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MIXED SYMMETRIC MEANS RELATED TO

THE CLASSICAL JENSEN’S INEQUALITY

KHURAM ALI KHAN AND JOSIP PEČARIĆ

(Communicated by A. Vukelić)

Abstract. In this paper, we define some new mixed symmetric means corresponding to various
refinements of classical Jensen’s inequality. A new refinement of classical Jensen’s inequality
is given. We also prove the n -exponential convexity for the functionals constructed from the
refinement results. In the end some applications are discussed.

1. Introduction and preliminary results

Let n ∈ N = {1,2, ...} , t = (t1, ...,tn−1) where ti ∈ [0,1] and p = (p1, ..., pn) be a
positive n -tuple, such that ∑n

i=1 pi = 1 (throughout in this paper). For x := (x1, ...,xn)∈
In (n � 2) , we consider

(H1 ) I ⊂ R be an interval and q : I → R be a convex function.
Then the classical discrete Jensen’s inequality states [9]:

q

(
n

∑
i=1

pixi

)
�

n

∑
i=1

piq(xi). (1)

The following interpolation of (1) is given in [10]:

THEOREM 1.1. Assume (H1 ) and define

qn,k = qn,k(x,p, t,q)

:=
n
∑

i1=1
...

n
∑

ik=1
pi1 ...pikq

(
xi1(1− t1)+

k−1
∑
j=1

xi j (1− t j+1)t1...t j + xt1...tk

)
;
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for k = 1, ...,n−1 , where x =
n
∑
i=1

pixi . Then

q

(
n
∑
i=1

pixi

)
� qn,1 � qn,2 � ... � qn,n−1

�
n
∑

i1=1
...

n
∑

in=1
pi1 ...pinq

(
xi1(1− t1)+

n−2
∑
j=1

xi j (1− t j+1)t1...t j + xint1...tn−1

)
�

n
∑
i=1

piq(xi).

Let the index set T be either {1, ...,n} with n ∈ N or N . We need some facts
from measure and integration theory are as follows ([5],see also[4]):

Let (Yi,Bi,vi) , i ∈ T be probability spaces, where either T := {1, ...,n} with n ∈
N , or T := N . The product of these spaces is denoted by (YT ,BT ,vT ) , i.e YT := ×

i∈T
Yi

and BT is the smallest σ−algebra in Y such that each prT
{i} is BT −Bi measureable

( i ∈ T ). If T = {1, ...,n} , then vT is the only measure on BT which satisfies

vT (B1× ...×Bn) = v1(B1)...vn(Bn)

for every Bi ∈Bi . If T = N , then vT is the unique measure on BT such that the image
measure of vT under the projection mapping pr∞

1...k is the product of the measures
v1, ...,vk (k ∈ N) .

We observe that
(
YT ,BT ,vT

)
is also a probability space.

The n -fold (n� 1orn= ∞) product of the probability spaces (X ,A ,μ ) is denoted
by (Xn,A n,μn ). We suppose that the μ − integrability of a function g : X → R over
X implies the measurability of g .

(H2 ) Let (Yi,Bi,vi) be probability spaces and fi : Yi → I be a vi -integrable func-
tion over Yi(i = 1, ...,n) .

THEOREM 1.2. ([5]) Assume (H1 ) and (H2 ) and let q◦ fi be vi− integrable over
Yi(i = 1, ...,n) . Then

q

⎛⎝ n

∑
i=1

pi

∫
Yi

fidvi

⎞⎠�
∫
YT

q

⎛⎝ n

∑
i=1

pi

∫
Yi

fi(yi)

⎞⎠dvT (y1, ...,yn) �
n

∑
i=1

pi

∫
Yi

q ◦ fidvi, (2)

where T = {1, ...,n} .

The next theorem corresponds the asymptotic behavior of the core term in (2).

THEOREM 1.3. ([5]) Let I ⊂ R be an interval, and let q : I → R be a convex and
bounded function on I . Let (Yi,Bi,vi) , i ∈ N be probability spaces and fi : Yi → I be a
square vi -integrable function over Yi(i ∈ N) such that∫

Yi

fidvi =
∫
Y1

f1dv1, i ∈ N, (3)



MIXED SYMMETRIC MEANS RELATED TO THE CLASSICAL... 45

and
∞

∑
i=1

1
i2

∫
Yi

f 2
i dvi < ∞. (4)

Then

lim
n→∞

∫
Y {1,...,n}

q

(
1
n

n

∑
i=1

fi(yi)

)
dv{1,...,n}(y1, ...,yn) = q

⎛⎝∫
Y1

f1dv1

⎞⎠ .

Consider the following hypothesis:
(H3 ) (X ,A,μ) be probability space and f : X → I be a μ -integrable function over

X .
The next theorem is also followed by [5].

THEOREM 1.4. Assume (H1 ) and (H3 ) such that q◦ f is μ − integrable over X .
Then

(a)

q

⎛⎝∫
X

f dμ

⎞⎠�
∫
Xn

q

(
n

∑
i=1

pi f (xi)

)
dμn(x1, ...,xn) �

∫
X

q ◦ f dv,

(b)

∫
Xn+1

q

(
1

n+1

n+1

∑
i=1

f (xi)

)
dμn+1(x1, ...,xn+1)

�
∫
Xn

q

(
1
n

n

∑
i=1

f (xi)

)
dμn(x1, ...,xn) �

∫
Xn

q

(
n

∑
i=1

pi f (xi)

)
dμn(x1, ...,xn).

