point inside this
polygon and m ∈ R+ , then:

n

∑
k=1

ak

dm
k

� 2 · pm+1

Sm (2)

Proof. We have:

n

∑
k=1

ak

dm
k

=
n

∑
k=1

am+1
k

(akdk)
m =

n

∑
k=1

am+1
k

2mSm
k

=
1
2m

n

∑
k=1

am+1
k

Sm
k

,

and used the (R)-inequality, we obtain

n

∑
k=1

ak

dm
k

� 1
2m

(
n
∑

k=1
ak

)m+1

(
n
∑

k=1
Sk

)m =
1
2m · 2

m+1pm+1

Sm = 2 · pm+1

Sm �

OBSERVATION 2.1. If the polygon A1A2...An (n � 3) is circumscribed in the
circle C(I;r), then S = pr , and (2) becomes:

n

∑
k=1

ak

dm
k

� 2 · pm+1

pmrm =
2p
rm (2′)
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If M ≡ I then by (1′) , we deduce that:

n

∑
k=1

ak

dm
k

� 2n
rm−1 tg

π
n

(2′′)

THEOREM 3. If A1A2...An (n � 3) is a convex polygon, M is a point inside this
polygon, and m ∈ R+ , then:

n

∑
k=1

ak

dm+1
k

� 2mnm+1

p
tgm+1 π

n
(3)

Proof. We have:
n
∑

k=1

ak

dm+1
k

=
n
∑

k=1

1
am
k

(
ak
dk

)m+1
, where we apply the (R)-inequality

and we obtain
n
∑

k=1

ak

dm+1
k

�

(
n
∑

k=1

ak
dk

)m+1

n
∑

k=1
ak

= 1
2p

(
n
∑

k=1

ak
dk

)m+1

, then by (1) we deduce the

conclusion. �

OBSERVATION 3.1. The relation (3) is also written as:

p
n

∑
k=1

ak

dm+1
k

� 2mnm+1 tgm+1 π
n

(3′)

If the polygon A1A2...An (n � 3) is circumscribed in the circle C(I;r) , then (3′) be-
comes:

2p2 · 1
rm+1 � 2mnm+1 tgm+1 π

n
⇔ p2 � 2m−1

(
nr tg

π
n

)m+1
(3′′)

THEOREM 4. If A1A2...An (n � 3) is a convex polygon, M is a point inside this
polygon and m ∈ R+ , then for any x,y ∈ R∗

+ such that 2px > y max
1�k�n

ak , occurs the

inequality:
n

∑
k=1

ak

dm
k (2px− yak)

m+1 � nm+1

2mSm (nx− y)m+1 (4)

Proof. We have:

n

∑
k=1

ak

dm
k (2px− yak)

m+1 =
n

∑
k=1

am+1
k

am
k dm

k (2px−aky)
m+1 =

1
2m

n

∑
k=1

1
Sm

k

(
ak

2px− yak

)m+1

,

where we apply the (R)-inequality and we obtain that

n

∑
k=1

ak

dm
k (2px− yak)

m+1 � 1
2m ·

(
n
∑

k=1

ak
2px−yak

)m+1

(
n
∑

k=1
Sk

)m =
1

2mSm

(
n

∑
k=1

ak

2px− yak

)m+1

.
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Also we have,

Un =
n

∑
k=1

ak

2px− yak
⇔ yUn =

n

∑
k=1

yak

2px− yak

⇔ yUn +n =
n

∑
k=1

(
yak

2px− yak
+1

)
= 2px

n

∑
k=1

1
2px− yak

.

By Bergström’s inequality we deduce that:

n

∑
k=1

1
2px− yak

� n2

n
∑

k=1
(2px− yak)

=
n2

2p(nx− y)
.

Therefore,

yUn +n = 2px
n

∑
k=1

1
2px− yak

� 2px · n2

2p(nx− y)
=

n2x
nx− y

⇔ yUn � n2x
nx− y

−n =
ny

nx− y
⇔Un � n

nx− y
.