(c) If q is bounded, then

lim
n→∞

∫
Xn

q

(
1
n

n

∑
i=1

f (xi)

)
dμn(x1, ...,xn) = q

⎛⎝∫
X

f dμ

⎞⎠ .

REMARK 1.5. From Theorem 1.1, we write

Ψ1(q) := Ψ1(x,p, t,q) :=
n

∑
i=1

piq(xi)

−
n

∑
i1=1

...
n

∑
in=1

pi1 ...pinq

(
xi1(1−t1)+

n−2

∑
j=1

xi j (1−t j+1)t1...t j+xint1...tn−1

)
� 0,

Ψ2(q) := Ψ2(x,p, t,q) :=
n

∑
i=1

piq(xi)−qn,k � 0; k = 1, ...,n−1,
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Ψ3(q) := Ψ3(x,p, t,q)

:=
n

∑
i1=1

...
n

∑
in=1

pi1 ...pinq

(
xi1(1−t1)+

n−2

∑
j=1

xi j (1−t j+1)t1...t j+xint1...tn−1

)
−qn,k � 0,

Ψ4(q) := Ψ4(x,p, t,q) := qn,k −qn,m � 0; 1 � m < k � n−1,

Ψ5(q) := Ψ5(x,p, t,q) := qn,k −q

(
n

∑
i=1

pixi

)
� 0; k = 1, ...,n−1,

Ψ6(q) := Ψ6(x,p, t,q)

:=
n

∑
i1=1

...
n

∑
in=1

pi1 ...pinq

(
xi1(1− t1)+

n−2

∑
j=1

xi j (1− t j+1)t1...t j + xint1...tn−1

)

−q

(
n

∑
i=1

pixi

)
� 0,

Ψ7(q) := Ψ7(x,p,q) :=
n

∑
i=1

piq(xi)−q

(
n

∑
i=1

pixi

)
� 0.

From Theorem 1.2, we write

Ψ8(q) := Ψ8(f,p,q) :=
n

∑
i=1

pi

∫
Yi

q ◦ fidvi−
∫

YT

q

⎛⎝ n

∑
i=1

pi

∫
Yi

fi(yi)

⎞⎠dvT (y1, ...,yn) � 0,

Ψ9(q) := Ψ9(f,p,q) :=
∫

YT

q

⎛⎝ n

∑
i=1

pi

∫
Yi

fi(yi)

⎞⎠dvT (y1, ...,yn)−q

⎛⎝ n

∑
i=1

pi

∫
Yi

fidvi

⎞⎠� 0,

Ψ10(q) := Ψ10(f,p,q) :=
n

∑
i=1

pi

∫
Yi

q ◦ fidvi−q

⎛⎝ n

∑
i=1

pi

∫
Yi

fidvi

⎞⎠� 0,

where f := ( f1, ..., fn) .
From Theorem 1.4 (a), we write

Ψ11(q) := Ψ11(p, f ,q) :=
∫
Xn

q

(
n

∑
i=1

pi f (xi)

)
dμn(x1, .,xn)−q

⎛⎝∫
X

f dμ

⎞⎠� 0,

Ψ12(q) := Ψ12(p, f ,q) :=
∫
X

q ◦ f dv−
∫
Xn

q

(
n

∑
i=1

pi f (xi)

)
dμn(x1, .,xn) � 0,

Ψ13(q) := Ψ13( f ,q) :=
∫
X

q ◦ f dv−q

⎛⎝∫
X

f dμ

⎞⎠� 0,
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and from Theorem 1.4 (b)

Ψ14(q) := Ψ14(p, f ,q) :=
∫
Xn

q

(
n

∑
i=1

pi f (xi)

)
dμn(x1, .,xn)

−
∫
Xn

q

(
1
n

n

∑
i=1

f (xi)

)
dμn(x1, .,xn) � 0,

Ψ15(q) := Ψ15(p, f ,q) :=
∫
Xn

q

(
n

∑
i=1

pi f (xi)

)
dμn(x1, .,xn)

−
∫

Xn+1

q

(
1

n+1

n+1

∑
i=1

f (xi)

)
dμn+1(x1, .,xn+1) � 0.

REMARK 1.6. The first inequality in Theorem 1.4 (b) provides the generalization
of result given in [3] and [13] (see also Theorem 3.36 in [12] page 97). That result is
utilized in [2] to give the log-convexity for a class of convex functions and is also used
in [8] to give the exponential convexity for the same class.

In this paper we refine the first inequality in Theorem 1.4 (b). Mixed symmetric
means are defined and their monotonicity is presented. The notion of n -exponential
convexity is introduced in [11]. The class of n -exponential convex functions is more
general than the class of log-convex functions. We follow the method illustrated in
[11] to give the n -exponential convexity and exponential convexity for the family of
functionals Ψi(q) (i = 1, ...,21) . Therefore our results related to Theorem 2.1 are
more general than the corresponding results in [2] and in [8].

2. New refinement of Jensen’s inequality

THEOREM 2.1. Consider the assumptions of Theorem 1.4. We define

Qn,k :=
∫
Xk

q

(
(1− t1) f (x1)+

k−1

∑
j=1

(1− t j+1)t1...t j f (x j)+ t1...tk f

)
dμk(x1, ...xk),

where f =
∫
X

f (x)dμ(x) and ti ∈ [0,1] i = 1, ...n−1 . Then

q

⎛⎝∫
X

f dμ

⎞⎠� Qn,1 � Qn,2 � ... � Qn,n−1

�
∫
Xn

q

(
(1− t1) f (x1)+

n−2

∑
j=1

(1− t j+1)t1...t j f (x j)+ t1...tn−1 f (xn)

)
dμn(x1, ...xn)

�
∫
X

q ◦ f dμ .
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Proof. By use of Jensen’s inequality and integration with respect to μ , we have
the following:

∫
X

q ◦ f dμ

=
∫
Xn

(
(1− t1)q ◦ f (x1)+

n−2

∑
j=1

(1− t j+1)t1...t jq ◦ f (x j)+ t1...tn−1q ◦ f (xn)

)
dμn(x1, ...xn)

�
∫
Xn

q

(
(1− t1) f (x1)+

n−2

∑
j=1

(1− t j+1)t1...t j f (x j)+ t1...tn−1 f (xn)

)
dμn(x1, ...xn)

�
∫

Xn−1

q

(
(1− t1) f (x1)+

n−2

∑
j=1

(1− t j+1)t1...t j f (x j)+ t1...tn−1 f

)
dμn−1(x1, ...xn−1)

...

�
∫
X

q
(
(1− t1) f (x1)+ t1 f

)
dμ(x1) � q

⎛⎝∫
X

f dμ

⎞⎠ . �

REMARK 2.2. From previous theorem we write

Ψ16(q) := Ψ16(t, f ,q) :=
∫
X

q ◦ f dμ

−
∫
Xn

q

(
(1−t1) f (x1)+

n−2

∑
j=1

(1−t j+1)t1...t j f (x j)+t1...tn−1 f (xn)

)
dμn(x1, ...xn)

� 0,

Ψ17(q) := Ψ18(t, f ,q)

:=
∫
Xn

q

(
(1− t1) f (x1)+

n−2

∑
j=1

(1− t j+1)t1...t j f (x j)+ t1...tn−1 f (xn)

)
dμn(x1, ...xn)

−Qn,k � 0; k = 1, ...,n−1,

Ψ18(q) := Ψ17(t, f ,q) :=
∫
X

q ◦ f dμ −Qn,k � 0; k = 1, ...,n−1,

Ψ19(q) := Ψ19(t, f ,q) := Qn,k −Qn,m � 0; 1 � m < k � n−1,

Ψ20(q) := Ψ20(t, f ,q) := Qn,k −q

⎛⎝∫
X

f dμ

⎞⎠� 0; k = 1, ...,n−1,
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Ψ21(q) := Ψ21(t, f ,q)

:=
∫
Xn

q

(
(1− t1) f (x1)+

n−2

∑
j=1

(1− t j+1)t1...t j f (x j)+ t1...tn−1 f (xn)

)
dμn(x1, ...xn)

−q

⎛⎝∫
X

f dμ

⎞⎠� 0.

Hence for any convex function q , we have

Ψi(q) � 0; i = 1, ...,21. (5)

REMARK 2.3. In this way the results for Ψi(q) , i = 18, ...,20 are more general
than the results given for Theorem 1.14 in [8].

Now we formulate the mean value theorems for Ψi(q) , i = 1, ...,21.

THEOREM 2.4. Consider the functionals as defined in (5) and let g ∈ C2[a,b] .
Then there exists ξi ∈ [a,b] such that

Ψi (g) =
1
2
g′′ (ξi)Ψi (x2) , i = 1, ...,21.

Proof. Since g ∈C2[a,b] therefore there exist real numbers m = min
x∈[a,b]

g′′(x) and

M = max
x∈[a,b]

g′′(x) . It is easy to show that the functions φ1(x) , φ2(x) defined as

φ1(x) =
M
2

x2−g(x) ,

and
φ2(x) = g(x)− m

2
x2,

are convex. Fix 1 � i � 21 and put q = φ1 in (5) to get

Ψi
(

M
2

x2 −g(x)
)

� 0,

⇒ Ψi (g(x)) � M
2

Ψi (x2) . (6)

Similarly, put q = φ2 in (5) to get

Ψi
(
g(x)− m

2
x2
)

� 0

⇒ m
2

Ψi (x2)� Ψi (g(x)) . (7)



50 K. A. KHAN AND J. PEČARIĆ

From (6) and (7), we get

m
2

Ψi (x2)� Ψi (g(x)) � M
2

Ψi (x2) .

If Ψi
(
x2
)

= 0 then nothing to prove. If Ψi
(
x2
) �= 0, then

m � 2Ψi (g(x))
Ψi (x2)

� M.

Consequently

Ψi (g) =
1
2
g′′ (ξi)Ψi (x2) . �

THEOREM 2.5. Consider the functionals as defined in (5) and let g,h ∈C2[a,b] .
Then there exists ξi ∈ [a,b] such that

Ψi (g)
Ψi (h)

=
g′′ (ξi)
h′′ (ξi)

, i = 1, ...,21,

provided that the denominators are non zero.

Proof. Fix 1 � i � 21 and define L ∈C2[a,b] in the way that

L = c1g− c2h,

where c1 and c2 are as follow;
c1 = Ψi (h)

and
c2 = Ψi (g) .