Hence,
n

∑
k=1

ak

dm
k (2px− yak)

m+1 � nm+1

2mSm (nx− y)m+1 �

OBSERVATION 4.1. If the polygon from theorem 4 is circumscribed in the circle
C(I;r) , then for any m∈ R+ and for any point M which is inside the polygon holds the
inequality:

n

∑
k=1

ak

dm
k (2px− yak)

m+1 � nm+1

2mSm (nx− y)m+1 =
nm+1

2mpmrm (nx− y)m+1 (4′)

If M ≡ I , then

n

∑
k=1

ak

rm (2px− yak)
m+1 � nm+1

2mpmrm (nx− y)m+1

⇔pm
n

∑
k=1

ak

(2px− yak)
m+1 � nm+1

2m (nx− y)m+1 (4”)

OBSERVATION 4.2. If the polygon from theorem 4 is the triangle ABC , then (4)
becomes:

a

dm
a (2px−ay)m+1 +

b

dm
b (2px−by)m+1 +

c

dm
c (2px− cy)m+1 � 3m+1

2mSm (3x− y)m+1

(4′′′)
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Also (4′′) becomes:

pm

(
a

(2px− ya)m+1 +
b

(2px− yb)m+1 +
c

(2px− yc)m+1

)
� 3m+1

2m (3x− y)m+1 .

If we take m = 0, x = y = 1, then by the last relation we obtain:

a
b+ c

+
b

c+a
+

c
a+b

� 3
2
,

and this is Nesbitt’s inequality.

THEOREM 5. If a convex polyhedron has n faces (n � 4 ) which are convex poly-
gons with their areas Sk

(
k = 1,n

)
, M is a point inside the polyhedron, dk is the dis-

tance from M to the face with area Sk
(
k = 1,n

)
, V is the volume of the polyhedron, S

is total area of the polyhedron and m ∈ R+ , then:

n

∑
k=1

Sk

dm
k

� Sm+1

3mVm (5)

Proof. We have:

n

∑
k=1

Sk

dm
k

=
n

∑
k=1

Sm+1
k

(dkSk)
m =

n

∑
k=1

Sm+1
k

3mVm
k

,

where Vk is the volume of the pyramid which has the vertex M and which has the base
the polygon of the face with the area Sk

(
k = 1,n

)
.

By (R)-inequality, we deduce that:

n

∑
k=1

Sk

dm
k

�

(
n
∑

k=1
Sk

)m+1

3m

(
n
∑

k=1
Vk

)m =
Sm+1

3mVm �

OBSERVATION 5.1. If the convex polyhedron from theorem 5 is circumscribed in
the sphere S(I;r) , then (5) becomes:

n

∑
k=1

Sk

dm
k

� Sm+1

(Sr)m =
S
rm (5′)

If M ≡ I , then dk = r , ∀k = 1,n , and the inequality (5′) becomes a equality.

THEOREM 6. If we have a convex polyhedron like in theorem 5 and m ∈ R+ ,
x,y ∈ R∗

+ , such that xS � y max
1�k�n

Sk , then:

n

∑
k=1

Sk

dm
k (xS− ySk)

m+1 � nm+1

3mVm (nx− y)m+1 (6)
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Proof. We have:

n

∑
k=1

Sk

dm
k (xS− ySk)

m+1 =
n

∑
k=1

Sm+1
k

(dkSk)
m (xS− ySk)

m+1 =
n

∑
k=1

1
3mVm

k

(
Sk

xS− ySk

)m+1

,

where we apply the (R)-inequality and we obtain that:

n

∑
k=1

Sk

dm
k (xS− ySk)

m+1 �

(
n
∑

k=1

Sk
xS−ySk

)m+1

3m

(
n
∑

k=1
Vk

)m =
1

3mVm

(
n

∑
k=1

Sk

xS− ySk

)m+1

.

Also we have,

Wn =
n

∑
k=1

Sk

xS− ySk
⇔ yWn =

n

∑
k=1

ySk

xS− ySk

⇔yWn +n =
n

∑
k=1

(
ySk

xS− ySk
+1

)
= xS

n

∑
k=1

1
xS− ySk

.

By Bergström’s inequality we deduce that:

n

∑
k=1

1
xS− ySk

� n2

n
∑

k=1
(xS− ySk)

=
n2

(nx− y)S
.

So,

yWn +n � x · n2

nx− y
⇔ yWn � xn2

nx− y
−n =

ny
nx− y

⇔Wn � n
nx− y

.

Therefore,
n

∑
k=1

Sk

dm
k (xS− ySk)

m+1 � nm+1

3mVm (nx− y)m+1 �

OBSERVATION 6.1. If convex polyhedron from theorem 6 is circumscribed in the
sphere S(I;r) , then the relation (6) becomes:

n

∑
k=1

Sk

dm
k (xS− ySk)

m+1 � nm+1

Smrm (nx− y)m+1 (6′)

If in addition M ≡ I , then:

n

∑
k=1

Sk

(xS− ySk)
m+1 � nm+1

Sm (nx− y)m+1 (6′′)
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