Now using Theorem 2.4 for the function L , we have(
c1

g′′ (ξi)
2

− c2
h′′ (ξi)

2

)
Ψi (x2)= 0. (8)

Since Ψi
(
x2
) �= 0, therefore (8) gives

Ψi (g)
Ψi (h)

=
g′′ (ξi)
h′′ (ξi)

. �

3. Mixed symmetric means

Let us consider a convex set Y together with a probability measure v and f be a
positive continuous function. Then the integral power means of order s∈ R are defined
as follows [1]:

M̃s ( f ) =

⎧⎪⎪⎨⎪⎪⎩
(∫

Y
( f (y))sdv(y)

) 1
s

; s �= 0,

exp

(∫
Y

log( f (y))dv(y)
)

; s = 0.
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Assume (H2 ). We define the weighted power means and mixed symmetric means
as follows:

Ms ( f1, ..., fn;p) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

n
∑
i=1

pi( fi (yi))
s
) 1

s

; s �= 0,

n
∏
i=1

( fi (yi))pi ; s = 0.

Mr,s ( f1, ..., fn;p) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

n
∑
i=1

piM̃r
s ( fi)

) 1
r

; r �= 0,

n
∏
i=1

M̃pi
s ( fi); r = 0.

M̃r,s ( f1, ..., fn;p) =

⎧⎨⎩
(∫

YT
Ms

r ( f1, ..., fn;p)dvT (y1, ...,yn)

) 1
r

; r �= 0,

We can establish the relations among these means as an application of Theorem 1.2.

COROLLARY 3.1. Let r,s ∈ R such that s � r and assume (H2 ), then we have

Ms,s ( f ) � M̃r,s ( f ;p) � M̃r ( f ) (9)

Mr,r ( f ) � M̃s,r ( f ;p) � M̃s ( f ) (10)

Proof. Let r,s ∈ R such that s � r , if r,s �= 0, then we set q(x) = x
r
s , fi = fis in

(2) and raising the power 1
r , we get (9). Similarly we set q(x) = x

s
r , fi = fir in (2) and

raising the power 1
s , we get (10).

When s = 0 or r = 0, we get the required results by taking limit. �
We also need the following hypothesis:
(H4 ) h,g : I → R be continuous and strictly monotone functions.
Assume (H2 ) and (H4 ), then quasi-arithmetic are defined as follows:

M̃h,g ( f1, ..., fn;p) = h−1

⎛⎝∫
YT

h(Mg ( f1, ..., fn;p))dvT (y1, ...yn)

⎞⎠ ,

where T = {1, ...,n} ,

Mg ( f1, ..., fn;p) = g−1

(
n

∑
i=1

pi (g ◦ fi (yi))

)
,

and

M̃g ( f1, ..., fn;p) = g−1

(
n

∑
i=1

pi

∫
g ◦ fi (yi)dvi

)
.

We describe the monotonicity of these means as follows:
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COROLLARY 3.2. Assume (H2 ) and (H4 ). If h ◦ g−1 is convex and h is increas-
ing, or h ◦ g−1 is concave and h is decreasing. Then

M̃g ( f1, ..., fn;p) � M̃h,g ( f1, ..., fn;p) � M̃h ( f1, ..., fn;p) , (11)

and if g◦ h−1 is convex and g is decreasing, or g ◦ h−1 is concave and g is increas-
ing.Then

M̃h ( f1, ..., fn;p) � M̃g,h ( f1, ..., fn;p) � M̃g ( f1, ..., fn;p) . (12)

Proof. We set q = h ◦ g−1 , fi = g ◦ fi in (2) and applying h−1 , we obtain (11).
We also set q = g ◦ h−1 , fi = h ◦ fi again in (2) and applying g−1 , we get (12). �

COROLLARY 3.3. Let r,s ∈ R such that s � r , (Yi,Bi,vi) , i ∈ N be probability
spaces, fi : Yi → I be a square vi -integrable function over Yi(i ∈ N) such that (3) and
(4) are valid. Then

lim
n→∞

M̃r,s ( f1, ..., fn) = M̃s ( f1) ,

and
lim
n→∞

M̃s,r ( f1, ..., fn) = M̃r ( f1) .

Proof. Apply Theorem 1.3 and follow the proof of Corollary 3.1. �

COROLLARY 3.4. Suppose (H4 ) and let (Yi,Bi,vi) , i ∈ N be probability spaces,
fi : Yi → I be a square vi -integrable function over Yi(i ∈ N) such that (3) and (4) are
valid. Now, if h◦ g−1 is bounded convex and h is increasing, or h◦ g−1 is bounded
concave and h is decreasing. Then

lim
n→∞

M̃h,g ( f1, ..., fn) = M̃g ( f1) ,

and if g ◦ h−1 is bounded convex and g is decreasing, or g ◦ h−1 is bounded concave
and g is increasing.Then

lim
n→∞

M̃g,h ( f1, ..., fn) = M̃h ( f1) .

Proof. Apply Theorem 1.3 and follow the proof of Corollary 3.2. �

COROLLARY 3.5. Let r,s ∈ R such that s � r and assume (H3 ), then we have

M̃s ( f ) � M̃r,s ( f ;p) � M̃r ( f ) ,

and
M̃r ( f ) � M̃s,r ( f ;p) � M̃s ( f ) .

Proof. Apply Theorem 1.4 (a) and follow the proof of Corollary 3.1. �
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COROLLARY 3.6. Let r,s ∈ R such that s � r and assume (H3 ), then we have

M̃r,s ( f ;n+1) � M̃r,s ( f ;n) � M̃r,s ( f ;p) ,

M̃s,r ( f ;n+1) � M̃s,r ( f ;n) � M̃s,r ( f ;p) .

Proof. Apply Theorem 1.4 (b) and follow the proof of Corollary 3.1. �

COROLLARY 3.7. Let r,s ∈ R such that s � r and assume (H3 ), then we have

lim
n→∞

M̃r,s ( f ;n) = M̃s ( f ) ,

lim
n→∞

M̃s,r ( f ;n) = M̃r ( f ) .

Proof. Apply Theorem 1.4 (c) and follow the proof of Corollary 3.1. �

COROLLARY 3.8. Assume (H3 ) and (H4 ). Now, if h ◦ g−1 is convex and h is
increasing, or h◦ g−1 is concave and h is decreasing. Then

M̃g ( f ) � M̃h,g ( f ;p) � M̃h ( f ) ,

and if g◦ h−1 is convex and g is decreasing, or g ◦ h−1 is concave and g is increas-
ing.Then

M̃h ( f ) � M̃g,h ( f ;p) � M̃g ( f ) .

Proof. Apply Theorem 1.4 (a) and follow the proof of Corollary 3.2. �

COROLLARY 3.9. Assume (H3 ) and (H4 ). Now, if h ◦ g−1 is convex and h is
increasing, or h◦ g−1 is concave and h is decreasing. Then

M̃h,g ( f ;n+1) � M̃h,g ( f ;n) � M̃h,g ( f ;p) ,

and if g◦ h−1 is convex and g is decreasing, or g ◦ h−1 is concave and g is increas-
ing.Then

M̃g,h ( f ;n+1) � M̃g,h ( f ;n) � M̃g,h ( f ;p) .

Proof. Apply Theorem 1.4 (b) and follow the proof of Corollary 3.2. �

COROLLARY 3.10. Assume (H3 ) and (H4 ). Now, if h ◦ g−1 is convex and h is
increasing, or h◦ g−1 is concave and h is decreasing. Then

lim
n→∞

M̃h,g ( f ;n) = M̃g ( f ) ,

and if g◦ h−1 is convex and g is decreasing, or g ◦ h−1 is concave and g is increas-
ing.Then

lim
n→∞

M̃g,h ( f ;n) = M̃h ( f ) .
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Proof. Apply Theorem 1.4 (c) and follow the proof of Corollary 3.2. �
Assume (H3 ). Then associated to the core term of Theorem 5, we define the mixed

means as follows:

M̃r,s(n,k, f ; t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(∫
Xk

Mr
s ( f ,M̃s; t;k)dμk(x1, ...,xk)

) 1
r

; r �= 0,

exp

(∫
Xk

logMs( f ,M̃s; t;k)dμk(x1, ...,xk)

)
; r = 0,

where

Ms( f ,M̃s; t;k) :=⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
(1− t1) f s(x1)+

k−1
∑
j=1

(1− t j+1)t1...t j f s(x j)+ t1...tkM̃s
s( f )

) 1
s

; r �= 0,

exp

(
(1− t1) log f (x1)+

k−1
∑
j=1

(1− t j+1)t1...t j log f (x j)+ t1...tk logM̃0( f )

) 1
s

; r = 0.

COROLLARY 3.11. Let r,s ∈ R such that s � r and assume (H3 ), then

M̃s( f ) � M̃r,s(n,1; f ; t) � ... � M̃r,s(n,n−1; f ; t) � M̃r,s( f ; t) � M̃r( f ),

M̃r( f ) � M̃s,r(n,1; f ; t) � ... � M̃s,r(n,n−1; f ; t) � M̃s,r( f ; t) � M̃s( f ).

Proof. Apply Theorem 2.1 and follow the proof of Corollary 3.1. �
Assume (H3 ) and (H4 ). Then using (5) we define the generalized means as fol-

lows:

M̃h,g(n,k; f ; t) = h−1

⎛⎝∫
Xk

h
(
Mg( f ,M̃g; t;k)

)
dμk(x1, ...,xk)

⎞⎠ ,

where

Mg( f ,M̃g; t;k) := g−1

(
(1−t1)g ◦ f (x1)+

k−1
∑
j=1

(1−t j+1)t1...t jg ◦ f (x j)+t1...tkg(M̃g( f ))

)
.

COROLLARY 3.12. Assume (H3 ) and (H4 ). Now, if h ◦ g−1 is convex and h is
increasing, or h◦ g−1 is concave and h is decreasing. Then

M̃g( f ) � M̃h,g(n,1; f ; t) � ... � M̃h,g(n,n−1; f ; t) � M̃h,g( f ; t) � M̃h( f ),

and if g◦ h−1 is convex and g is decreasing, or g ◦ h−1 is concave and g is increas-
ing.Then

M̃h( f ) � M̃g,h(n,1; f ; t) � ... � M̃g,h(n,n−1; f ; t) � M̃g,h( f ; t) � M̃g( f ).
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Proof. Apply Theorem 2.1 and follow the proof of Corollary 3.2. �

REMARK 3.13. Similar to Corollary 3.11 and Corollary 3.12, we can give the re-
sults for Theorem 1.1 and those will be the special cases of Corollary 3.11 and Corollary
3.12 with discrete measure.

4. Exponential convexity

DEFINITION 1. [11] A function φ : I →R is n-exponentially convex in the Jensen
sense on I if

n

∑
k,l=1

αkαlφ
(

xk + xl

2

)
� 0

holds for αk ∈ R and xk ∈ I , k = 1,2, ...,n .
A function φ : I → R is n-exponentially convex if it is n-exponentially convex in

the Jensen sense and continuous on I.

REMARK 4.1. From the definition it is clear that 1-exponentially convex func-
tions in the Jensen sense are in fact nonnegative functions. Also, n -exponentially con-
vex functions in the Jensen sense are m-exponentially convex in the Jensen sense for
every m ∈ N,m � n .

PROPOSITION 4.2. If φ : I → R is an n-exponentially convex function, then the

matrix
[
φ
( xk+xl

2

)]m
k,l=1

is a positive semi-definite matrix for all m ∈ N,m � n. Partic-

ularly,

det

[
φ
(

xk + xl

2

)]m

k,l=1
� 0

for all m ∈ N , m = 1,2, ...,n.

DEFINITION 2. A function φ : I → R is exponentially convex in the Jensen sense
on I if it is n -exponentially convex in the Jensen sense for all n ∈ N .

A function φ : I → R is exponentially convex if it is exponentially convex in the
Jensen sense and continuous.

REMARK 4.3. It is easy to show that φ : I→ R is log-convex in the Jensen sense
if and only if

α2φ(x)+2αβ φ
(

x+ y
2

)
+ β 2φ(y) � 0

holds for every α,β ∈R and x,y∈ I . It follows that any positive function is log-convex
in the Jensen-sense if and only if it is 2-exponentially convex in the Jensen sense.

Also, using basic convexity theory it follows that a function is log-convex if and
only if it is 2-exponentially convex.
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When dealing with functions with different degree of smoothness divided differ-
ences are found to be very useful.

DEFINITION 3. The second order divided difference of a function φ : I→ R at
mutually different points y0,y1,y2 ∈ I is defined recursively by

[yi;φ ] = φ(yi), i = 0,1,2

[yi,yi+1;φ ] =
φ(yi+1)−φ(yi)

yi+1− yi
, i = 0,1

[y0,y1,y2;φ ] =
[y1,y2;φ ]− [y0,y1;φ ]

y2− y0
. (13)

REMARK 4.4. The value [y0,y1,y2;φ ] is independent of the order of the points
y0,y1 , and y2 . By taking limits this definition may be extended to include the cases in
which any two or all three points coincide as follows: ∀y0, y1, y2 ∈ I

lim
y1→y0

[y0,y1,y2;φ ] = [y0,y0,y2;φ ] =
φ(y2)−φ(y0)−φ ′

(y0)(y2− y0)

(y2− y0)
2 , y2 �= y0

provided that φ ′ exists, and furthermore, taking the limits yi → y0, i = 1,2 in (13), we
get

[y0,y0,y0;φ ] = lim
yi→y0

[y0,y1,y2;φ ] =
φ ′′

(y0)
2

for i = 1,2

provided that φ ′′
exist on I .

THEOREM 4.5. Let Λ = {φt : t ∈ J} , where J an interval in R , be a family of
functions defined on an interval [a,b] , such that the function t → [y0,y1,y2;φt ] is n-
exponentially convex in the Jensen sense on J for every three mutually different points
y0,y1,y2 ∈ [a,b] . Let Ψi (i = 1, ..,21) be be linear functionals defined as in (5). Then
t → Ψi(φt) is an n-exponentially convex function in the Jensen sense on J . If the
function t → Ψi(φt) is continuous on J , then it is n-exponentially convex on J .

Proof. Consider any i such that 1 � i � 21.
Let us define the function

ω(y) =
n

∑
k,l=1

bkblφtkl (y),

where tkl = tk+tl
2 , tk ∈ J,bk ∈ R , k = 1,2, ...,n .

Since the function t → [y0,y1,y2;φt ] is n -exponentially convex in the Jensen sense,
we have

[y0,y1,y2;ω ] =
n

∑
k,l=1

bkbl[y0,y1,y2;φtkl ] � 0,
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which implies that ω is convex function on [a,b] and therefore we have Ψi(ω) � 0,
i = 1, ...,21. Hence

n

∑
k,l=1

bkblΨi(φtkl ) � 0.

We conclude that the function t → Ψi(φt ) is an n -exponentially convex function in the
Jensen sense on J .

If the function t → Ψi(φt) is continuous on J , then it is n -exponentially convex
on J by definition. �

As a consequence of the above theorem we can give the following corollary.

COROLLARY 4.6. Let Λ = {φt : t ∈ J} , where J an interval in R , be a family
of functions defined on an interval [a,b] , such that the function t → [y0,y1,y2;φt ] is
exponentially convex in the Jensen sense on J for every three mutually different points
y0,y1,y2 ∈ [a,b] . Let Ψi (i = 1, ..,21) be be linear functionals defined as in (5). Then
t → Ψi(φt ) is an exponentially convex function in the Jensen sense on J . If the function
t → Ψi(φt) is continuous on J , then it is exponentially convex on J .

COROLLARY 4.7. Let Λ = {φt : t ∈ J} , where J an interval in R , be a family of
functions defined on an interval [a,b] , such that the function t → [y0,y1,y2;φt ] is 2 -
exponentially convex in the Jensen sense on J for every three mutually different points
y0,y1,y2 ∈ [a,b] . Let Ψi (i = 1, ..,21) be be linear functionals defined in (5). Then the
following statements hold:

(i) If the function t → Ψi(φt ) is positive and continuous on J , then it is 2 -exponen-
tially convex on J , and thus log convex.

(ii) If the function t → Ψi(φt) is positive then for every s,t,u,v ∈ J , such that s � u
and t � v, we have

us,t(Ψi,Λ) � uu,v(Ψi,Λ) (14)

where

us,t(Ψi,Λ) =

⎧⎪⎪⎨⎪⎪⎩
(

Ψi(φs)
Ψi(φt)

) 1
s−t

, s �= t,

exp

(
d
ds Ψi(φs)
Ψi(φs)

)
, s = t

(15)

for φs,φt ∈ Λ and for the case t = s we consider that the function t → Ψi(φt )
(i = 1, ...,21) is differentiable.

Proof. Consider i such that 1 � i � 21.

(i) See Remark 4.3 and Theorem 4.5.
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(ii) From the definition of convex function φ , we have the following inequality [12,
page 2]

φ (s) − φ (t)
s − t

� φ (u) − φ (v)
u − v

, (16)

∀s, t,u,v ∈ J such that s � u, t � v, s �= t, u �= v .

Since by (i), Ψi(φs) is log-convex, so set φ(x) = logΨi(φs) in (16) we have

logΨi(φs) − logΨi(φt)
s− t

� logΨi(φu)− logΨi(φv)
u− v

(17)

for s � u, t � v, s �= t, u �= v , which equivalent to (14). For s = t, u = v follows
from (17) by taking limit. �

EXAMPLE 1. We consider the class

Λ1 = {φt : R → [0,∞);t ∈ R}
where

φt(x) =

⎧⎨⎩
1
t2

etx; t �= 0,

1
2x2; t = 0.

Then φt (t ∈ R) is a convex function on R and t 
→ φ ′′
t (x) is exponentially convex [7].

By similar reasoning as given in the proof of Theorem 4.5, we get the exponential con-
vexity of t 
→ [y0,y1,y2;φt ] (and hence the exponential convexity in Jensen sense). By
using the Corollary 4.6, we get the exponential convexity of t 
→ Ψi(φt) , (i = 1, ...,21)
in Jensen sense. Also these mappings are continuous, therefore exponentially convex.
Then from (15) we have

us,t(Ψi,Λ1) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
Ψi(φs)
Ψi(φt)

) 1
s−t

, s �= t,

exp
(

Ψi(id φs)
Ψi(φs)

− 2
s

)
, s = t �= 0,

exp
(

Ψi(id φ0)
3Ψi(φ0)

)
, s = t = 0,

where i = 1, ...,21.
Also from (14) we have the monotonicity of functions us,t(Ψi,Λ1) in both param-

eters for i = 1, ...,21.
For positive Ψi(φt) , (i = 1, ...,21) Theorem 2.5 insures the existence of m,M ∈ R

such that
m � Ms,t(Ψi,Λ1) � M, i = 1, ...,21,

where

Ms,t(Ψi,Λ1) := logus,t(Ψi,Λ1), i = 1, ...,21.

i.e Ms,t(Ψi,Λ1) for i = 1, ...,21 are means and the monotonicity of these means is
evident from (14).
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EXAMPLE 2. We consider the class

Λ2 = {ψt : (0,∞) → R ; t ∈ R}
where

ψt(x) :=

⎧⎪⎪⎨⎪⎪⎩
xt

t(t−1) ; t �= 0,1,

− logx; t = 0,

x logx; t = 1.

Then ψt (t ∈ R) is a convex function for x ∈ (0,∞) and t 
→ ψ ′′
t (x) is exponentially

convex. By similar arguments as given in Example 1 we get the exponential convexity
of t 
→ Ψi(ψt) , (i = 1, ...,21) . Therefore from (15) we have

us,t(., ., .,Ψi,Λ2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Ψi(ψs)
Ψi(ψt)

) 1
s−t

; s �= t,

exp
(

1−2t
t(t−1) − Ψi(ψtψ0)

Ψi(ψt)

)
; s = t �= 0,1,

exp
(
1− Ψi(ψ2

0 )
2Ψi(ψ0)

)
; s = t = 0,

exp
(
−1− Ψi(ψ0ψ1)

2Ψi(ψ1)

)
; s = t = 1.

where i = 1, ...,21.
We consider Ψi(ψt)> 0, (i = 1, ...,21) , then from Theorem 2.5, there exist m,M ∈

R such that

m �
(

Ψi(ψs)
Ψi(ψt)

) 1
s−t

� M; (s �= t), i = 1, ...,21. (18)

The means us,t(Ψi,Λ2) are continuous, symmetric and monotone in both parameters
(by use of (14)) for i = 1, ...,21. Let s,t,r ∈ R then by substitutions s→ s

r , t → t
r (r �=

0,s �= t) , x j → xr
j for i = 1, ...,7, f j → f r

j for i = 8,9,10 and f → f r for i = 11, ...,21
in (18) we get

m �
(

Ψi(xr,p, t,ψs/r)
Ψi(xr,p, t,ψt/r)

) 1
s−t

� M; i = 1, ...,6,

m �
(

Ψ7(xr,p,ψs/r)
Ψ7(xr,p,ψt/r)

) 1
s−t

� M; xr := (xr
1, ...,x

r
n),

m �
(

Ψi(fr,p,ψs/r)
Ψi(fr,p,ψt/r)

) 1
s−t

� M; fr := ( f r
1 , ..., f r

n), i = 8,9,10,

m �
(

Ψi(p, f r,ψs/r)
Ψi(p, f r,ψt/r)

) 1
s−t

� M; i = 11, ...,15, i �= 13,

m �
(

Ψ13( f r,ψs/r)
Ψ13( f r,ψt/r)

) 1
s−t

� M,
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m �
(

Ψi(t, f r,ψs/r)
Ψi(t, f r,ψt/r)

) 1
s−t

� M, i = 16, ...,21.

We define means in three parameters as follows:

us,t,r(xr,p, t,Ψi,Λ2) =

⎧⎨⎩
(
us/r,t/r(xr,p, t,Ψi,Λ2)

) 1
r ; r �= 0,

us,t(logx,p, t,Ψi,Λ1); r = 0,

where logx = (logx1, ..., logxn) and i = 1,...,6.

us,t,r(xr,p,Ψ7,Λ2) =

⎧⎨⎩
(
us/r,t/r(xr,p,Ψ7,Λ2)

) 1
r ; r �= 0,

us,t(logx,p,Ψ7,Λ1); r = 0.

The means us,t,r(xr,p,Ψ7,Λ2) are also given in [8] and [6].

us,t,r(fr,p,Ψi,Λ2) =

⎧⎨⎩
(
us/r,t/r(fr,p,Ψi,Λ2)

) 1
r ; r �= 0,

us,t(log f,p,Ψi,Λ1); r = 0,

where log f = (log f1, ..., log fn) and i = 8,9,10.

us,t,r(p, f r ,Ψi,Λ2) =

⎧⎨⎩
(
us/r,t/r(p, f r,Ψi,Λ2)

) 1
r ; r �= 0,

us,t(p, log f ,Ψi,Λ1); r = 0,

where i = 11, ...,15 and i �= 13.

us,t,r( f r,Ψ13,Λ2) =

⎧⎨⎩
(
us/r,t/r( f r,Ψ13,Λ2)

) 1
r ; r �= 0,

us,t(log f ,Ψ13,Λ1); r = 0.

us,t,r(t, f r ,Ψi,Λ2) =

⎧⎨⎩
(
us/r,t/r(t, f r ,Ψi,Λ2)

) 1
r ; r �= 0,

us,t(t, log f ,Ψi,Λ1); r = 0,
i = 16, ...,21.

The monotonicity of three parameter means is followed by the monotonicity and
continuity of two parameter means.

EXAMPLE 3. We consider a class of convex functions

Λ3 = {ηt : (0,∞) → (0,∞);t ∈ (0,∞)}

where

ηt(x) :=

⎧⎨⎩
t−x

log2t
; t �= 1,

x2

2 ; t = 1.
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t 
→ ψ ′′
t (x) is exponentially convex, being the Laplace transform of a non-negative

function (see [7], [14]). For the class Λ3 , (15) gives

us,t(Ψi,Λ3) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
Ψi(ηs)
Ψi(ηt)

) 1
s−t

; s �= t,

exp
(
− 2

t log t − Ψi(id·ηt)
tΨi(ηt)

)
; s = t �= 1,

exp
(
−Ψi(id·η1)

3Ψi(η1)

)
; s = t = 1,

where i = 1, ...,21 and monotonicity of us,t(Ψi,Λ3) is followed by (14).
We consider Ψi(ηt ) > 0, (i = 1, ...,21) , then for m,M ∈ R , Theorem 2.5 gives

the means
Ms,t(Ψi,Λ3) := −L(s,t) logus,t(Ψi,Λ3), i = 1, ...,21,

such that
m � Ms,t(Ψi,Λ3) � M, i = 1, ...,21,

where L(s, t) are logarithmic means

L(s,t) :=

{ s−t
logs−logt ; s �= t,

t; s = t.

EXAMPLE 4. We consider a class of convex functions

Λ4 = {γt : (0,∞) → (0,∞);t ∈ (0,∞)}

defined as

γt(x) :=
e−x

√
t

t
.

t 
→ ψ ′′
t (x) = e−x

√
t is exponentially convex, being the Laplace transform of a

non-negative function (see [7], [14]). For the class Λ4 , (15) becomes

us,t(Ψi,Λ4) =

⎧⎪⎨⎪⎩
(

Ψi(γs)
Ψi(γt)

) 1
s−t

; s �= t,

exp
(
− 1

t − Ψi(id·γt )
2
√

tΨi(γt )

)
; s = t.

where i = 1, ...,21 and monotonicity of us,t(Ψi,Λ4) is followed by (14).
We consider Ψi(γt ) > 0, (i = 1, ...,21) , then for m̃,M̃ ∈ R Theorem 2.5 gives the

means
Ms,t(Ψi,Λ4) := −(

√
s+

√
t) logus,t(Ψi,Λ4), i = 1, ...,21,

such that
m̃ � Ms,t(Ψi,Λ4) � M̃, i = 1, ...,21.
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[1] M. ANWAR AND J. PEČARIĆ, New Means of Cauchy type, J. Inequal. Appl. Vol. 2008 (2008), Article
ID 163202, 10 pages.
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